OO SK-FORTHT7 9 <LK

USER'S GUIDE AND GLOSSARIES

RELEASE 2.0
FORTH-79 STANDARD
with

Double-Number Standard Extensions

BY:

JOHN W. BROWN

DISTRIBUTED BY:

SATURN SOFTWARE LIMITED
P. 0. BOX 397
NEW WESTMINSTER, V3L 4Y7

SK-FORTH79 USER'S GUIDE

DISCLAIMER

Saturn Software Limited and the author make no warranties,
either expressed or implied, with respect to this manual, or with
respect to the software it describes, or its quality, performance, or
suitability for any particular application. In no event will Saturn
Software Limited or author be 1liable for any direct, indirect,
incidental, or consequential damages resulting from any defects in
the manual or the software supplied.

COPYRIGHT NOTICE

SK-FORTH79 2.0 COPYRIGHT JAN 1, 1982 BY SATURN SOFTWARE LIMITED

This manual describing SK-FORTH79, and the accompanying diskette
containing the SK-FORTH79 software, are copyrighted, and are provided
for the personal use and enjoyment of the original purchaser only.
All rights are reserved. Reproduction by any means whatsoever,
without the expressed written consent of the author, is strictly
prohibited. The purchaser is, however, permitted to make backup
copies to protect against accidental loss or erasure. The use of
SK-FORTH79 for the promotion of sales of microcomputer hardware and

equipment is strictly prohibited without the express written
permission of the author.

Address all communications to:

John W. Brown, President
Saturn Software Limited
P. 0. BOX 397

New Westminster, B. C.
V3L 4Y7, CANADA

SV-FNRTHTQ 2 N CODVRTOCHET CATITRN QNRTWARE T TMTTRN

TABLE OF CONTENTS

Introduction = = = = = = = = = = = = = = =
Equipment Required — - — = = = = = — — - =
Getting Started = = = = = = = = = = = = -~
Line Editing Commands = - - = = = = — = =
Stack Manipulation - - = = = = = = = - - -
The Return Stack — = = = = = = = = = — - =
Basic Arithmetic Operators - - = = = = = =
Non Destructive Stack Print - = = = - = =
PICK and ROLL = = = = = = = = = = = = - —
Single Precision Numbers - = = = = = = - =
Double Precision Numbers - - - — = = - - -
Introduction to Colon Definitions - - = =
Number Bases = = = = = = = = = = = = = = =
Memory Operations = = = = = = = = = = = =
Constants and Variables - = = = = = - = -
Number Bases Revisted - = = - - = = = = =
System Reconfiguration - - - -~ - - - - - -
Summary of Stack Operators - — = - = = = =
Summary of Output Operators - - = — = = =
Summary of Arithmetic Operators - - - - -
Summary of Memory Operators - - - = = = =
Summary of Input Operators — — - —= — = — =
Comparison Operators = — = = = = = = = = =
Conditionals and Indefinite Loop Operators
Finite Loops = = = = = = = = = = = = = = =

Summary of Conditionals and Loop Operators

QV_TADTITA 9 N MANDVDTOAWT CATITON

CAETLIADE TTMTTEN

10
13
13
14
15
15

15

21
21
23
24
24
25
26
26
28
29
29
30
32

33

TABLE OF CONTENTS

Forgeting the Unforgetable — - - — = — = — = = — — — - — - ~
The Editors = = = = = = = = & & 0 & & C & e e e e - ===
The Fig Style Editor — - = = = = = = = = = = = = = = = = = =
The Visual BEditor — = = = = = = = = = = & & 0 0 = = = = = =
Mass Storage Operators — — — = = = = = = = = = = — — - - — -
Vocabulary Operators — — — = = = = = = = = = — — = — - — - =
Error Messages — — = = = = = = = — = = = - = = = - & & - - &
Dictionary Operators — — — = = = = = = = = = = = - - - - - -
Extending the FORTH compiler — — = = = = = = = = = = = = = =
Number Formatting Operators - - - — = = = = = — — — — — — —
Recursive Definitions Using MYSELF - — - = = = = = = — — - -
The 6502 FORTH Assembler — — = — = = = = = = = = = = = = = =
Address Mode Indicators — — = = = = = = = = — — - - - -
Relative Branch Mnemonics - — — = = = = = = = = = = = =
Instructions with 1 & 2 Byte Operands - - - - = - - - —
One Byte Instructions - = = = = = = = = = = — - - — - -
Jump Instructions - = = = = = = = = - - — - - - - - - -
Assembler Conditionals - - - — = = = = = = = = = = = =
Assembler Macros - — = = = = = = = = = = = = - - - - =
Important Addresses and Entry Points - - = = = = = — - - — -
Using the 6502 FORTH Assembler — — - = = = = = = = = = = - =
Assembler Examples — — = = = = = = = = = = = = = = = = = = =
Parameter Passing — - - — — = = = = = — = = — = = - - -
Real Time Clock — = = = = = = = = = = = = = = = = = = =
Anatomy of a Dictionary Entry - - - - = = = = = = = = = - -
Dictionary Entry for CONSTANT - - = = = = = = = = = = = = =

Creating a New Data Type Using ;CODE - - - - - - - = = - - -

SQ¥-RFNRTHT7A 72 N COPVRICHT CSATITRN SNFTWARE T.ITMTTEND

34

35

36

37

38

40

42

43

&4

47

50

52

52

53

53

54

55

55

56

56

58

59

59

59

65

65

66

TABLE OF CONTENTS

Introduction to the Glossary — = = = = = = = = = = = = = = = 67
The FORTH Vocabulary — = = = = = = = = = = = = = = = = = = = 69
Appendix = = = = = = = = = = = = = = = = = == - - - - - - - A= g
FORTH Bibliography — — = = = = = = = = = = = = = = = = A=}
Memory Map —-— = — = = = = = = = = = = = = = = = = - - — A= 3
Selected FORTH Sreens — - = = = — = = = = = = = = = = = A- &
FORTH Assembler - — = = = — = = = = = = = = = = = A~ &

Fig FORTH Editor - — = = = = = = = = = = = = = = = A- 6

Vvisual Editor - = = = = = = = = = = = = = — - = - A7

Disk Copy Utility - - - — = = = = = = = = = = - = A- 8

Interrupt Driven Paddle Demo - - = — = = = — - = = A- 8

Donald Full's Utilities - - - = = = = = = - - - - A- 9

A Small Music Language — - = = = = = = = = - - = = A-10

QR-FORTH7G 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK~FORTH79 USER'S GUIDE PAGE 6

INTRODUCTION

FORTH is a complete programming system. FORTH consists of an
extensible programming language, an interactive operating system, a
text editor, a built-in assembler, and, if a disk is present, virtual
memory. FORTH is a consistent and complete programming environment
which can be extended for each new application. FORTH turns your
computer into a dual 16 bit stack computer. The user has immediate
access to the parameter stack, which uses reverse Polish conventions
for all operations. All programming in FORTH consists of defining
new FORTH "words", which, when executed, produce the desired results.
All new words defined by the user are equal, in all respects, to the
words already existing in the FORTH vocabulary, and can, in turn, be
used to define other FORTH words.

EQUIPMENT REQUIRED

SK-FORTH79 software requires the following minimum microcomputer
hardware system to function:

1. SYM-1 single board computer.

2. A KTM-2 video terminal board (or equivalent) and suitable monitor.
Purchaser assumes responsibility for adapting SK-FORTH79 to a
different terminal.

3a. Cassette based mass storage systems require at least 24K of
memory located at $0000 through $6000 and one (preferably two) remote
controlled cassette recorders. The optional second recorder should
be installed as described in the RAE reference manual.

3b. Disk based mass storage systems require at least 32K of memory
located at $0000 through $8000 and the dual HDE mini disk system with
the FODS operating system software loacated at $7000 through $8000.

4. (Optional) A printer which will operate on the existing SYM-1 20

ma current loop interface.

GETTING STARTED

1. Take the cassette containing the SK-FORTH79 object code and
insert it in the cassette recorder making sure that it is fully
rewound . There are three copies of the object code on the cassette.
Now load the object code using the monitor .L2 command. The file
identification number is 1 but this can be omitted. Users with disk
systems should boot FODS and exit to the monitor before loading the
object code.

2. The software assumes that your terminal is on the standard SYM-1
RS232 serial port and that the terminal is operating at 4800 baud.
The only intelligent function you terminal must possess is the
ability to move back one space on the screen when sent the backspace
character. If your terminal operates at a different baud rate or is
super dumb you should modify the following memory locations before

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 7

cold starting FORTH.
KTMFLG 50240 1=Intelligent(KTM-2), O=Dumb. In the dumb mode

a back slash is echoed for the delete key,

the backspace key is deactivated and the erase

to end of line feature is deactivated.

TBAUD 50241 Set to $01 for 4800 baud.

PBAUD 50242 Set to $06 for 2400 baud.
See the SYM-1 reference manual for other values.
(ie $D5=110 baud, and $4C=300 baud)

3. Now cold start the SK-FORTH79 with the monitor command .G 200
(ret). Remember your system must have at least 24K to cold start
SK-FORTH79. You should hear a beep and see the SK-FORTH79 copyright
notice.

4. Now do step (a), (b) or (c) below depending on your system:

a) 24K-CASSETTE (ret)
BOOT (ret)

b) 32K-CASSETTE (ret)
BOOT (ret)

¢c) 32K-DISK (ret)
BOOT (ret)
(Remember , FODS software must be in memory!)

5. All users may now try some FORTH. You would be advised however
to resave the customized object code to mass storage so that on
subsequent loads it is only necesary to type the word BOOT. Do this
as follows:

a) Cassette based systems; Place a blank rewound cassette in your
recorder and advance past the tape leader and set in the record mode.
Now type the following to save 3 copies of the system to tape with a
file identification number $01.

1 SYSSAVE 1 SYSSAVE 1 SYSSAVE (ret)

b) Disk based systems; Place the diskette in drive 1 with FODS
operating system software as the first file (mine is called Z%V3.1)
and the utilities %DIR and %LDN. There should be no other files on
this disk as FORTH uses the second half of this disk for 35 more
screens. Now do the following to save FORTH to disk:

Exit FORTH with
Enter FODS with
Save FORTH with
Back to FORTH with
Initialize buffers

MON (ret)

.G 7380 (ret)

ENT 1/5$0200$3000=%SKF
SKF (ret)

BOOT (ret)

At this time you should place a blank formated diskette in drive
number 2. This diskette will contain screens 1 through 70. Note

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 8

that each screen must be CLEARed before it is used. See the section
on the editor when you are ready to use screens.

Miscellaneous Notes

l. 24K cassette systems have 4 simulated disk in ram screens from
$5000 through $6000.

2. 32K cassette systems have 8 simulated disk in ram screens from
$6000 throught $8000.

3. 32K HDE-FODS disk system users have no simulated disk in ram
screens.

4, Disk users may switch to cassette operation by setting the system
variable DISK to 0. To go back to disk operation set it equal to 1.
Using screens 5 6 7 or 8 while in cassette mode will wipe FODS and
result in a system crash when you go back. Using cassette commands
while set for disk operation will produce unpredictable results.

5. We highly recommend the book “Starting FORTH" by Leo Brodie, of
FORTH, Inc. for its extremly readable introduction to FORTH. The
book is published by Prentice Hall and should be available at your
local computer store. There is also a bibliography of FORTH related
material at the end of this manual.

LINE EDITING COMMANDS

SK-FORTH79 is equipped with an extremly versatile input line
editor. Control codes used to direct the cursor to any point within
an input line for insertions and/or deletions. All included features
are documented below.

Control A

Move cursor to the start of the current input field and set the
input buffer pointer to zero. This operation does not clear or
cancel the current input line being prepared.

Control H (backspace)

Back up (tab back) one position on the screen and in the input
buffer if possible. This command has no effect on the line
buffer contents. It serves only to move the cursor back in a
line for possible insertions and/or deletions. If the cursor
is already at the start of a line the cursor will wrap around
and appear at the end of the line.

Control L

Clear the console screen. This command has no effect on the
current line being prepared. If executed during the
preparation of an input line the screen will clear and the line
being prepared will appear at the top of the screen awaiting
completion.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

by

SK-FORTH79 USER'S GUIDE PAGE 9

Control I (tab)

Tab forward one positon in buffer and on the screen updating
the current screen position if necessary. If you ¢try to tab
past the end of a line the cursor will wrap around to the
beginning of the line. You cannot tab through an empty buffer.
This command does not insert blanks, it simply serves to move
the cursor forward through the 1line to a position where
insertions/deletions are required.

Control M or RETURN

Send buffer contents to FORTH. Line is truncated at the
current cursor position. If you wish to send the entire line
the type Control Z before you hit RETURN.

Control S

Escape to the SYM-1 or KIM-1 Monitor. To return to FORTH type
«G 0 (ret) on the SYM. For the KIM push the space bar and type
G .+ Return is through FORTH's warm entry point and the system
not be configured the same as when you left (in particular the
system base will be 10 and FORTH will be the context
vocabulary). The FORTH word MON will exit and return you to
the system in the same state as when you left.

Control X

Cancel current input line, clear buffer, and position cursor at
the start of the input field. Control X does mnot return
control to FORTH, only to the start of the input line routine.
To cancel a line and return to FORTH type Control X and then
RETURN.

Control Z

Move cursor from its current position to the end of the current
input line updating the screen if necessary then erase to the
end of the input field and position the cursor at the end of
the input line. Use this command after any deletions or
insertions to clean up the display.

ESC (the escape key)

ESC followed by any other input character: Skip through the
buffer from where you are, updating the screen as you go, and
stop. just after the first occurance of the character which
followed ESC. Use this command after Control A for rapid
access to a point where an insertion or deletion is required.

QR-FORTH7G 2.0 COPYRTGHT SATIIRN SOFTWARE T.TMTTED

SK-FORTH79 USER'S GUIDE PAGE 10

RUBOUT or DELETE

Delete the character behind the cursor off the screen and out
of the input buffer and close up the space created in the
buffer. Note that the space on the screen is not closed. If
this is desired Control S after deletioms.

BREAK

Used to halt an executing FORTH program that as included the
word ?TERMINAL or to halt the trace feature. After hitting
BREAK push the RETURN key to abort or push the SPACE bar to
continue execution.

All other control characters and function keys are trapped and
ignored. All non control characters are inserted in the input buffer
and echoed to the terminal screen.

The default option of the line editor is character insertion.
This means that if you backspace or otherwise move to a point within
an input line, any characters typed will automatically inserted at
that point in the input buffer, even though on the screen it appears
that you are over-typing existing characters!! To observe that the
characters are indeed inserted type .

Characters are fetched from the console with the echo turned

off. Only after the character has been analyzed, and found to be
valid, will it be echoed back to the console CRT.

STACK MANIPULATION

The best way to think of the FORTH parameter stack (also
referred to as the number stack or the data stack) is to compare it
with the stack on a Hewlett Packard Reverse Polish calculator. The
major difference is that in SK-FORTH79 the parameter stack will hold
about 63 16-bit integers. To enter numbers on the stack, simply type
them at the terminal, separated by spaces. Hit return (ret), and
they are entered.

Example: Type the following:

1 4510 (ret) OK

Note that (ret) means for you to push the return key and does not, in
fact, appear on the screen. After (ret), FORTH replies with OK.
Actually, OK would appear one space after the 10, but it will always
be shown as above, so that you can tell when the return key was
pushed. Note also that OK is typed by the FORTH system to indicate
that it has processed your command. OK 1is mnever typed by the
operator. In the example above and the ones which follow the
characters typed by the computer are underlined so that you can tell
who is doing what.

AW TARIMITIA A A AATURITATIM OAMITHAT OADPIIADNT T TUMTMEN

SK~FORTH79 USER'S GUIDE PAGE 11

The last number entered is on the top of the stack (10 in this
case). 5 is at top-l, 4 at top-2, and 1 is at the bottom of the
stack. To get the numbers back, use the print number command (.).
The print number command is a "period”. Many FORTH words (commands)
are punctuation marks. In fact, a FORTH word can be made up of any
symbols you desire. In order to distinguish between regular
punctuation and a FORTH word which looks 1like a punctuation mark,
regular rounded brackets will be used. The only current use that
SK-FORTH79 makes of rounded brackets is for comments. Again, the
FORTH print number command is a single period, which we denote by (.
¥a
Example: Type the following:

e « « o (ret) 054 10K
The top of the stack is always the first out and the bottom is last.
Now try the following stack operations and verify that they work

as described. Pay careful attention to the notation which will be
used throughout this manual and the glossaries.

SWAP Reverse top two stack items.
top-1 top word top-1 top

nl n2 SWAP - n2 nl
stack before execute results stack after
(or inputs) (or outputs)

In the notation above, which will be used throughout this manual, the
top of the stack will always be on the right hand side of the
designated stack inputs and outputs. nl and n2 above represent 16
bit signed integer numbers. At the terminal you would observe the
following:

4 8 (ret) OK
SWAP (ret) OK
. « (ret) & 8 OK

No, there is not a mistake; the above is exactly what you would see.
Remember, the top of the stack is always the first out!! If the
above is performed without the SWAP, the following would be be
produced:

48 . . (ret) 8 4 OK

The remaining parameter stack operations will now be presented in
ever decreasing detail. Try each example at your terminal and make
up more of your own. A complete understanding of the operation of
the parameter stack is necessary before attempting any serious FORTH

programming.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 12

DUP Duplicate top of stack.
top-1 top top-2 top-1 top
nl n2 DUP -> nl n2 n2

stack inputs stack outputs

Verify the following at your terminal:

12 25 DUP . . . (ret) 25 25 12 OK

Remember in the notation above that the top of the stack is always to
the right of both the stack inputs and outputs. When you try the
examples at the terminal the print number command (.) will always
print the top of stack first, hence the apparent reversal.

DROP Throw away top of stack.
top-1 top top-1 top
nl n2 DROP -2 77 nl

Try the following:

11 22 DROP . . (ret) 11 0 OK

Note: The 0 indicates that the bottom of the stack has been reached.
One more print number command will produce an error!! Either put the
zero back again or go ahead with the print number command and the

error recovery routine will restore the zero to indicate the stack
bottom.

OVER Make copy of second item on top.

nl n2 n3 OVER -> nl n2 n3 n2
top top

At the terminal you would observe the following.

11 22 33 OVER (ret) 22 33 22 11 OK

ROT Rotate stack. top=-2 =->top; top =->top-1l;
top~1 ->top~-2

n3 ROT => n2 n3 nl
top top

nl n2

Here is an example to try.
123 456 789 ROT . . (ret) 123 789 456 OK
Did I hear you say they didn't rotate? Remember, the top comes out

first with the print number command, so 123, which was third from the
top, did indeed get rotated to the top. Check the others and then

Mes TATmmEEA A A AT T AT ML mTrraY AATIMETA T v T T

SK-FORTH79 USER'S GUIDE PAGE 13

make some examples of your own. When you write a FORTH program you
will be using lots of SWAP's, ROT's, DROP's, and OVER's.

7DUP Duplicate top of stack only if it is non zero
nl n2 ?DUP => nl n2 27

Try thése:

12 13 ?2DUP . . . (ret) 13 13 12 OK

12 0 ?DU0P . . . (ret) 0 12 0 OK

In the first case the top of the stack is duplicated because it is
non zero. In the second there is no change in the stack. Note that
the last zero in the second example indicates the bottom of the
stack. Try one more print number command and you will get an error.

THE RETURN STACK

The return stack is used mainly by the FORTH system and advanced
FORTH programmers. It is used for the nesting of colon definitions
and DO 1loops (more on these later), among other things. It can be
used for temporary storage within a single routine provided that it
is restored to its previous state before leaving. Listed below are
the operations which involve the return stack. You should not find
that you need to use the return stack for elementary programming.
Warning, using >R and R> directly from the console there must be a
balanced number or >R's and R>'s before RETURN is pushed of the FORTH
system will crash! The same is true within each colon definition and
DO. . . LOOP.

>R Move top of parameter stack to the return stack.
nl >R -2 e

The dashes indicate that the top of the parameter stack has been
removed. R> Retrieve item from return stack.

m—— R> => n
R Copy top of return stack to parameter stack (state
of return stack is unchanged).

. R = n

BASIC ARITHMETIC OPERATIONS

Basic operators for add, subtract, multiply, and divide, are +, -, *,

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 14
and /, respectively. Below are their definitions in terms of input
and output stacks and some examples for you to verify.
+ Add top of stack to top-1 (top and top-1 lost)
nl n2 + = sum

- Subtract top of stack from top-1 (top and top-1 lost)

nl n2 - -> difference
* Multiply top of stack by top-1 (top and top-l1 lost)
nl n2 * -3 product
/ Divide top into top-1, integer division, remainder lost

(top and top-l lost)

nl n2 / => quot (quot=nl1/n2)

Verify the following examples:

12 23 + . (ret) 35 OK
44 11 - . (ret) 33 OK
10 12 *# . (ret) 120 OK

45 13 / . (ret) 3 OK (remember, integer division)

By now you should thoroughly understand the structure of the
FORTH parameter stack. You should understand the concepts of stack
inputs and stack outputs and the notation wused in explaining the
operation of FORTH words (i.e., functions, operators, etc.). You
should be able to study the glossaries, pick out words, and verify
their functions (well, some of the easier to understand ones,

anyway) .

NON DESTRUCTIVE STACK PRINT

You probably wish that there was a way of peeking at the stack
contents with out having to go . . . SK-FORTH79 has just such a
word, S. , called "stack print". Try the following:

11 23 34 (ret) OK
S. (ret) BOT> 11 23 34 <TOP OK

The stack still contains the numbers 12 23 34, S. just prints and
labels a copy of the stack for your inspection. Print the stack with
« « « to prove it for yourself. The non destructive stack print
can prove invaluable when debugging programs.

There is still one minor inconvenience, how do you empty the
stack quickly? You may have found yourself going . . . trying to
get rid of all the stack numbers but an easier way is to execute the
word ABORT . Try for yourself and see what happens.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 15

PICK and ROLL

The word PICK will use the top of the data stack as an index
into the stack and obtain a copy of the selected stack number and
move it to the top of the stack where it will replace the index.
Example:

51 52 53 54 4 PICK (ret) OK
S. (ret) BOT> 51 52 53 54 51 <TOP OK

The word ROLL is a general purpose stack "rotate". ROLL will rotate
the stack to the depth specified by the top of the stack. Verify
that the number from the last example are still on the stack and then
try the following example.

S. (ret) BOT> 51 52 53 54 51 <TOP OK
4 ROLL (ret) OK

S. (ret) BOT> 51 53 54 51 52 <TOP OK

Note that the top stack number, 4, which gave the depth to ROLL was
lost in the same way as the index used with the word PICK.

SINGLE PRECISION NUMBERS

All of the preceding examples used 16 bit single precision
integer numbers. Using 16 bits we can represent signed numbers from
-32,768 through +32,767 or unsigned integers 0 through 65,535. If
you wish to print the stack as an umnsigned integer you would use the
word U. "U-dot" or umsigned print. Try the following:

40000 S. (ret) BOT> -25536 <TOP OK
U. (ret) 40000 OK
-1 U. (ret) 65535 OK

It is 1left to the programer to decide whether operatioms are with
signed or unsigned integers.

DOUBLE PRECISION NUMBERS

FORTH can also routinely handle 32 bit double precision numbers.
With 32 bits we can represent signed numbers from -2,147,483,648
through 2,147,483,647 or unsigned numbers (0 through 4,924,967,296.

Double precision numbers are entered by including a decimal
point with the number. A double precision number takes up two stack
locations with the most significant part on the top of the stack.
There is a complete set of stack manipulation operators or words to
go along with the double precision numbers. Try the following:

60000. S. (ret) BOT> -5536 0 <TOP OK
D. (ret) 60000 OK

80000. S. (ret) BOT> 14464 1 <TOP OK
D. (ret) 80000 OK

SK-FORTH79 USER'S GUIDE PAGE 16

As you can see the stack print operator S. is not of much use in
displaying double precision numbers. To look at our double precision

numbers we will have to use the double precision print operator D.
"D-dot".

See if you can discover the purpose of the double precision
words D+ , D- , 2SWAP , 2DUP , 20VER , and 2ROT by making up examples
of your own and using D. to look at the stack. If you get stuck
then look in the glossaries. Remember, you must include a decimal
point when entering double precision numbers and use the word D. to
print them. Later we will show you how double precision numbers can
be used to perform calculations with real (decimal) numbers.

INTRODUCTION TO COLON DEF INITIONS

All programming in FORTH consists of defining new FORTH words.
New FORTH words are defined by means of colon definitions. Colon
definitions have the form

: {name>

where <{name> is the name of the new FORTH word to be added to the
dictionary,

and +ess is a series of existing FORTH words which produce the
desired result.

Our first FORTH program is going to be called TWOBEEPS. The
program TWOBEEPS will produce two beep sounds from the SYM-1 beeper.
To write the program TWOBEEPS construct a colon definition to create
a new FORTH word TWOBEEPS. The body of the colon definition
(between the name and the semicolon) must contain existing FORTH
words which will produce the desired action. Already compiled into
the FORTH vocabulary is the word BEEP. When BEEP is executed the
SYM-1 beeper will sound once (try it). Here is the program:

: TWOBEEPS BEEP BEEP ; (ret) OK

You will not hear anything when you hit return, because the new word
is being created and compiled into the dictionary. To test the
program type:

TWOBEEPS (ret) OK

Now you should hear two beeps!! But the two beeps are too close
together! What is needed is a delay between the beeps. But first
get rid of your old program by forgetting it.

Type the following:

FORGET TWOBEEPS (ret) OK
If you enter a colon definition with an error you will find that the
FORTH system will not let you FORGET it. This is a built in feature

that prevents the accidental execution of a definition which is
incomplete or faulty. If you find that you cannot forget a word that

SK-FORTH79 2.0 COPYRIGHT SATIRN SOFTWARE LIMTTED

SK-FORTH79 USER'S GUIDE PAGE 17

you know is present then execute the word SMUDGE first and try again.
Look up the word SMUDGE in the glossaries for more details.

Here is the delay program:
¢ DELAY 10000 0 DO LOOP ; (ret) OK

The DELAY program is just an empty FORTH DO loop. To set up a FORTH
DO 1loop, first put the final count (10000 in this case) and then the
starting count (0 in the example) on the parameter stack. When
executed FORTH will do everything between the DO and the LOOP,
increase the loop counter, and compare it to the final count. If the
final count has been reached we exit the loop and continue with the
next FORTH word. If the final count has not been reached the
contents of the loop will be repeated (loop contents are between the
DO and LOOP). In our example there is nothing between the DO and
LOOP so FORTH just counts from O to 10000 and then exits the loop.
The DELAY program will produce a pause of about one second.

The corresponding loop in BASIC would be written as follows:
FOR I=0 TO 9999:NEXT I
The only difference is that in BASIC this loop would produce a delay
of about 10 seconds. High level FORTH is about 10 times faster than
BASIC.
Now we can write a better TWOBEEPS:

: TWOBEEPS BEEP DELAY BEEP ; (ret) OK

Test the program. Is the delay about one second? Now for a more
sophisticated program. This one will be called MULTIBEEP.

: MULTIBEEP 0 DO BEEP DELAY LOOP ; (ret) OK

This program has a DO loop which is not empty. Each time the loop is
executed there will be a beep and a delay. Note that the definition
does not contain the upper loop limit. It is not required, because
the upper limit will be put on the stack before MULTIBEEP is
executed.

Try the following:
10 MULTIBEEP (ret) OK

Ten beeps should be heard, separated by one second pauses. Bet you
never thought the built-in sound generators would come in this handy!

The next example will involve some number crunching, but first a
bit more information about DO loops 1s required. Construct the
following colon definition and verify that it works as shown below.

: TEST 0 DO I . LOOP ; (ret) OK
7 TEST (ret) 01 2 3 4 56 OK

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 18

The FORTH word I gets the current value of the loop counter and
pushes it onto the parameter stack. The print number command (.)
prints the top of the stack. Thus when 7 TEST is executed we see the
numbers 0 thru 6. Note that 7 1is not printed because the loop
counter is incremented after each pass through the loop and compared
to the loop 1limit. If the loop limit has been reached the loop is
not repeated, it just passes on to the next FORTH word in the
definition.

Try the following:

FORGET TEST (ret) OK

: TEST CR 0 DO I . CR LOOP ; (ret) OK
10 TEST (ret) (output not shown)

The colon definition above uses the new FORTH word CR. CR just

outputs a carriage return. When 10 TEST is executed you should see
the numbers 0 through 9 printed down the screen.

By now you probably have quite a bit of clutter added to the
dictionary. To see what has been added type the following:

VLIST (ret)

You can stop the VLIST by hitting the break key on your terminal. To
continue with the VLIST type SPACE. To exit the VLIST type RETURN
after the break key has been hit. You can get rid of some of the
mess you have created by typing:

FORGET <name> (ret) OK

FORTH will then forget all words above and including <name>. You can
also type

COLD (ret) OK

and the system forgets all of the words you have created and does a
cold start.

The promised number crunching program will be to compute a table
of squares. Here's the program:

: TABLE CR 10 0 DO I . I DUP * . CR LOOP ; (ret) OK

Test the program. You should see the numbers 0 through 9 and their
squares listed down the screen. Try the following problems:

1) Construct a FORTH colon definition that produces a table of
squares of any desired length. For example, to get a table of the
squares 0 through 99 you should only have to type 100 TABLE (ret).

2) Modify the above program to produce both squares and cubes.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 19

Perhaps you would like to format the table produced above. That
is to say, have the numbers come out in fields of fixed width. Try
the following definition:

: TABLE CR 0 DO I 8 .R I DUP * 8 .R CR LOOP ; (ret) OK

Test the definition by typing 10 TABLE (ret). The table should be as
before except that the table entries should be right justified in
fields of width 8.

The FORTH expression 8 .R prints the top of the stack in a field
of width 8. If a field of width 10 was desired, then use 10 .R to
print the top of the stack.

The only thing we are still missing from our programs is output
messages that will identify the numbers that we are printing. Try
the following definitiom:

: HEAD CR 2 SPACES ." NUMBER" 2 SPACES ." SQUARE" ; (ret) OK
HEAD (ret)
NUMBER SQUARE OK

Execution should produce the results shown above. The colon
definition for HEAD uses two new FORTH words. SPACES will print the
number of spaces that are specified by the top of the stack; the top
of the stack is lost. The FORTH word (.") 1is the print message
command. It will print all the characters that follow up to the next
(") mark. Note that (.") must be followed by a blank which is
not considered part of the message. Now let's combine HEAD with
TABLE to produce SQUARE :

: SQUARE HEAD TABLE ; (ret) OK
4 SQUARE (ret)
NUMBER SQUARE

0 0
1 1
2 4
3 9 OK

When SQUARE is executed you should get the results shown above. Here
are a couple of simple problems for you to try:

1) Modify either HEAD, TABLE, or both so that the numbers come out
centered under the column headings.

2) Write a program (colon definition) which will produce a table of
squares and cubes with headings.

So far, none of the programs that have been written has required
user input while it is running. The next program will prompt the
user to enter two numbers, X and Y, compute their product, and print
the answer. To get input from the user the hi-level FORTH system
words QUERY and INTERPRET will be used. The word QUERY will accept
up to 80 characters of input from the terminal. The word INTERPRET
will take the characters in the input buffer and execute them one at

SK~FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 20

a time. If the input buffer contains a number it will push that
number onto the parameter stack. Here then, is our INPUT command:

: INPUT QUERY INTERPRET ; (ret) OK
Test the INPUT routine as shown below:
INPUT (ret) 456 (ret) OK

After the first return above, the cursor just sits and waits for
input from the terminal. The number 456 is typed followed by return
and FORTH replies with OK. We should find that 456 is on the
parameter stack.

. (ret) 456 OK

That's where it was all right! In fact, this input routine is
probably too powerful for the job at hand. INPUT will accept
anything at all; numbers, words, even a colon definition. Try the
following and see what we mean:

INPUT (ret) 123 BEEP 456 BEEP CR ." FANTASTIC" (ret)
FANTASTIC OK

You should hear two beeps and then see the FANTASTIC as shown above.
This input command will even accept a colon definition and compile it
into the dictionary while "your" program is running!!! This means
that a FORTH program can accept as input another FORTH program. The
implications are simply mind bending!! By the way, the numbers 123
and 456 should be on the stack. Type the following to verify that
they are there:

. (ret) 456 123 OK

Recall that the program must get a value of X and a value of Y, form
the product, and print the answer. The program will be written in
small pieces and the pieces then put into a single colon definition
that will produce the desired result. First type COLD (ret) to get a
fresh start.

: INPUT QUERY INTERPRET ; (ret) OK

: GETX CR ." ENTER VALUE OF X " INPUT ; (ret) OK
: GETY CR .” ENTER VALUE OF Y " INPUT ; (ret) OK
: ANSWER CR ." THE PRODUCT IS " * . ; (ret) OK

: MULTXY GETX GETY ANSWER ; (ret) OK

Test the program and verify the results shown below.

MULTXY (ret)

ENTER VALUE OF X 222 (ret)
ENTER VALUE OF Y 111 (ret)
THE PRODUCT IS 24642 OK

With the examples above as a guide you should now be able to

QU_FNRTH7Q 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 21

construct simple programs of your own. There is a lot more to FORTH
than has been presented in this section. You have only seen the "tip
of the iceberg”. The next few sections of this manual will consist

of descriptions and examples illustrating more exciting features of
FORTH.

NUMBER BASES

SK-FORTH79 comes equipped to function in two number bases.
These bases are DECIMAL and HEX (shortly we will see how to create
others). After a cold or warm start the system number base will be
DECIMAL. FORTH's standard base is decimal and if you want to form
good programming habits all your routines should restore BASE to
DECIMAL. To put the system into HEX mode simply type:

HEX (ret) OK
Now try the following:

1A E9 + . (ret) 103 OK
103 E9 - . (ret) 1A OK
2B 1E * . (ret) 50A OK
1ABC AA / . (ret) 28 OK

To convert from HEX to DECIMAL or vice versa simply switch bases in
"midstream”. ¥

HEX 400 DECIMAL . (ret) 1024 OK
DECIMAL 256 HEX . (ret) 100 OK

MEMORY OPERATIONS

By putting FORTH into the HEX mode and using the memory
operations described below you should never have to use your
SUPER-MON monitor routines again.

First the store word operation.
! Store 16 bit word located top-1 at address on top.
n addr ! -> e

To test this memory operation store some 16 bit words in the
unused memory at $6600 and then use the monitor to verify that the
operation has been carried out.

HEX 1122 6600 ! (ret) OK

This should store a 22 at $6600 and an 11 at $6601. Use Control S or
MON (ret) to verify this. To get back to FORTH use NEXT 0 (ret).

The fetch 16 bit word operatiom.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 22

@ Replace word address on top by word contents.
addr @ -> n

To verify the word fetch operation recover the number previously
stored at $6600 by using @ .

HEX 6600 @ . (ret) 1122 OK
FORTH also has operators for storing and fetching 8 bit bytes.
Store byte operation
c! store low 8 bits of top-1 at address on top
b addr C! > B
Fetch byte operation.
c@ replace address on top by its (8 bit) contents
Verify the above by trying the following:
HEX (ret) OK
AA 6600 C! (ret) OK
BB 6601 C! (ret) OK
6600 C@ . (ret) AA OK
6601 C@ . (ret) BB OK

There is a special FORTH operator that combines word fetch and print
number. It is called print contents.

? Print 16 bit word contents of address on top
addr Py s
Test ? using the following:

HEX 2BCD 6600 ! (ret) OK
6600 ? (ret) 2BCD OK

The colon definition for ? would simply be : 2 @ . ; Try the
following FORTH verify command:

HEX (ret) OK
: VERIFY DUP CR U. DUP 8 + SWAP DO I C@ 3 .R LOOP ;

Test the VERIFY command as shown below.

8000 VERIFY (ret)
8000 4C 7C 8B 20 FF 80 20 4AOK

Problem: Write a colon definition called DUMP which uses VERIFY in a
loop to produce a hex dump of desired memory locations.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LTMTTED

SK-FORTH79 USER'S GUIDE PAGE 23

CONSTANTS AND VARIABLES

Before beginning this section type COLD (ret) to set the system
in a known state.

FORTH has two defining words, VARIABLE and CONSTANT, which are
used to create named data types. Up to this point all operations
were carried out with unnamed data which were stored on the stack.
It was necessary to keep careful tabs on the stack order to get the
results that were desired.

The FORTH word CONSTANT is used to create a named data quantity
whose value is expected to remain fixed for its lifespan. To create
the constant PIE whose value is 31416 type the following:

31416 CONSTANT PIE (ret) OK

This causes FORTH to create an entry in the dictionary called PIE
(check with VLIST if you 1like) and to store the value 31416 just
after this entry. When a constant is executed its value is pushed
onto the parameter stack. Get the value of PIE back as shown below.

PIE . (ret) 31416 OK

Once created a constant will retain its value and is not easily
changed by the novice FORTH programmer. Try the following:

PIE 1416 - . (ret) 30000 OK
PIE 2 / . (ret) 15708 OK

A constant can be used just like a regular 16 bit number. You need
only use its name and its wvalue is automatically pushed to the
parameter stack.

The word VARIABIE is used to create a named data type whose
value is expected to change from time to time during its lifespan.
When a variable is created its initial value is not specified. To
create a variable called RADIUS whose initial value is 16 type the
following:

VARIABLE RADIUS 16 RADIUS ! (ret) OK

The initial value of a variable must be assigned after it is created.
When a variable is executed its address (and not its value) is
pushed onto the parameter stack. Thus to recover the actual value of
a variable you must use its name and the memory fetch operator (@).
Try the following:

RADIUS @ .(ret) 16 OK
RADIUS ? (ret) 16 OK

To find the area of a circle of radius 16 the constant PIE of the
previous example can be used as follows:

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 24

RADIUS @ DUP * PIE 10000 */ . (ret) 804 OK

It is left as an exercise to the reader to look up in the glossary
and find out what */ does.

Programming exercise:

Write a program that will prompt for the radius of a circle and store
it in the variable RADIUS and then compute the area and circumference
and print them out with identifying labels. Hint: To change the
value of the variable RADIUS to 12 type 12 RADIUS ! .

NUMBER BASES REVISITED

The current number base that the FORTH system is using is stored
in the system variable called BASE. The FORTH system comes with two
words which can be used to change the variable BASE to either 10 or
16. These words are, of course, DECIMAL and HEX, which have already
been used. If you wish, you can add your own words which will change
the value of BASE. Believe it or not, this is all that is required
to switch the entire FORTH system so that all calculations and
results are in the new base. FORTH can work in any base from 2
through 36. Here are the two other standard bases that most FORTH
programmers add to their system.

: OCTAL 8 BASE ! ; (ret) OK
: BINARY 2 BASE ! ; (ret) OK

SYSTEM RECONF IGURATION

The delivered SK-FORTH79 systems comes with high memory set at
$6000 two 1K screen buffers and 8 simulated disk ram screens from
LO=$6000 throught HI=$8000. The Getting started section provided
some words to convert to 3 typical systems. Below is a general
purpose RECONFIG.

FORTH DEFINITIONS HEX

: RECONFIG HI ! DUP LO ! (SET DISK IN RAM SCREENS)
80 - DUP ' LIMIT ! (RESET CONSTANT LIMIT)
DUP 2E +ORIGIN ! (RESET IN BOOT UP AREA ALSO)
OVER B/BUF 4 + * (COMPUTE TOTAL BUFFER SIZE)
- ' FIRST ! (RESET CONSTANT FIRST)
' NBUF ! COLD ; (RESET NBUF AND COLD START)

The word RECONFIG requires three parameters as shown below.
<number of buffers> <value of LO> <value of HI> RECONFIG -> ----

To reconfigure for a 24K cassette system with 4 disk ram screens and
two disk buffers type:

HEX 2 5000 6000 RECONFIG (ret)
BOOT (ret)

Don't forget to save the reconfigured system.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 25

SUMMARY CF STACK OPERATORS

SWAP

DUP

DUP

DROP

OVER

PICK

ROLL

2DpUpP

2DROP

20VER

>R

DEPTH

Exchange top two stack items.
nl n2 SWAP -> n2 al

Duplicate top of stack.
n DUP - n n

Duplicate top of stack only if nonzero.
n DUP -> n (n)

Discard the top of the stack.
n DROP - ———

Copy the second stack entry to the top of the stack.
nl n2Z OVER -> nl n2 nl

Rotate third entry to the top of the stack.
nl n2 n3 ROT -> n2 n3 nl

Pick a copy of the n-th stack value to the top.
n PICK -> n-th

Rotate the n-th item to the top of the stack.
«+«+« n ROLL -> ... n-th

Exchange top two double numbers.
dl d2 2SWAP -> d2 dl

Duplicate top double number.
d 2P -> d d

Discard the top double number.
d 2DROP -> —

Rotate third double number to the top.
di d2 d3 20VER -> d2 d3 dl

Copy the second double number to the top.

Move top data stack number to return stack.
n >R =5 =

Retrieve top of return stack to the top of data stack.
-—— R> = n

Copy top of return stack to the top of the data stack.
-—— R&E > n

Count 16 bit entries in data stack and leave on top.
i DEPTH -> n

RDEPTH Count 16 bit entries in return stack and leave on top.

—-==— RDEPTH -> n

QY_FNRTH 2 N ANDVRTAUT CATITON CARTLIADE T TMTTEN

SUMMARY

SK-FORTH79 USER'S GUIDE PAGE 26

OF OUTPUT OPERATORS

.R

D.R

SPACE

SPACES

Print top of stack with one trailing blank.
n o R S

Print contents of address on top at comsole.
addr 7 -> —_—

Print top double number with one trailing blank.
d D. => -

Print top of stack as unsigned 16 bit number.
un . - =

Print second from top to right of field given by top.
nl n2 R -2 —_—

Print print double number to right of field given by top.
d n DR = ==

Non destructive stack print.

—— By S e

Qutput a carriage return linefeed.
— CR -> o it

Qutput low 7 bits of top as an ASCII character.
char EMIT = B

OQutput one space.
-—— SPACE -> -—

Qutput n spaces.
n SPACES -2 -

." <text>” Output inline text message to the console.

-—— " (text>" = -

SUMMARY OF ARITHMETIC OPERATORS

+

D+

Add top two single numbers on the stack.
nl n2 + = sum

Add top two double numbers and leave as dsum.
dl d2 D+ ~-> dsum

Subtract top two single numbers and leave as n.
nl n2 - -> n

Subtract top two double numbers and leave as d.
dl d2 D - d

Q¥-FNRTH 2.N COPYRTGHT SATIIRN SOFTWARE LIMITED

1+

U*

MOD

/MOD

*/MOD

*/

U/MOD

M*

M/

M/MOD

SK-FORTH79 USER'S GUIDE PAGE 27

Add one to the top number on the stack.
n I -=x ol

Subtract one from the top number on the stack.
n 1= - n-1

Add two to the top number on the stack.
n 2+ => 0t

Subtract two from the top number on the stack.
n 2- => n-2

Multiply the top two numbers and leave as n3
nl n2 * -»> n3

Divide second from top by top and leave n3=nl/n2
al - m2. -f =y -3

Multiply unsigned single numbers leaving unsigned double
result.
unl wuwn2 U* -> ud

Leave remainder on division nl/n2 with sign of nl.
nl =n2 MOD -> rem

As above but leave quotient too.
nl n2 /MOD -=> rem quot

Multiply then divide with double precision intermediate.
nl =n2 n3 */MOD -> rem quot

Like */MOD above but leave quotient only.
nl n2 =n3 */ -> quot

Divide double number by single number leaving remainder and
quotient.
d n U/MOD => wurem uquot

Multiply signed single numbers leaving signed double result.
nl n2 M* - d

Divide double number by single number leaving signed
remainder and quotient.
d n M -=> rem quot

Divide unsigned double number by unsigned single number
leaving unsigned single remainder and unsigned double
quotient.

ud uwm M/MOD => urem udquot

Leave greater of two single numbers as n.
nl n2 MAX ~-> max

Leave greater of two double numbers as dmax.
dl d2 DMAX -> dmax

QV_TNDTO 9 N OANDVDTOAUT CATIIDAN CATTWADE T TMTTEN

SK-FORTH79 USER'S GUIDE PAGE 28

MIN Leave the smaller of two single numbers as min.
nl n2 MIN => min

DMIN Leave the smaller of two double numbers as dmin.
dl d2 DMIN - dmin

ABS = Leave absolute value of number on top as abs.
n ABS -> abs

DABS Leave absolute value of double number on top as dabs.
d DABS -> dabs

NEGATE Leave twos complement of single number on top.
n NEGATE - -n

DNEGATE Leave twos complement of the double number on top.
d DNEGATE -> -d

AND Bitwise logical and of top two 16 bit numbers.
nl n2 AND -> and

OR Bitwise logical or of top two 16 bit numbers.
nl n2 OR =-> or

XOR Bitwise logical exclusive or of top two 16 bit numbers.
nl n2 XOR -> xor

SUMMARY OF MEMORY OPERATORS

c@ Replace address on top with least significant byte.
addr ca -> byte

@ Replace address on top with 16 bit value at address.
addr @ -> n

2@ Replace address on top with 32 bit value at address.
addr 22 - d

C! Store least significant byte of n at address on top.
n addr C! -=> -——

! Store 16 bit value n at address on top.

n addr ! -> —

2! Store 32 bit value d at address on top.
d addr 2! =D ——

+! Add n to number stored at address on top.
n addr +! i

CMOVE Move n bytes starting at addrl to memory at addr2 if n>0.
addrl addr2 n QIOVE -> -——

Are FATRMIT A A AARGIATAITM ALMITARLT AADBMYIANT ¥ TUTMEN

SK-FORTH79 USER'S GUIDE PAGE 29
MOVE Move n 16 bit numbers starting at addrl to addr2 if n>0.
addrl addr2 n MOVE -> @ ———e

FILL Fill n bytes in memory with byte beginning at addr if n>0.
addr n byte FILL -> —

ERASE Fill n bytes of memory starting at addr with nulls.
‘ addr n ERASE - ———

BLANKS Fill n bytes of memory starting at addr with blanks ($20).
addr n BLANKS =-> ———

SUMMARY OF INPUT OPERATORS

KEY Get console key pushed without echo and leave on stack.
—— KEY -> char

EXPECT Read n characters from terminal to address.
addr n EXPECT -> e

QUERY Read up to 80 characters from terminal to input buffer.
— QUERY ——

WORD Read next word from input stream using char as delimiter.
char WORD -> addr

COMPARISON OPERATORS

The comparison operators below are used in conjunction with the
control structures IF , UNTIL , and WHILE which are discused in the
next section. Each comparison operator leaves either a false flag (
16 bit 0) or a true flag (16 bit 1). For the purposes of the
control structures any non zero quantity is considered true.
nl n2 < -> flag True if nl is less than n2.
nl n2 = -> flag True if nl is equal to n2.
nl a2 > -> flag True if nl is greater than n2.

n 0 -> flag True if n is less than 0.

n 0= -> flag True if n is equal to 0.

n 0> -> flag True if n is greater than 0.

unl uwn2 U< -> flag True if unsigned number unl is less
than unsigned number un2.

n NOT -> flag True if n is equal to 0.

SK-FORTH 2.0 COPYRTCHT SATIIRN SARTWARE T TMTTRN

SK-FORTH79 USER'S GUIDE PAGE 30

The remaining comparison operators are for double numbers.
dl d2 DX => flag True if d1 is less than d2.
dl d2 D= -> flag True if dl is equal to d2.
dl d2 D> =-> flag True if dl is greater than d2.
d DOK => flag True if d is less than double 0.
d DO= -> flag True if d is equal to double 0.
d D0O> -> flag True if d is greater than double 0.
udl ud2 DUC -> flag True if unsigned double number dl is

less than unsigned double number d2.

CONDITIONALS AND INDEFINITE LOOP OPERATORS

All FORTH conditionals make a decision based on a flag left on
the top of the data stack. In most cases this flag has been computed
by one of the comparison operators of the previous section. The
conditional words IF , ELSE , and THEN are used as follows:

« « » flag IF . . . true part. . . THEN . . . words
Try the following example:

: KEYCHECK KEY DUP 48 > SWAP 57 < AND IF BEEP THEN ; OK

When KEYCHECK is executed it waits for a console key to be pushed.
If the key pushed is a digit O through 9 you will hear a beep,
otherwise there will be no sound. The entire expression " DUP 48 <
SWAP 57 > AND " computes the "flag" that IF tests.

The second form of this construct is shown below.

« « flag IF . . true part . . ELSE . . false part . . THEN . .
Here is an example to try:

: CHKl KEY 32 < IF ." UNPRINTABLE " ELSE ." PRINTABLE " THEN ; OK
The word CHKl waits for a key to be pushed. If the key pushed is a
control key the message UNPRINTABLE is typed. If any other key is
pushed the message PRINTABLE is typed. Here is a short puzzle for
you to solve- Why does the definition CHK2 given below do exactly the
same thing?

: CHK2 KEY 32 < IF ." UN" THEN ." PRINTABLE " ; OK

It should be noted that the words IF , ELSE , and THEN can only be
used within a colon definition.

SR-FNRTH 2_.0N CNPVRTCHT SATIIRN SNFTWARE T.TMTTED

SK-FORTH79 USER'S GUIDE PAGE 31

Indefinite and infinite loops can be constructed from the words
BEGIN , AGAIN , WHILE , REPEAT , and UNTIL as shown in the following
examples.

To construct an infinite loop, ie one that will never finish, use the
structure:

« +« « BEGIN . . . words . . . AGAIN . . .

At first glance it would seem that this construct is not of much use
as you could never stop the program. Try the following and you will
probably change you mind.

: SEE-STACK BEGIN CR QUERY INTERPRET CR S. AGAIN ; OK

Now execute SEE-STACK. You are traped, or so it appears, in an
infinite loop that gets input from the terminal, interprets it and
then does a non destructive stack print. Try keying in some
arithmetic operations and see if you like this definition. There are
two ways out of this particular infinite loop, the first is to make
an error, the second is to type QUIT. This only works because the
loop includes the word INTERPRET.

If you are mnot sold on infinite 1loops try the following
construct for indefinite loops. An indefinite loop is one that
continues until a certain condition is satisfied.

« « « BEGIN . . . words . . . flag UNTIL . .

This 1loop will continue to branch back to just after BEGIN until the
flag is true. Try the following:

: COUNT-DOWN 10 BEGIN BEEP CR DUP . 1~ DUP O= UNTIL
CR ." BLAST OFF “ DROP ;

The word DROP at the end of the definition removes the 0 which would
otherwise be left on the stack. Here 1is another form of the
indefinite loop:

« o« « BEGIN . . words . . flag WHILE . . true part . . REPEAT . .

In this looping structure, as long as the flag is true the part
between WHILE and REPEAT is executed. When REPEAT is reached there
is an unconditional branch to just after BEGIN. If the flag is
false, execution continues just ahead of REPEAT. Below is an example
which uses this structure.

: COUNT-UP 0 BEGIN CR DUP . DUP 10 = NOT WHILE 1+ BEEP REPEAT
." DONE " DROP ;

You will hear the part between WHILE and REPEAT execute because of
the BEEP. If you haven't already noticed, you may split a long
defintion and put it on two lines and every thing works just fine, as
long as there are no mistakes. The following examples combines some
of the ideas of the last two sections. It can be entered line after

OV _BADMIT 4 A AADYDTMIM CAMTIMA OADIMIADE 7 TMTMDN

SK-FORTH79 USER'S GUIDE PAGE 3z

line only if you make zero typing mistakes. You may prefer to leave
this example until you have studied the section on the EDITOR.

: KEYTEST BEGIN KEY

DUP 32 < IF ." CONTROL CHARACTER " ELSE
DUP 48 < IF ." PUNCTUATION MARK " ELSE
DUP 65 < IF ." IT'S A NUMBER " ELSE
DUP 91 < IF ." CAPITAL LETTER " ELSE
DUP 96 < IF ." PUNCTUATION MARK ~ ELSE
DUP 122 < IF ." LOWER CASE LETTER " ELSE

." PUNCTUATION MARK
THEN THEN THEN THEN THEN THEN
CR 13 = UNTIL ;

When you execute KEYTEST any key pushed on the console will be
identified according to its class. This loop will continue until the
RETURN key is pushed.

It should again be noted that the words BEGIN , WHILE , REPEAT ,
" AGAIN , and UNTIL can only be used within colon definitions.

FINITE LOOPS

FORTH also has a construct similar to BASIC's FOR . . . NEXT
loop and FORTRAN's DO loop. The first form of the FORTH's
DO . . . LOOP is shown below:

limit dindex DO . . . words . . . LOOP . .

This structure executes the words between DO and LOOP for each count
from index to limit incrementing by 1. The loop counter is stored on
the return stack and can be copied to the data stack by using the
word I. Example:

: COUNT-UP 10 0 DO I .
COUNT-UP (ret) 01 23 4 5

(=]

LOOP ; OK
67 89 0K

Note that the loop is not executed when I is equal to limit. The
loop counter is incremented by 1 and checked against limit at LOOP
and control is passed to just after LOOP if the 1limit has been
reached or exceeded. 1If the limit has not been reached then control
transfers back to just after DO. DO . . . LOOP's can also be nested
and the words J , and K are available to access the second and third
outer loop counters respectively. Try the following:

: LOOPING 3 ODOCRCR 4 0DOCRS50DOIJK++ . LOOP LOOP LOOP ;
When you execute LOOPING you should see three rectangular arrays of
numbers . It is left as an exercise to verify the operation of

LOOPING.

To construct count-down loops and loops which increment by more
than 1 use the following sturcture.

CZ_RNRTH 2 N COADVRTOAHT QATITDN CNATDTIIADET T TMTTEN

SK-FORTH79 USER'S GUIDE PAGE 33

limit dindex DO . . . words . . . n +LOOP . . .

In this form the value of n is added to the loop counter at +LOOP and
the result compared to limit. If n is greater than zero, the branch
back to DO occurs until the the new index is equal to limit or
greater than limit. 1If n is less than zero, the branch back to DO
occurs until the new index is 1less than the limit. Study the
following examples:

: UPBY2 10 0 DO I . 2 +LOOP ; OK
UPBY2 (ret) 0 2 4 6 8 OK

: DOWNBY2 0 10 DO I . -2 +LOOP ; OK
DOWNBY2 (ret) 10 8 6 4 2 0 OK

In the example DOWNBYZ where n is negative the loop is executed umtil
the loop counter 1is less than the limit. Whereas in the example
UPBY2 where n is positve the loop is executed until the loop counter
is equal to or greater than the limit.

The FORTH word LEAVE can be used to prematurely exit from a
DO . . . LOOP structure. Below is an example of a very long loop
which can be terminated early if the user pushes the BREAK key on the
console.

: LONG 10000 0 DO CR I . ?TERMINAL IF LEAVE THEN LOOP ; OK

The word LEAVE sets the loop counter equal to the limit so that when
+LO0OP or LOOP is next encountered the DO . . . LOOP is terminated.
?TERMINAL leaves a true flag on the stack if the BREAK key has been
pushed, otherwise it leaves a false flag. After pushing the BREAK
key, push RETURN to abort and SPACE if you wish to continue program
execution.

SUMMARY OF CONDITIONAL AND LOOP OPERATORS

DO... Set up loop given index limit and start on the stack.
limit index DO...
« « « LOOP Increment loop index by 1 and repeat from DO until
limit is reached.
« « « LOOP
« o « +LOOP Increment loop index by stack value and repeat from
DO if index >= limit (n>0), or < limit if (n<0).
«+s 0 +LOOP
I Place current loop index on the data stack.
m—s [=r op
J Place second outer loop index on the data stack.
——— J => n

CV_TNDTU 92 N OANDVDTOUT CATITON CATTLWIADE T TMTTEN

SK-FORTH79 USER'S GUIDE PAGE 34

K Place third outer loop index on the data stack.
-— K =2 n
LEAVE Terminate loop at next LOOP or +LOOP by setting

index equal to limit.
—— LEAVE -> ——r

IF...THEN If flag is true execute part between IF and THEN.
flag IF...true...THEN . . .

IF... If flag is true execute part between IF and ELSE,
««+ELSE... If flag is false execute part between ELSE and THEN,
.««THEN in both cases resume execution after THEN.
flag IF...true...ELSE...false...THEN...

BEGIN... Mark the start of a repetative execution sequence.
BEGIN...words...AGAIN , or UNTIL , or WHILE

« o« AGAIN Mark the end of an infinite loop.
BEGIN...words...AGAIN...

««+ UNTIL Loop back to just after begin if flag is false.
BEGIN...words...flag UNTIL...

+s<WHILE... If flag is true execute words between WHILE and
«+«REPEAT REPEAT and pass control back to just after BEGIN.
++«BEGIN...words...flag WHILE...words...REPEAT...

EXIT Terminate execution of colon definition.
Not valid within a DO...LOOP
EXIT -> i

FORGETING THE UNFORGETABLE

If you find that you cannot FORGET a word definition it may be
because the definition was incomplete or faulty in some way. When
this happens a bit in the name field called the smudge bit is set to
prevent its execution. This also prevents FORGET from finding it
even though you may see it in the VLIST. If the word you are trying
to FORGET was the last one defined type the word SMUDGE and then try
again. '

It is also possible to FORGET words that are in the protected
dictionary. To do this you must reset the system variable FENCE.
Suppose the word JUNK was locked in the protected dictiomary. The
following sequence would remove junk and everything defined after
JUNK.

' JUNK NFA FENCE ! FORGET JUNK (ret) OK

SK-FORTH 2.0 COPYRTGHT SATIIRN SOFTWARE T.ITMTTED

SK-FORTH79 USER'S GUIDE PAGE 35

THE EDITORS

Up to this point, each of the FORTH definitions entered at the
console “"disappear” when RETURN is pushed. They may stay on the
screen for a while but there is no way to recover them for correction
or even to look at once they are off the top of the CRT. This 1is
because each definition is compiled into the dictionary as it is
entered. This is no problem as there is provision for the off 1line
preparation of FORTH definitions.

SK-FORTH79 has two editors available for preparing FORTH source
definitions:

1. A fig (FORTH Interest Group) style editor.

2. A visual screen editor. The source for the KIM-2 version
of this editor is in the appendix and must be entered by
the user.

Both the fig and visual editors work with a unit of information
called the “screen". A screen is 16 lines of 64 characters or 1024
bytes of information. To see what a screen looks like type:

1 LIST (ret)

In SK-FORTH these screens are automatically fetched and returned to
the mass storage device. For those without a disk system this mass
storage is simulated in ram and may consist of from four to eight
screens or blocks (or more if you have the extra memory). The
screens of information (somtimes called disk blocks) are fetched
and and updated to mass storage through two 1K (1024 byte) disk
buffers. There could be as many as two screens of information (one
for each buffer) resident in memory at any one time. The process of
fetching and updating is done automatically and is often referred to
as virtual memory.

Two important words to remember with regard to the screen
buffers are:

SAVE-BUFFERS and EMPTY-BUFFERS

The word SAVE-BUFFERS forces the wupdating of all modified screen
buffers to the mass storage device. The word EMPTY-BUFFERS will
clear the two memory resident screen buffers to blanks. This should
be used with caution. One application would be when disk users wish
to temorarily switch to cassette operation. The sequence would be as
follows:

SAVE-BUFFERS (Update all current screens to the old file)
0 DISK ! (Switch to cassette mass storage)
EMPTY-BUFFERS (Clear all buffers to blanks)

If we did not SAVE-BUFFERS first our disk mass storage would not

be updated. If we did not EMPTY-BUFFERS some of the old disk buffers
could get updated to the ram mass storage over writing valuble

SK-FNRTH79 2.0 COPYRTCGHT SATIIRN SOFTWARE LIMTTED

SK-FORTH79 USER'S GUIDE PAGE 36

information.

FIG STYLE EDITOR

The standard commands for the fig style editor are presented
below.

CLEAR Clear indicated screen to blanks.
scr CLEAR - ———

COPY Copy entire contents of screen scrl to screen scr2.
scrl scr2 COPY -> ———

D Delete indicated line from screen.
line D => ——

EDITOR Allow access to the EDITOR commands.

E Fills indicated line of current screen with blanks.
line E - =

FIX List indicated line and enter line edit mode.
line FIX =-> —_—

H Hold copy indicated line at PAD.
line H => ===

I Spread and insert line at PAD at indicated line.
line I => ==

L List the screen currently stored in variable SCR .
_— L = i

LIST List indicated screen and reset value of SCR .

scr LIST -> —

P Put following text at indicated line.
line P <text)> => ———

R Return line stored at PAD to indicated line.
line R = ==

S Spread at indicated line and insert a blank line.
line "8 =) ===

SCR Variable containing current editing screen.

T Type indicated line of current screen to console.
line T = =——

The following takes you through the preparation of a screen of
FORTH source text:

Make EDITOR the CONTEXT vocabulary by typing:

SK-FORTH7Q 2.0 COPYRTGHT SATIRN SOFTWARE T.TMTTRED

SK-FORTH79 USER'S GUIDE PAGE 37

EDITOR (ret) OK
Finally clear the two screens by typing:
3 CLEAR 4 CLEAR (ret) OK

To 1list screen 3 type 3 LIST (ret) +« You should see a blank
screen.

To relist the current screen (the one contained in SCR) you
need only type L (ret) without any parameters. To enter a line
into the screen use the put command, P . Try the following:

(TABLE OF SQUARES)
FORTH DEF INITIONS
: HEAD CR 2 SPACES ." NUMBER"
2 SPACES ." SQUARE" ;
: TABLE CR 0 DO I 8 .R
I DUP * 8 .R CR LOOP ;
: SQUARE HEAD TABLE ;

VP LWNO=O
- BB B - - B -

(Note: The (ret)'s and OK's are not shown above.) Now type
L (ret) and you should see:

Screen 3 3 hex
0 (TABLE OF SQUARES)
1 FORTH DEFINITIONS
2 : HEAD CR 2 SPACES ." NUMBER"
3 2 SPACES ." SQUARE" ;
4 : TABLE CR 0 DO I 8 .R
5 I DUP *# B8 .R CR LOOP ;
6 : SQUARE HEAD TABIE ;

Once you have the SQUARE program entered in screen 3 correctly
you can compile it into the dictionary. To compile screen 3 type the
following:

3 LOAD (ret) OK
Test the function and use VLIST to verify its existence. If you get
a LOAD error type WHERE (ret) and you will be notifed as to the

location of your error. If you have a mistake use the FIX command to
correct it.

THE VISUAL EDITOR

The visual editor ressembles the fig editor except that you see
all the editing functions take place before your eyes on an image of
the screen. The best way to learn to use the visual editor is to
experiment with the commands.

ED Make EDITOR context vocabulary and list current

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMTTED

line

line

line

line

line

8Cr

Inl In2 MM

Inl 1n2 CC

PP

EE

88

DD

II

LL

LI

<«

>

SK-FORTH79 USER'S GUIDE PAGE 38

screen.

Move to indicated line in screen for insertion
or correction of the line.

Erase indicated line from screen.
Spread at indicated line.
Delete indicated line and close up space.

Spread at indicated line and move in for
insertion of a new line.

List the current screen.
List the indicated screen.
Move line 1nl to line 1ln2.
Copy line 1lnl to line 1n2.
Move back one screen.

Move forward one screen.

MASS STORAGE OPERATORS

place though the disk buffers.
words
screens to and from the remote controlled audio
All words relating to cassette and mass storage operation are grouped

All communication with the FORTH systems mass storage takes
In addition SK-FORTH as a number of
the simulated disk in ram
cassette recorders.

facilitate the transfer of

together here with brief descriptions for your convenience.

PUT

GET

SGET

W/T

R/T

TAPE

Save screen n2 to the cassette with file ID of nl
nl n2 PUT = ——
Load the file with identification nl.
nl GET - ——
Force load the very next tape file to screen nl.
nl SGET o
System variable contain number of the output cassette.
0 is the standard cassette and 1 is the optional
cassette. .

System variable containing number of the input cassette.
Set the state of cassette motor n2 to nl where

0 is off and 1 is on.
nl n2 TAPE -

SR-FORTH7Q 2.0 COPYRTGHT SATIIRN SOFTWARE LIMTTED

SK~-FORTH79 USER'S GUIDE PAGE 39
DISK System variable set to O for cassette system
1 if the HDE disk system is present.
UPDATE Mark last block referenced as modified.
—— UPDATE - ———
SAVE-BUFFERS Write all blocks marked as UPDATEd to mass storage.
--— SAVE-BUFFERS -> -—--——
EMPTY-BUFFERS Mark all block/screen buffers as empty.
— EMPTY-BUFFERS -> —
BLOCK Leave memory address of requested block
reading from mass storage if necessary.
n BLOCK =-> address
LOAD Interpret screen n and then resume interpretation
of the current input stream.
n LOAD > , ——
SYSSAVE Save the current FORTH system to cassette
with file identification n .
n SYSSAVE -> ——-
SYSCOLD Locks all recently made definitions into the
current FORTH system.
1 — SYSCOLD -> ————
|
‘ BOOT Initialize disk buffers after a cold start.
— BOOT - -
R/W The standard FORTH disk read/write linkage.
addr blk flag R/W =) ——-
DEW Disk mass storage read/write linkage.
TRW Ram mass storage read/write linkage.
INDEX List first line of specified range of screens.
serl secr2 INDEX ->
MON Exit to the SYM/KIM monitor.

—— MON -

A more detailed description of each of the above words
available in the glossaries at the end of the manual.

SK~-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

is

SK-FORTH79 USER'S GUIDE PAGE 40

VOCABULARY OPERATORS

SK-FORTH79 has three standard system VOCABULARYs or logical groupings
of words.

FORTH Contains all the basic definitions including the
disk and cassette interface words.

EDITOR Contains all the commands that pertain to the fig
style editor and the visual editor.

ASSEMBLER Contains all the 6502 assembler mnemonics and the
assembler macros.

It is also possible to create your application vocabularies as will
be demonstrated later in this section. Here is a list of the FORTH
words that pertain to vocabularies.

CONTEXT System variable pointing to the vocabulary first
searched for word names by the interpreter.

CURRENT System variable pointing to the vocabulary where
new word definitions are to be added.

DEFINITIONS Sets the system variable CURRENT so it points to
same vocabulary as the variable CONTEXT.

FORTH Execution makes CONTEXT point to FORTH.
EDITOR Execution makes CONTEXT point to EDITOR.
ASSEMBLER Execution makes CONTEXT point to ASSEMBLER.

VOCABULARY Create a new vocabulary, name follows.
— VOCABULARY <name> =-> ———

' <{name)> "tick", Find PFA of <name> in the dictionary and
leave on the data stack.

FIND Leave the compilation address of the next word
in the input stream.
—— FIND <name> -> addr

FORGET Forget all definitions back to and including <name)>.
— FORGET <name> =-> —-—

The two screens below create an new vocabulary called SOUND. The
words in the SOUND vocabulary will use one to the shift registers in
the SYM 6522 I/0 chip. You will have build a one transistor
amplifier to hear the sound. For more information on sound
generation see Saturn Softnews Vol. 1 No. 1 .

SK-FORTH79 2.0 COPYRTGHT SATIIRN SOFTWARE T.IMTTED

SK-FORTH79 USER'S GUIDE PAGE 41

Screen 4 4 hex
0 (VOCABULARY DEFINITION EXAMPLE-1 J.W.B. 19:01:82)
VOCABULARY SOUND IMMEDIATE (Vocabularies are IMMEDIATE)
SOUND DEFINITIONS HEX (CONTEXT and CURRENT point to SOUND)

1

2

3

4 ABOB CONSTANT CONTROL.REGISTER A808 CONSTANT FREQUENCY
5 AB0A CONSTANT SHIFT.REGISTER

6 : SHIFT SHIFT.REGISTER C! ; : FREQ FREQUENCY C! ;

7 : ON 10 CONTROL.REGISTER C! 0 FREQ ;

8 : OFF 00 CONTROL.REGISTER C! ;

9 : TONE ON OF SHIFT FREQ ;

10

11 : PHASOR FF 0 DO I TONE LOOP OFF ; (PHASOR SOUND EFFECT)
12

13 : TORP ON OF SHIFT (TORPEDO SOUND EFFECT)
14 FF 00 DO I FREQ I DROP LOOP OFF ;

15 —>

Screen 5 5 hex
0 (VOCABULARY DEFINITIONS EXAMPLE-2 J.W.B. 19:01:82)

b

VARIABLE SEED (RANDOM NUMBER GENERATOR rmax RND -> r?)
: (RND) SEED @ 103 * 3 + 7FFF AND DUP SEED ! ;

: RND (RND) 7FFF */ ;

DECIMAL ;

S>> ON 51 SHIFT 50 200 DO I FREQ -1 +LOOP ;

§<< ON 51 SHIFT 200 50 DO I FREQ LOOP ;

SIREN 8>> S<< OFF ;

RSIREN 10 RND 2+ 0 DO SIREN LOOP ;

VNG &S WN
.

11 : RPHASOR 5 RND 2+ O DO PHASOR LOOP ;

12 : RTORP 5 RND 2+ 0 DO TORP LOOP ;

13 : WAR 3 0 DO RTORP RSIREN RPHASOR LOOP ;
14 FORTH DEFINITIONS

If you feel that you have the screens keyed in correctly type 4 LOAD.
When the forward arrow in line 15 of screen 4 is reached compilation
will automatically continue to the next screen which 1is 5 in this
case. You pronounce --> as "next screen". If you find that you have
made errors then FORGET SOUND, correct the mistakes and type 4 LOAD
again. When you get a successful compilation try the following

RSIREN (ret) RSIREN ? OK

You didn't hear a thing did you! Only the message that means that
RSIREN can't be found. The reason for this is that RSIREN is not in
the FORTH vocabulary. RSIREN is in the SOUND vocabulary. To hear
RSIREN you must make SOUND the CONTEXT vocabulary. To make SOUND the
CONTEXT vocabulary simply type SOUND. Try again with:

SOUND RSIREN (ret) OK

SK-FORTH7Q 2.0 COPYRTCHT SATITRN SNFTWARE T.TMTTRED

SK-FORTH79 USER'S GUIDE PAGE 42

ERROR MESSAGES

If you have the luxury of five or more simulated disk screens
and would like to have error messages output instead of error numbers
then type the following into screens 1 and 2. Next set WARNING to 1,
i. e., 1 WARNING ! « Better save the screens to cassette so that
you don't have to type them in again!! If your system has only 24K
of memory you may wish to just look up the error messages here when
necessary. If you have the HDE disk system just type them into
screens 1 and 2 and SAVE-BUFFERS.

Screen 1 1 hex
0 (ERROR MESSAGES)
1 (EMPTY STACK)
2 (DICTIONARY FULL)
3 (HAS INCORRECT ADDRESS MODE)
4 (ISN'T UNIQUE)
5
6 (DISK RANGE ?)
7 (FULL STACK)
8 (DISK ERROR)
9

10 (TAPE WRITE ERROR)
11 (TAPE READ ERROR)

15 SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

Screen 2 2 hex

ERROR MESSAGES)

COMPILATION ONLY, USE IN DEFINITION)
EXECUTION ONLY)

CONDITIONAL NOT PAIRED)

DEFINITION NOT FINISHED)

IN PROTECTED DICTIONARY)

USE ONLY WHEN LOADING)

OFF CURRENT EDITING SCREEN)

DECLARE VOCABULARY)

OOV S WM =0
e lalalalalalalale

10 (RELATIVE BRANCH OUT OF RANGE)
11 (INVALID ADDRESSING MODE)

SK-FORTH79 2.0 COPYRTGHT SATITRN SOFTWARE LTMTTED

SK-FORTH79 USER'S GUIDE PAGE 43

DICTIONARY OPERATORS

By now you are aware that every new word definition created is
entered into the dictionary and that all the words in the context
vocabulary can be listed with VLIST. If you haven't looked at the
words in the EDITOR and ASSEMBLER vocabularies yet, try the
following:

EDITOR VLIST (ret)
ASSEMBLER VLIST (ret)

If you get tired of waiting push the break key to halt the VLIST then
push SPACE to resume or RETURN ot abort the VLIST.

Below are some of the dictionary operators that you may find
useful from time to time.

VLIST List all word definitions in the context vocabulary.

P User variable containing the address of the next
memory location in the dictionary.

HERE Leave address of next available dictionary location
on the data stack.

ALLOT Advance dictionary pointer by top number on data stack.
The dictionary pointer is stored in DP and accessed by
HERE .

5 Store or compile top stack number in the next

two available dictionary locations.

C, Compile the low 8 bits of top stack number into
the next available dictionary location.

CREATE Create a dictionary entry for the word <{mame> that
follows in the input stream, without allocating
any parameter field. When <name> is subsequently
executed, the address of <name>'s parameter field
is left on the data stack.

——=— CREATE <name> => —-—

' “tick" Leave the parameter field address, pfa ,
of the dictionary word <name>.
— ! <name> -> pfa

CFA Convert the parameter field address, pfa , on
top of the stack to the code field address, cfa.
pfa CFA -> cfa

LFA Convert the parameter field address, pfa , on
top of the stack to the link field address, 1lfa.
pfa LFA = 1fa

NFA Convert the parameter field address, pfa , on

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 44

top of the stack to the name field address nfa.
pfa NFA -> nfa

PFA Convert the name field address , nfa , on
top of the stack to the parameter field address.
nfa PFA ~-> pfa

ID. Print word definition name from the nfa
found on top of the data stack.
nfa ID. -> ——

Again, more complete descriptions can be found in the
glossaries. For more information on nfa, pfa, 1fa, and cfa see the
section of the manual titled "Anatomy of a dictionary entry". To
illustrate the usage of some of the above words we will create a data
table with 10 entries. This will be done by creating a dictionary
entry and then alloting 20 bytes (10 16 bit numbers) of dictionary
space following this entry. Try the following:

CREATE TABLE (ret) OK
20 ALLOT (ret) OK

We have now created a dictionary entry called TABLE and ALLOTed
enough dictionary space for 10 16-bit stack numbers. Do a VLIST and
see for yourself. Now enter the following to convince yourself that
we have indeed created a table where we can store data.

: FILL-TABLE 10 0 DO I TABLE I 2% + ! LOOP ; (ret) OK
FILL-TABLE (ret) OK EeT

The data table, TABLE , will now contain the numbers 0 through 9. To
print out the values stored in the table, try the following:

: PRINT-TABLE 10 O DO TABLE I 2% + @ . LOOP ; (ret) OK
PRINT-TABLE (ret) 0 1 2 3 4 56 7 8 9 OK _

If you haven't already guessed, the expression TABLE I 2* + in both
FILL-TABLE and PRINT-TABLE addresses the Ith 16 bit data storage
address in the dictionary space we ALLOTed after the creation of
TABLE. 1In the next section we will generalize the concept of the
data table and show to extend the FORTH compiler by creating a new
defining word for VECTOR data.

EXTENDING THE FORTH COMPILER

Step right up and before your eyes we will show you how to
extend the FORTH compiler by adding new defining word using the
FORTH-79 Standard structure-

: <name> CREATE . . words . . DOES> . . words . . ;

First we assume that you have as part of your system the words ON ,

SK-FORTH79 2.0 COPYRIGHT SATIIRN SOFTWARE T.TMTTED

SK-FORTH79 USER'S GUIDE PAGE 45

OFF , and TONE that were given as part of the SOUND vocabulary a
while back. 1If you don't have them in the dictionmary them go back
and re-enter them. We are going to create an miniture music
language. First we present the steps in reverse order (because the
last step is the easiest and the first is the hardest).

Step 3 Define a word which will play the C major scale
- through the speaker.

: SCALE 1 C1D1EI1F1G1A1B&4&C2;

Don't enter this yet. The 1 C will play low C for
one beat, 4 C2 will play high C for four beats.

Step 2 Define the notes of the musical scale using the
new defining word created in step 1.

240 NOTE C 213 NOTE D 190 NOTE E 179 NOTE F
160 NOTE G 142 NOTE A 127 NOTE B 106 NOTE C2

The word NOTE is our compiler extension, the number
in front of NOTE sets the frequency (actually the
period) and the letter or word following NOTE is

the name of the note (dictionary entry) created.

The word NOTE works much like CONSTANT. Both NOTE
and CONSTANT create a dictionary entry and store the
stack number imediately after the dictionary entry.
The difference is that when a constant executes it pushes
its value stored at creation time on the data stack,
when a note executes it takes the top of the stack
as the number of beats to play the note requested.

Step 1 This is where we extend the compiler to include
the note defining capability. Here is the definition:

: NOTE CREATE , DOES> @ TONE 500 * O DO I DROP LOOP OFF ;

For such a powerful programing feature, it sure doesn't
look like much does it?

The part before the word DOES> and after NOTE describes how to
make notes. The part after DOES> and before ; tells how to play a
note, or what is to happen when you execute a note type object.

First 1look at the creation part (before the DOES>»). You know
from the last section that CREATE makes a dictionmary entry for the
word which follows in the input stream. This time, however, CREATE
is included in a definition so the dictionary entry will not be
created until NOTE is executed. At this time the word following in
the input stream will be the name of the musical note we want to
create. The comma (,) stores the top stack number in the
dictionary space following the created note name (ie in the pfa).
This wvalue will later be recovered and used to control the sound
generator when the note is played.

SK-FORTH79 2.0 COPYRTGHT SATIIRN SOFTWARE TL.TMTTED

SK-FORTH79 USER'S GUIDE PAGE 46

The part following DOES)> tells how to play the note. Recall
that whenever a word defined by CREATE executes (and in this case
NOTE because it includes CREATE), the parameter field address gets
pushed on the data stack. The @ which follows DOES> fetches the
value stored at this location (the value stored by , at creation
time) and sounds a TONE . 500 * multiplies the number of beats
requested by 500 and we then hang in a do nothing loop for that
number of counts. The last word turns the sound generator off.

Now you know why step 3 was saved till the end. Here are the
definitions again, this time presented in the correct order.
Remember you must re-enter the definitions for ON , OFF , and TONE .

: NOTE CREATE , DOES> @ 500 * 0 DO I DROP LOOP OFF ;
240 NOTE C 213 NOTE D 190 NOTE E 179 NOTE F
160 NOTE G 142 NOTE A 127 NOTE B 106 NOTE C2

: SCALE 1 C1D1E1F1G1A1BGA&C2;

SCALE

Opps, forgot all the (ret) OK's but you are probably tired of
seeing that at the end of each line anyway. For a more complete
version of this music language see Saturn Softnews volume 1 number 4.

In summary, there are three aspects to consider when wusing
CREATE . . . DOES> .

1. The process of creating a new defining word (compiler extension)
which will create a new class of objects with the desired qualities
(musical in the case of our example).

2. The action of using the new defining word to create some objects
of this class (some musical notes in our example).

3. The execution of one or more of the new objects resulting in
actions characteristic of their class. In our example some notes
were included in the definition of the word SCALE so that when SCALE
was executed that is what we heard.

This is really the most exciting aspect of FORTH. No longer do
we computer users have to be content to live with programming tools
that the language implementor thought we might find useful. When
programming in FORTH it is possible to extend the compiler in any
direction that is found desirable.

Here is how you can create a data type called VECTOR. After
defining VECTOR we will calculate the work W according to the
following:

W=F dot D (vector dot product) where:
F=[1,2,3] is the FORCE and

D=[4,6,5) is the DISTANCE.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 47

Let' do it then:
: VECTOR CREATE 2* ALLOT DOES> SWAP 1- 2* + ; (ret) OK
3 VECTOR DISTANCE 3 VECTOR FORCE (ret) OK

Assign some values to our vectors:

1 DISTANCE ! 6 2 DISTANCE !
1 FORCE ! 2 2 FORCE !

3 DISTANCE ! OK
3 FORCE ! OK

—

5
3

WORK O 4 1 DO I DISTANCE @ I FORCE @ * + LOOP
." THE WORK IS " . ; OK
WORK (ret) THE WORK IS 31 OK

NUMBER FORMATTING OPERATORS

Here is a summary of the number formatting operators available
in FORTH. Check the corresponding glossary entries for a more
complete description of each word.

<t Start numeric output string conversion.

Convert next digit of number and add character to
the output strint.

s Convert all remaining significant digits of unsigned
double number to output string.

HOLD Add ASCII character on top of stack to the output string.
SIGN Add minus sign to output string if number is negative.

#> Terminate numeric conversion leaving address and
count for the TYPE command.

To 1illustrate the wuse of the number formatting operators we
present a complete program for your study and analysis. The program
is heavily commented and you should carefully study each word and
phrase until you understand their purpose. The number formatting
operators are used in the word REAL.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 48 SK-FORTH79 USER'S GUIDE PAGE 49

Screen 10 A hex Screen 15 D hex

0 (NUMBER INPUT WITH USER ERROR RECOVERY-0 J.W.B. 15:01:82) 0(PICTURED OUTPUT OF A REAL NUMBER-0 J.W.B. 15:01:82)

L - L==>

2 (INPUT - This word is used to input one positive or negative) 2

3¢ single or double precision number from the console) 3 (REAL. This word will allow the pictured formatting and)

4 (device. The inputed number will be found on top of) 4 (output of a double precision number to include)

5¢(the data stack. If an invalid number is given by) 5 (a decimal point located as specified by the value)

6 (- the user the message "INVALID, REDO FROM START" will) 6 (- stored in the variable DPL . This word together)

7(be printed allowing another chance for correct entry.) T 4 with INPUT give previously will allow calculations)

8 (The normal FORTH response would be to give a system) 8 (with real numbers. It is the responsibility of the)

9 (error message and then ABORT the executing FORTH) 9 (programmer to handle the scaling of numbers and to)
10 (program.) 10 (keep track of the decimal point. programming your)
11 (When control is returned to the calling program it) 11 4 calculations in this way has a definite speed)
12 (should check the variable DPL to determine if the) 12 (advantage over floating point calculations in such)
13 (user inputed a single or double precision number.) 13 (applications as process control and data acquisition)
14 (A -1 indicates a single precision number. any other) 14 (where time is important.)
15 (value gives decimal location in a double number.) 15
Screen 11 B hex Screen 14 E hex

0 (NUMBER INPUT WITH USER ERROR RECOVERY-1 J.W.B. 15:01:82) 0 (PICTURED OUTPUT OF A REAL NUMBER-1 J.W.B. 15:01:82)

1 FORTH DEFINITIONS HEX 1 FORTH DEFINITIONS HEX

2 : INPUT BEGIN (MAIN LOOP TO ALLOW FOR RETRIES) | 2 : REAL.

3 TIB @ 10 EXPECT (INPUT 16 CHARACTERS) | 3 SWAP OVER (<sign> <number>)

4 0 >IN ! (POINT TO START OF INPUT) l 1 4 <# (set up for pictured output)

5 BL WORD (PARSE WORD AND MOVE TO HERE) ! 5 DPL @ (fetch number of decimal places)

6 0 0 ROT (DOUBLE ZERO, ROT ADDRESS TO TOP) 6 ?DUP (duplicate if non zero)

7 DUP 1+ (DUP ADDRESS, POINT TO SIGN) v IF (if non zero .)

8 c@ 2D = (LEAVE TRUE FLAG IF -VE SIGN) ‘ 8 0 DO (we assume that DPL >= 0)

9 DUP (DUP THE SIGN FLAG, 1=-VE,0=+VE) 9 # (convert DPL digits)
10 >R+ (FLAG TO R-STACK, INC ADDRS BY FLAG) 10 LOOP

11 £ (INITIAL VALUE FOR DPL) ; 11 2E HOLD (then ensert the decimal point)
12 BEGIN (INNER LOOP TO DO CONVERSION) ‘ 12 THEN #S (now convert the remainder)
13 DPL ! (SET DPL) | 13 SIGN #> (add the sign if necessary)
14 CONVERT (CONVERT TILL NON DIGIT) 14 TYPE SPACE ; (and type the number out.)
15 =) 15 —>
Screen 12 C hex 4 Screen 15 F hex

0 (NUMBER INPUT WITH USER ERROR RECOVERY-2 J.W.B. 15:01:82) 0 (EXAMPLE USING INPUT AND REAL. J.W.B. 15:01:82)

1 DUP C@ (GET CHAR THAT HALTED CONVERSION) 1 FORTH DEFINITIONS DECIMAL

2 2E = (WAS IT A PERIOD ?) 2 : RADIUS? (input a valid radius from the user)

3 WHILE (IF SO SET DPL TO ZERO) 3 BEGIN (dont accept a negative radius)

4 0 (AND GO BACK TO) 4 CR ." ENTER THE RADIUS "

5 REPEAT (FINISH THE CONVERSION) 5 INPUT (get number from user)

6 C@ BL - (WAS CONVERSION STOPED BY BLANK?) 6 DPL @ 0< (check for single number entered)

7 WHILE (IF NOT WE HAVE ERRONEQUS INPUT) 7 IF S->D 0 DPL ! THEN (and extend to double if so)

8 ." INVALID, REDO FROM START " 8 2DUP (duplicate so we have a copy to test)

9 CR (SO SEND MESSAGE AND) 9 DO< WHILE (check for -ve entry)
10 2DROP R> DROP (CLEAR STACKS FOR A) 10 2DROP CR (drop the invalid number)
11 REPEAT (RETRY BY THE USER) 11 ." A RADIUS IS POSITIVE!! “ (let him know why)
12 R> IF DNEGATE THEN (GET SIGN FLAG BACK AND NEGATE) 12 REPEAT ; (we leave radius on the stack as a)
13 DPL @ 0< (IF SINGLE NUMBER INPUT THEN) 13 (double number and decimal places)
14 IF DROP THEN ; (CONVERT TO SINGLE NUMBER) 14 —=> (stored in DPL)
15 DECIMAL —> 15

SK~-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED I I QV_TADTHTIA 9 N CADVRTAHT QATIRN SNARTWARE TTMTTRD

SK-FORTH79 USER'S GUIDE PAGE 50

Screen 16 10 hex

0 (EXAMPLE USING INPUT AND REAL. J.W.B. 15:01:82)
1 : CIRCUMFERENCE (compute and print from double number)
2 2DUP DROP (duplicate and treat as single number)
3 2% (2 x radius on stack)
4 355 113 */ (approximate pi by fraction)
5 S->D (extend to double number)
6 CR ." THE CIRCUMFERENCE IS " (crlf and message)
7 REAL. ; (print answer formated with dec. pt.)
8 : AREA (compute from double radius on stack)
9 DROP DUP (treat as single number and duplicate)
10 * (radius squared on the stack)
11 355 113 */ S->D (area extended to double number)
12 DPL @ 2* DPL ! (adjust number of decimal places)
13 CR ." THE AREA IS " (crlf and message)
14 REAL. ;

15 : CIRCLE RADIUS? CIRCUMFERENCE AREA ; (This is it!!)

RECURSIVE DEFINITIONS USING MYSELF

The following example uses the structure IF ELSE
THEN and the word MYSELF to define a recursive power function. For
the purposes of the discussion one asterisk "*" will be used for
multiply and two asterisks "#**" will be used for powers (** is not a
FORTH word). That is to say, 2 cubed will be writtem 2%*3, Here is
the recursive raise to a power definition that will be used.

BX%*N = B * B *#*% (N-1) if N is not zero
BX*N = | if N equals zero

POWER FUNCTION
IF VALUE OF N>0 THEN CALL MYSELF WITH POWER N-1
AND MULTIPLY RESULT BY B
ELSE WHEN N=0 ANSWER IS ALWAYS 1
END

The above word description shows that the power function will
continue to call itself until N is finally equal to 0. It will then
unwind through the successive calls to itself and finally return with
the answer. This repeated calling of itself is called recursion.
Recursive functions are not easily written in BASIC. To implement
recursive functions a stack structure is required.

Before the actual FORTH program is presented use the glossary to

look up the words IF, ELSE, THEN, and MYSELF. Here 1is the screen
which gives the recursive colon definition for the function POW.

OV BADNTITA A N AAMURTANIM OATMIMAT OADMOIADD T Tarmon

SK-FORTH79 USER'S GUIDE PAGE 51

Screen 17 11 hex
0 (USING RECURSION TO IMPLEMENT A POWER FUNCTION)
1 (USAGE 2 3 POW . (ret) 8 OK)

2 FORTH DEFINITIONS (PUT IN FORTH VOCABULARY)
3 : POW DUP (DUPLICATE POWER N)
4 IF (IF N NOT 0)
5 OVER SWAP (STACK NOW HAS B B N)
6 1 - (STACK NOW HAS B B N-1)
7 MYSELF * (CALL MYSELF AND MULT BY B)
8 ELSE (IF N=0)
9 DROP DROP (DUMP B AND N)
10 1 (REPLACE WITH 1)
11 THEN ; (THAT'S ALL FOLKS)
12

13

14

15

To compile the definition type 17 LOAD (ret) . Test the
definition as shown in line 1 of the screen. Well, that worked just
great, didn't it!! Here is a recursive definition of the factorial
function for you to try.

N! = N * (N-1)! if N is not equal to zero
N! =1 if N is equal to zero

Here is the FORTH screen; you figure out how it works all by
yourself!

Screen 18 12 hex
0 (RECURSIVE IMPLEMENTATION OF THE FACTORIAL FUNCTION)
1 FORTH DEFINITIONS

2 : FACT DUP (N N NOW ON STACK)

3 IF DUP 1 - (IF N NOT ZERO N N-1 ON STACK)
4 MYSELF * (CALL MYSELF AND MULTIPLY)
5 ELSE DROP 1 (IF N=0 THEN ANSWER IS 1)
6 THEN ;

7

8

9

15

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 52

THE 6502 FORTH ASSEMBLER

The 6502 FORTH assembler is automatically activated by the words CODE
and ;CODE . The words CODE and ;CODE make the assembler the CONTEXT
vocabulary, save the current system BASE on the stack and then set
the system BASE to HEX. Later the word END-CODE restores the BASE to
the former value. FORTH assembly language mnemonics should follow
CODE and ;CODE . The words CODE and ;CODE are used as follows

1. To create a machine code word definition use the following form.
CODE <name> . . . assembly mnemonics . . . END-CODE

2. To create a new defining word with a machine language runtime
routine.

: <name> . . words . . ;CODE . . assembly mnemonics . . END-CODE

The ;CODE plays the same role as DOES> . The part before ;CODE is
high level FORTH and tells how to create a new object of the class
<name> and the part after ;CODE is the machine language runtime
routine used when an object of the class <name> is executed. The
defining word <name> might be used in the same way as the defining
words CONSTANT , VARIABLE and NOTE of our previous example.

ADDRESS MODE INDICATORS

All address mode indicators behave the same and simply store a one
byte offset in the variable MVAR which later combines with a base
value stored with each opcode mnemonic to produce a valid opcode.
There are eleven valid address mode indicators. If an address mode
indicator is missing then either absolute or zero page is assumed
according to the operand address on the stack.

IM, Immediate address mode indicator.

ZpP, Zero page address mode indicator.

AB, Absolute address mode indicator.

IX, Indirect X address mode indicator.

T, Indirect Y address mode indicator.

AX, Absolute X address mode indicator.

AY, Absolute Y address mode indicator.

2y, Zero page Y address mode indicator.

ZX, Zero page X address mode indicator.

X, Indexed by X assumming absolute or zero page automatically.
Y, Indexed by Y assumming absolute or zero page automatically.

CUr_ENDTUTO 72 N OAADYVDTAUT CATITON CADMPIIADE T TuTrmen

SK~-FORTH79 USER'S GUIDE PAGE 53

RELATIVE BRANCH MNEMONICS

All relative branch mnemonics behave the same way. The appropriate
relative branch opcode is retrieved from a field following the
mnemonics dictionary entry and is compiled at HERE. Then the stack
value is examined and if less than §FF is assumed to be a user
determined offset and compiled following the relative branch opcode.
If however the stack contains a value greater than $FF an offset is
computed between the value of the stack and HERE+]l and compiled
following the opcode instead. A check is also made for a relative
branch out of range.

BCC, Branch if carry clear.

BCS, Branch if carry set.

BEQ, Branch if equal to zero.
BMI, Branch if minus.

BNE, Branch if not equal to zero.
BPL, Branch if plus.

BVC, Branch if overflow clear.
BVS, Branch if overflow set.

INSTRUCTIONS WITH ONE AND TWO BYTE OPERANDS

A base value following the dictionary entry of each mnemonic is
retrieved and combined with the addressing mode offset to form a
valid opcode which is then compiled into the next available
dictionary location. Depending on the mnemonic type either one or
two bytes of the operand which is now at top of the parameter stack
is compiled following the opcode.

ADC, Add with carry.

AND, And with accumulator.
ASL, Shift memory left.

BIT, Bit test.

CMP, Compare with accumulator.
DEC, Decrement memory.

EOR, Exclusive or.

INC, Increment memory.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

LSR,
ORA,
ROL,
ROR,
SBC,
STA,
STX,
STY,

CPX,

RORA,

SK-FORTH79 USER'S GUIDE PAGE

Load accumulator.

Shift memory right.
Inclusive or.

Rotate left.

Rotate right.

Subtract with borrow.
Store accumulator.

Store X.

Store Y.

Compare with X.

Compare with Y.

Load X.

Load Y.

Accumulator shift left.
Accumulator shift right.
Rotate accumulator left.

Rotate accumulator right.

ONE BYTE INSTRUCTIONS

54

The actual opcode which follows the dictionary entry for the mnemonic

is

BRK,
cLC,
CLD,
CLI,
cLv,
DEX,

DEY,

Break.

Clear carry.

Clear decimal mode.
Clear interrupt flag.
Clear overflow flag.
Decrement X.

Decrement Y.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE

retrieved and compiled into the mnext available dictiomary
location.

LIMITED

SK-FORTH79 USER'S GUIDE PAGE 55

INX, Increment X.

INY, Increment Y.

NoP, No operation.

PHA, Push accumulator to stack.
PHP, Push processor status.

PLA, Pull accumulator from stack.
PLP, Pull processor status.

RTI, Return from interrupt.

RTS, Return from subroutine.

SEC, Set carry.

SED, Set decimal mode.

SEI, Set interrupt.

TAX, Transfer accumulator to X.
TAY, Transfer accumulator to Y.
TSX, Transfer stack pointer to X.
TXA, Transfer X to accumulator.
TXS, Transfer X to stack pointer.
TYA, Transfer Y to accumulator.

JUMP INSTRUCTIONS

The jump instructions simply compile the opcode which follows the
mnemonic's dictionary entry and the 16 bit address on the parameter
stack.

JMP, Jump to address.
JMI, Indirect jump.
JSR, Jump to subroutine.

ASSEMBLER CONDITIONALS

The assembler conditionals which follow are based on the 6502
condition codes (N, Z, and C). They are used before the
assembler macros IF, UNTIL, and WHILE to produce structured assembly

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 56

language programs.

0<, Result negative? or N=17
0>, Result positive? or N=0?
0=, 7 Result zero? or Z=1?
0>, Result not zero? or Z=0?
cs, Carry set? or C=17?

cc, Carry clear? or C=07?

ASSEMBLER MACROS

The assembler macros BEGIN, UNTIL, IF, ELSE, THEN, WHILE, and REPEAT,
are used in a manner similar to that in colon defintions. The
assembler macros are used to control program flow at execution time.
At assembly time, the macros generate the proper branching
instructions and fixup the offsets so that the user does not have
hand calculate offsets or use labels. See the corresponding entries
in the FORTH vocabulary. The major difference is that IF, UNTIL, and
WHILE, must be preceded by an assembler conditional. Below are
examples of the allowed structures.

mnemonics BEGIN, mnemonics condition UNTIL, mnemonics

The machine instructions between BEGIN, and UNTIL, will be repeated
until “condition” is true.

++s condition IF, true mnemonics ELSE, false mnemonics THEN, ...

If the condition is true then machine code between IF, and ELSE, is
executed and control is then passed to just after THEN, . If the
condition is false then the machine code between ELSE, and THEN, is
executed and control is then passed to just after THEN, .

mnemonics BEGIN, mnemonics condition WHILE, mnemonics REPEAT,
If the condition is true the machine code between WHILE, and REPEAT,
will be executed, and then control will be passed back to just after
BEGIN, . If the condition is false then control is passed to just
after REPEAT, .

IMPORTANT ADDRESSES AND ENTRY POINTS

The addresses and entry points that follow have been defined as
CONSTANTS and form part of the ASSEMBLER vocabulary. All CODE and
;CODE definitions will utilize these addresses and entry points to
provide proper 1linkage with the FORTH system. Examples of their
usage follows.

SK~-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 57

IP SO0AE

Address of the interpretive pointer in zero page.

W $00B1

Address of the code field pointer in zero page.

N $00A6

Address of an 8 byte scratch area in zero page.

XSAVE S$00B5

Address of temporary storage for parameter stack pointer.

YSAVE $00B6

Address for temporary storage for the Y register.

up S00B3

Address of the user area pointer in zero page.

SETUP S$S033E

Address of routine to transfer data stack items to the 8 byte page
zero scratch pad area labeled N . The number of data stack items to
be transfered is put is the accumulator. A maximum of four stack
items can be transfered. The transfered items are removed from the
data stack. The top stack item will be found at N (lo) and N+1 (hi),
the second from the top at N+2, N+3 etc.

PUT S$025E

Address of routine to replace the present computation stack high byte
from accumulator, and put from the machine stack one byte which
replaces the present low stack byte; continue on to NEXT.

PUSH $025C

Address of routine to repeat PUT but creating a new bottom item on
the computation stack.

PUSHOA $06A2

Address of routine to place the accumulator at the low stack byte,
with the high byte zero. This routine creates a new stack item

POP 50433

Address of routine to remove one 16 bit item from the parameter
stack.

CV_TNDTUTO 2 N AOADVDTOUOT CATITDAN CARTLIADE T TMTTEN

SK-FORTH79 USER'S GUIDE PAGE 58

POPTWO $0431

Address of routine to remove two 16 bit items from the parameter
stack.

NEXT $0433

Address of the inner-interpreter, to which all code routines must
return. NEXT fetches indirectly, referred to IP, the next compiled

FORTH word address. It then jumps indirectly to pointed machine
code.

USING THE 6502 FORTH ASSEMBLER

The 6502 FORTH assembler is wused to compile mnemcnics and
operands which follow CODE and ;CODE . The assembler uses postfix
notation (reverse Polish) as in FORTH itself. This means that in
assembly language code the operand comes before the operator. Each
equivalent of a line of assembly code has a symbolic or numeric
operand, an address mode modifier (if required) and finally the
opcode or instruction mnemonic.

The 6502 X register is the data stack pointer. You must save
and restore the X register using the location XSAVE if your code will
use the X register.

NEXT is the main re-entry point for code definitions. Re-entry
at NEXT leaves the data stack intact. Other common re-entry points
are POP (removes one data stack entry), POPTWO (removes two), PUSH
(returns one data stack value) and PUSHOA. It will take careful
study of the examples to thoughly understand the usage of these
re-entry points.

To access the top of the data stack from a code defintion the
following are equivalent:

RAE-ASSEMBLER 6502 POSTFIX FORTH ASSEMBLER

LDA *$500,X 00 ZX, LDA, or TOP LDA, (LOW BYTE)

LDA *301,X 01 ZX, LDA, or TOP 1+ LDA, (HI BYTE)
To access the second item on the data stack:

LDA *$02,X 02 ZX, LDA, or SEC LDA, (LOW BYTE)

LDA *3503,X 03 ZX, LDA, or SEC 1+ LDA, (HI BYTE)

Accessing the data stack in this way does not remove the number
from the data stack. If you access the top of the stack in this way
and you also want to remove it you should return via POP . If you
access the top and the second item and you want to remove them both
you should return via POPTWO. To access three or four data stack
entries you should use the subroutine SETUP which automatically
removes them from the data stack and transfers them to the 8 byte

Arr MADMITTIA A A AARTRTAITM ALMITRMT AATIMITATRT. T TiOTMTIS

SK-FORTH79 USER'S GUIDE PAGE 59

page zero scratch area at N .

ASSEMBLER EXAMPLES

1. Two CODE defintions equivalent to the MULTIBEEP colon definition.

This examle shows to ways to use the assembler sturctured
programming macros. It will call the SYM-1 BEEP subroutine at $8972
and the NOBEEP subroutine at $899B. The programs are presented in
screens 34 and 35 which follow. Once you have the programs working
try changing the parameters passed to the subroutine or otherwise
customize the definitions.

Screen 34 22 hex
0 (ASSEMBLER BEGIN, . . . UNTIL, . . . EXAMPLE J.W.B. 22:01:82)
1 FORTH DEFINITIONS

2 CODE BEEPER1 (<count> BEEPER] -> —— beep count times)
3 XSAVE STX, (SAVE X REG)
4 YSAVE STY, (SAVE Y REG)
5 TOP LDA, (GET THE COUNT)
6 BEGIN, PHA, (SAVE COUNT ON STACK)
¥] 8972 JSR, (CALL TO SYM BEEP)
8 899B JSR, (CALL TO SYM NOBEEP)
9 PLA, TAX, (GET COUNT IN X REG)
10 DEX, TXA, (DECREMENT THE COUNT)
11 0=, UNTIL, (ARE WE DONE YET?)
12 XSAVE LDX, YSAVE LDY, (RECOVER X AND Y)
13 POP JMP, END-CODE (REMOVE 1 AND RETURN)
14 10 BEEPER1 (TEST VALUE)

Screen 35 23 hex
0 (ASSEMBLER BEGIN, . . WHILE, . . REPEAT, EXAMPLE J.W.B. 01:82)
1 FORTH DEF INITIONS

2 CODE BEEPER2 (<count> BEEPER2 -> ———- beep count times)
3 XSAVE STX, YSAVE STY, (SAVE X AND Y REG)
4 TOP LDA, TAX, INX, (GET COUNT+l IN X REG)
5 BEGIN, DEX, (X REG = COUNT AGAIN)
6 05, WHILE, (ARE WE DONE?)
7 TXA, PHA, (SAVE COUNT ON STACK)
8 8972 JSR, (CALL SYM BEEP)
9 899B JSR, (CALL SYM NOBEEP)
10 PLA, TAX, (RECOVER THE COUNT)
11 REPEAT, (BACK TO BEGIN,)
12 XSAVE LDX, YSAVE LDY, (RESTORE X AND Y)
13 POP JMP, END-CODE (REMOVE THE COUNT)
14 10 BEEPER2 (TEST IT)

2. Real Time Clock for FORTH

This is a practical application of the assembler which
illustrates the integration of high level FORTH with assembly

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 60

language CODE definitions. The programs are presented in screems 25,
26, 27, and 28 which follow. Below we explain some of the lines of
code.

Screen 25

Line 2: JIFFY is a single precision constant wused to count 20
"jiffys" to the second, it is initialized to -1. This is required so
that the first time through (INTRPT) it will be reset to -20. SECS
is a double precision variable (32 bits) which is initialized to 0.
The FORTH clock will count only seconds and we will convert to the
format HH:MM:S5S when we output the time.

Line 3: (INTRPT) is the routine that executes when the VIA timer 1
times out. ' JIFFY pushes the PFA address of the constant JIFFY on
the data stack. This location is incremented and compared to zero in
line 4.

Lines 4 through 6: If JIFFY is zero as a result of the increment then
the double precision variable SECS is incremented. Note the use of
assembler conditionals and macros to check for the carry into
successively higher bytes of SECS. Also note that SECS is a variable
and does not require the “"tick" to access the PFA as was required
with the constant JIFFY.

Lines 7 through 14: Here we compare the double precision variable
SECS to $15180, the number of seconds in one day base 16. If a match
is obtained the wvariable SECS is zeroed. This occurs in lines 10,
11, and 12. Line 13 resets the constant JIFFY to -20. In 1line 14
the interrupt 1is cleared, the accumulator restored and we return
control to FORTH.

Screen 26

Lines 2 through 7: The CODE definition INTIME (initialize time) sets
the PFA of (INTRPT) in the SYM user IRQ vector at $A678. Note how
the FORTH assembler digs out the high and low bytes of (INTRPT)'s PFA
address in lines 3 and 4.

Lines 8 through 13: These 1lines configure the VIA timer #1 to
generate continuous interrupts. Lines 10 and 11 set the speed at
which the clock runs. (I think it runs a little slow, who will send
me the right values?) In lines 12 and 13 we reset JIFFY to -20 and
return to FORTH with a jump to NEXT. It should be noted that the
routine INTIME can be executed from FORTH whereas the routine
(INTRPT) would cause a system crash if executed from FORTH.

Screen 27 Formatting the time.
Lines 10 through 13: The sequence <# :00 :00 # # #> in the word FTIME

is responsible for formatting the time as HH:MM:SS at PAD so that it
can be output by the TYPE command.

O TADMIITIA A A AANUDTAIM CAMITAM OATRMITATT 7 TUTMEn™

SK-FORTH79 USER'S GUIDE

Screen 25 19 hex

0 (REAL TIME SK-FORTH79 CLOCK-1

1 FORTH DEF INITIONS
2 -1 CONSTANT JIFFY
3 CODE (INTRPT)

4 PHA,
5 0=, IF, SECS
6 0=, IF, SECS
7 SECS
8 0=, IF, SECS
9 0=, IF, SECS
10 0=, IF, 0

11 SECS
12 THEN,

13 EC
14 THEN, A804
15 —>

Screen 26 1A hex

0 (REAL TIME SK-FORTH79 CLOCK-2

CODE INTIME (ROUTINE TO SET UP 6522 AND SET INTERRUPT VECTOR

PAGE 61

HEX
2VARTABLE SECS 0.0 SECS 2!
(THIS IS THE INTERRUPT ROUTINE
' JIFFY INC, (INCREMENT JIFFY
2+ INC, 0=, IF, SECS 3 + INC,
INC, THEN, THEN,
LDA, 01 IM, CMP,
3% LDA, 51 M, CMP,
2+ LDA, 80 IM, CMP,
IM, LDA, SECS 2+ STA,
3+ STA, SECS STA,
THEN, THEN,
IM, LDA, ' JIFFY STA,
LDA, PLA, RTI, END-CODE

SEI, ' (INTRPT)

2
3
4
5 IM, LDA, A679 STA,
6 IM, LDA, A678 STA,
7
8

CO IM, LDA,
9 40 IM, LDA,
10 42 IM, LDA,
11 C3 IM, LDA,
12 EC IM, LDA, '

13 CLI,
14 END-CODE
15 —>

Screen 27 1B hex

0 100 U/MOD

ABOE
ABOB
ABO6
ABOS

NEXT JMP,

(CONVERT ADDRESS TO HI AND LOW BYTE

(
(

STA, (SET IER TO ENABLE T1 INTERRUPTS
STA, (SET ACR SO T1 GENERATES INT'S

(DISABLE INTERUPTS, GET ADDRESS

SET HI BYTE OF INTERRUPT ADDRESS
SET LOW BYTE OF INTERRUPT ADDRESS

STA, (SET T1 LO ORDER
STA, (SET T1 HI ORDER
JIFFY STA, (SET JIFFY TO -20

0 (REAL TIME SK-FORTH79 CLOCK-3

1 FORTH DEFINITIONS
2

3: :00 #

4 6 BASE !

5 #

6 3A HOLD

7 DECIMAL ;
8

9 : FTIME

10 <# :00

11 :00

12 # #

13 #>
14 TYPE SPACE

15 —>

HEX

.
’

PN NN

e talatalalie

CONVERT DIGIT BASE 10
SWITCH TO BASE 6
CONVERT DIGIT BASE 6

LATCH
COUNTER

(ENABLE INTERRUPTS AND GO BACK

)
)
)

INSERT COLON IN OUTPUT STRING)
SWITCH BACK TO BASE 10)

PRINT TIME AS HH:MM
CONVERT SECONDS
CONVERT MINUTES MM

188)
:8S)
3588)

CONVERT HOURS HH:MM:SS)

END OF CONVERSION
TYPE TIME AND A SPACE

)
)

SK-FORTH79 2.0 COPYRTGHT SATIIRN SOFTWARE LTMTTED

J.W.B. 09:12:81)

J.W.B. 09:12::81)

J.W.B. 09:12:81)

SK-FORTH79 USER'S GUIDE PAGE 62

Screen 28 1C hex

0 (REAL TIME SK-FORTH79 CLOCK-4 J.W.B. 09:12:81)
1 FORTH DEFINITIONS HEX

2 : TIME (PRINT TIME AT TERMINAL)

3 SECS 2@ (FETCH THE SECONDS COUNT)

4 FTIME ; (- FORMAT AND PRINT IT)

5

6 : STOP (STOP THE CLOCK BEFORE YOU FORGET IT)

7 40 ABOE C! (DISABLE INTERUPTS)

8 00 A80B C! ; (RESET CONTROL REGISTER)

9 DECIMAL
10 : SET (<hh> <mm> <ss> SET -> -——- SET TIME AND START)
11 SWAP ROT 60 * (CONVERT hh TO MINUTES)
12 + 60 M* (ADD mm CONVERT TO SECONDS)
13 ROT O D+ (TOT SECONDS IS DOUBLE NUMBER)
14 SECS 2! (STORE IN SECONDS COUNTER)
15 INTIME ; (INITIALIZE INTERRUPT ROUTINE)

Screen 29 1D hex

0 (PASSING PARAMETERS-METHOD ONE J.W.B. 22:01:82
1 FORTH DEFINITIONS (CREATION OF THE WORD TONE

2 (<volume> <duration> <{period> TONE -> ———-
3 (We will pass the stack parameters to the MTU BEEP subroutine
4 (THIS EXAMPLE WILL NOT EXECUTE ON A SYM OR KIM!!! SEE TEXT

6 03 IM, LDA, (Set up to transfer three parameters
7 SETUP JSR, (Move them to scratch pad at N
8 XSAVE STX, (Must always save X register here
9 N LDY, (top stack at N , M1 = <(period>
10 N 2+ LDX, (top-1 is at N+2 , N+3 = <duration>
11 N 4 + LDA, (top-2 is at N+4 , N+5 = <volume}>
12 038D JSR, (Call MTU BEEP subroutine.
13 XSAVE LDX, (Restore the X registier
14 NEXT JMP, (This is always the return point.
15
Screen 30 1E hex
0 (PASSING PARAMETERS-METHOD TWO-1 J.W.B. 22:01:82
1 FORTH DEFINITIONS (CREATION OF THE WORD TONE

2 (<volume)» <duration) <{period> TONE -> ———-

3 (We will pass the stack parameters to the MTU BEEP subroutine
4 (THIS EXAMPLE WILL NOT EXECUTE ON A SYM OR KIM!! SEE TEXT

5 CODE TONE

6 XSAVE STX, (Must always save X register here
7 SEC 2+ LDA, (Get <volume> third from the top
8 PHA, (Save on stack

9 TOP LDA, (Get <period> on top of the stack
10 TAY, (Volume must be in Y register

11 SEC LDA, (Get <duration> second from top

12 TAX, (Duration must be in X register

13 PLA, (Recover the volume saved on stack
14 038D JSR, (Call MTU BEEP subroutine

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

Nt Nt Nt Nt e N N N N N

N N N N N N N N

SK~-FORTH79 USER'S GUIDE PAGE 63

Screen 31 1F hex
0 (PASSING PARAMETERS-METHOD TWO-2 J.W.B. 22:01:82)
1 (CODE DEFINITON OF TONE CONTINUED)
2
3 XSAVE LDX, (Restore data stack pointer)
4 INX, (Pop one parameter off stack)
5 INX,
6 POPTWO JMP, (Pop two more and return this way)
7 END-CODE
8
9 (TEST VALUES)

11 200 100 10 TONE 100 100 10 TONE

12 200 100 10 TONE 200 50 10 TONE

13 200 100 10 TONE 100 100 90 TONE

Screen 32 20 hex
0 (CREATION OF CONSTANT WITH ;CODE
1
2 FORTH DEFINITIONS

3

4 : CONSTANT CREATE (
5 ; (
6 ;CODE (
7 2 IM, LDY, (
8 W 1Y, 1LDA, (
9 PHA, (
10 INY, (
11 W 1Y, LDA, (
12 PUSH JMP, (
13 END-CODE

14

15

Screen 33 21 hex

J.W.B. 22:01:82)

CREATE DICTIONARY ENTRY)
STORE DEFINED VALUE AT PFA)
DEFINE RUNTIME ROUTINE)
POINT TO PFA WITH CFA)
GET LOW DATA BYTE)
PUSH ON MACHINE STACK)
POINT TO THE HIGH BYTE)
FETCH THE HIGH BYTE)
PUSH TO DATA STACK AND RETURN)

0 (CREATION A NEW DEFINING WORD WITH ;CODE J.W.B. 22:01:82)

(THE NEW WORD " BYTE " WORKS LIKE
(ITS RANGE IS 0 - 255 AND IT ONLY

1
2
3
4
5 FORTH DEF INITIONS
6
7
8
9

: BYTE CREATE (
Cs (
; CODE (
10 2 IM, LDY, (
11 W IY, LDA, (
12 PUSHOA JMP, (
13 END-CODE
14
15

CONSTANT EXCEPT THAT ITS)
TAKES ONE BYTE FOLLOWING PFA)

CREATE DICTIONARY ENTRY)
STORE DEFINED VALUE AT PFA)
DEFINE RUNTIME ROUTINE)
POINT TO PFA WITH CFA)
GET LOW DATA BYTE)
PUSH TO DATA STACK AND RETURN)

SK~FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 64

Lines 3 through 7: The word :00 converts one digit base 10, ome digit
base 6 and then inserts a colon, “:", in the output stream. It is
most amazing that you can switch the system base mid way through the
conversion of a number that you are preparing for output. But with
FORTH anything is possiblel!!!

Screen 28 The useful words.

Lines 2 through 4: Use the word TIME to print the time on the
console.

Lines 6 through 8: Use the word STOP the clock before forgetting it.

Lines 10 through 15: The routine set is used to start the clock and
set the current time. If you are still reading, you should be able
to figure out how it does this youself.

3. A Three Parameter TONE Generator.

This example was used in our doucumentation of MTU-FORTH79 and
although we do not have the same subroutine on our KIM/SYM systems
the example was retained for its educational wvalue in that it
demonstrates two different methods of passing paramters from FORTH's
data stack to a CODE definition. The MTU-BEEP subroutine that is
refered to requires three parameters. The volume (0 - FF) in the
accumulator, the period in the Y register, and the duration in the X
register. Clever harware types, with the MTU-DAC could route their
CB2 sound through the onboard amplifier and then write a similar
subroutine. Note again that this example will NOT work on you SYM or
KIM.

In this example we will pass three parameters from the data
stack to our CODE definition TONE. The usage of TONE will be as
follows:

{volume> <duration> <period> TONE -> -—-
where the parameters are the those described above.

This time there are three data stack numbers to be passed to our
CODE definition so we will use the subroutine SETUP to remove them
from the data stack and transfer them to the page zero scratch pad
area at N. After the call to SETUP the parameters will be found as
follows:

Top of stack: <{period> at N (lo) N+1 (hi)
Second from top: {duration> at N+2 N+3
Third from top: <{volume> at N+4 N+5

The CODE definition for TONE using SETUP to pass the parameters will
be found in screen 29. For comparison we present the same thing in
screens 30 and 31 passing the parameters without using SETUP.

AT BANMIITA A A AATIUNTAIIM AAMIMAT OADMITATIT T TWTmDn

SK~-FORTH79 USER'S GUIDE PAGE 65

ANATOMY OF A DICTIONARY ENTRY

! LN ! NAME FIELD ! LINK FIELD ! CODE FIELD ! PARAMETER FIELD ... !

/\ /\ /\ /\
NFA LFA CFA PFA

Name Field

Byte 1 Length Byte.
Bits 0 - 4 Name length 0 - 31

Bit 5 SMUDGE bit
Bit 6 Precedence bit (1=IMMEDIATE word, O=regular)
Bit 7 Always 1 to indicate start of name field

Byte 2 ASCII characters for name start in this byte, and continue
Byte last Last letter of name with bit 7 high to indicate
the end of the name. :

Link Field

The link field contains the name field address (NFA) of the previous
dictionary entry.

Code Field

The code field contains the address of the actual machine code to be
used for this dictionary entry. For example, a colon definition
would have the address of DOCOL, the machine code which interprets
the addresses found in the parameter field. A constant's code field
address would contain the address of DOCON, the machine code runtime
routine for contants. A CODE definition's code field address would
contain the routine's parameter field address (PFA), as this is where
the FORTH ASSEMBLER deposits the machine code compiled from the
mnemonics which follow CODE.

Parameter Field

The parameter field contains other word addresses in the case of a
colon definition, data in the case of a constant definition, and
machine code in the case of a CODE definition.

DICTIONARY ENTRY FOR A CONSTANT

As an example the dictionary entry of the CONSTANT LIMIT is presented
in detail using RAE assembler format.

NFA—->LIMIT.HD .BY $85 NAME FIELD (length byte)

’
.BY TLIMI' 3 ASCII characters for name
.BY $D4 ; last name character bit 7 high
LFA-—> .SI FIRST.HD ; LINK FIELD
CFA—->LIMIT .SI DOCON ; CODE FIELD
PFA—> .SI UAREA ; PARAMETER FIELD (data since
]

UAREA is value of LIMIT)

SK-FORTH7Q 2.0 COPYRTCHT SATIIRN SNAFTWARE TIMTTENR

SK-FORTH79 USER'S GUIDE PAGE 66

The code field address (CFA) points to DOCON the machine language
run-time routine for the CONSTANT data type. When LIMIT is executed
the run-time routine DOCON gets the 16 bit number stored in the
parameter field (the value of UAREA in this case) and pushes it onto
the parameter stack. Below is the machine code in RAE assembler
format of the routine DOCON. It is very important to understand
exactly what is going on if you hope to define new data types of your
owWn. If at first you cannot follow what is going on read this
section again later.

DOCON LDY #502 POINT TO PFA WITH CFA

»

LDA (W),Y ; GET LO DATA BYTE
; W CONTAINS CFA

PHA ; PUSH ON MACHINE STACK

INY ; PREPARE TO GET HI BYTE

LDA (W),Y ; GET HI DATA BYTE

JMP PUSH ; PUSH NUMBER TO PARAMETER STACK
»

; AND RETURN
Now go on to the next section if you understand the above example.

CREATING A NEW DATA TYPE USING ;CODE

Suppose that we have need for a new data type called BYTE. The new
data type 1is going to work just like CONSTANT, except that we are
only going to store one byte of data in the parameter field. The
range for our new data type will, of course, be only 0 - 255. If we
have need for constants in this range, using the data type BYTE will
result in a space saving. If you look on screen 32 you will see how
the defining word CONSTANT would be coded in FORTH wusing ;CODE .
Screen 32 is on page 63 of the manual.

It might be a good idea to go back and review the section on
constants before you go on. The high level FORTH code between
CONSTANT and ;CODE creates the dictionary entry for the constant name
and stores the defined value in the parameter field. The machine
code between ;CODE and END-CODE is the run-time routine for the
constant data type and is identical to DOCON on the previous page.

IMPORTANT! When we define a new constant only the portion
between CONSTANT and ;CODE is executed. When we use the new constant
the portion between ;CODE and END-CODE is executed.

To create our new data type BYTE we must make a change to the
definition routine. We must change the (,) to (C,). We store a
single byte in the parameter field rather than a word. We must also
change the run-time routine between ;CODE and END-CODE so than only
one byte is fetched from the parameter field when a constant is
executed. The FORTH definition of the defining word BYTE is
presented in screen 33. You will find screen 33 on page 63 of this
manual. To test the definition type and observe the following:

33 LOAD (ret) OK

44 BYTE XYZ (ret) OK
XYZ . (ret) 44 OK

QV_TADTUTA 2 N OADVDTAUT CATITON CADTIIADE ¥ TuTmon

SK-FORTH79 USERS GUIDE PAGE 67

INTRODUCTION TO GLOSSARIES

Order

These glossaries contain all the word definitions in release 2.0 of
SK-FORTH79. They are presented in alphabetical order wusing the
ASCII sequence. Shown below, for reference, is the order of the
ASCII symbols.

P " #8Z2Z&"'"()*+,-. [/ 0.e9: 3<=>17@A...210[]
Stack Notation

The second line of each entry shows a symbolic description of the
action of the word on the parameter stack in terms of stack inputs
and stack outputs. The top of the stack is to the right of both the
stack inputs and outputs. Four dashes ---— indicate that either no
inputs are required or that any inputs that were present have been
removed. See the section entitled STACK MANIPULATION for a further
explanation of the notation used.

The symbols used include:

addr Memory address 0...65,535.

byte 8 bit byte (hi 8 bits zero) 0...255.

char 7 bit ASCII character (hi 9 bits zero) 0...127.
d 32 bit signed double integer, most significant

portion with sign on top of the stack -2,147,483,648
«ee2,147,483,647.

flag Boolean flag (O=false, l=true).
ff Boolean false flag (ff=0).
n 16 bit signed integer number -32,768...32,767.
tf Boolean true flag (tf=1).
u 16 bit unsigned integer 0...65,535.
ud 32 bit unsigned integer 0...4,294,967,296.
Input Text
{text>

Angle brackets will enclose arbitrary FORTH text to be accepted from
the input stream. This notation refers to text from the input
stream, not to values on the data stack. If the input stream is
exhausted before encountering <{text>», then an error condition exists.

C¥_TNRTU70 2 N MAADVRTOAUT CATITON CNATTLWADE TTMTTEN

SK-FORTH79 USERS GUIDE PAGE 68

Attributes

The capital letters in brackets following the word give its
characteristics:

c May only be used within a colon definition. A digit
- indicates the number of 16 bit memory words used if other

than 1.

E Run time code not intended for direct execution.

79 Definition required by the FORTH-79 Standard.

I Has precedence bit set (will execute even when
compiling). Also referred to as an IMMEDIATE word.

U A user variable.

F Word retained from the Fig FORTH Model.

S Word added to SK-FORTH79 for its utility value

or as part of the cassette or disk interface.

Stack Parameters

Unless otherwise noted, all references to numbers are for 16 bit
signed integers. The high byte of a number is on top of the stack,
with the sign in the leftmost bit., For 32 bit signed double numbers,
the most significant part (with the sign) is on top of the stack.

All arithmetic 1is implicitly 16 bit signed integer math, with
error and under-flow indication unspecified.

FORTH-79 Standard Application Programs

A standard application program may reference only the definitions of
the required FORTH-79 word set (those designated with the attribute
79 following the glossary entry). If your program requires other
definitions, ie., those designated with an F or M in the glossary
entry, then they must be recoded and included with your application
program. The glossaries include the FORTH code for all colon
definitions used in SK-FORTH79.

We recommend that serious application programmers obtain and study
the document:

The FORTH-79 Standard - available from
FORTH Interest Group P.0. Box 1105 San Carlos CA 94070

SK~FORTH79 2.0 COPYRTGHT SATIRN SORTWARR TTMTTEN

SK-FORTH79 USERS GUIDE PAGE 69

$00 or NULL (F)

This one character word consisting of ASCII null is the
execution procedure used to terminate interpretation of a line
of text from the terminal or within a disk buffer. Both the
terminal and disk buffers always have at least one null at the

end.
: 'null' BLK @ IF 1 BLK +! O >IN ! BLK @ 0 B/SCR U/MOD
DROP 0= IF ?EXEC R> DROP THEN ELSE R> DROP
THEN ;
! (79)

n addr ! =R m—
Stores 16 bits of n at address. Pronounced "store”.
CODE ! assemblby mnemonics END-CODE
!CSP (F)
—— ICSp -> ——-

Saves the stack position in CSP. Used as part of the compiler
security.

: ICSP SP@ CSP ! ;
(79)
dl # - d2
Generates from a double number dl, the mnext ASCII character
which is placed in an output string. Result d2 is the quotient
after division by BASE, and is maintained for further
processing. Used between <# and #>. See also #S.
: # BASE @ M/MOD ROT 9 OVER < IF 7 + THEN 30 + HOLD ;
> (79)
d #> => addr count

Terminates a numeric output conversion by dropping d, leaving
the text address and character count suitable for TYPE.

: #> DROP DROP HLD @ PAD OVER - ;
#s (79)

dl #5 =p d2

nnnnnn YA A A AARTRTATIM OAMIMA CADIIIADT T TMTTEN

SK-FORTH79 USERS GUIDE PAGE 70

Generates ASCII text in the text output buffer, by the use of
#, wuntil a zero double number d2 results. Used between <# and
i#>.

: #S BEGIN # OVER OVER OR 0= UNITL ;
' (1,79)
Used in the form:
s ' <name> -2 addr
Leaves the parameter field address (PFA) of the dictionary
word <name). As a compiler directive, executes in a colon
definition to compile the address as a literal. If the word
{name> is not found after a search of CONTEXT and CURRENT, an
appropriate error message is given. Within a colon-definition

' <name> is idenitcal to [' <name>] LITERAL. Pronounced
"tick”.

' -FIND 0= O ?ERROR DROP [COMPILE] LITERAL ; IMMEDIATE
((1,79)
Used in the form: (cccecee)
Ignores a comment that will be delimited by a right parenthesis
on the same line. May occur during execution of a colon
definition. A blank after the leading parenthesis is required.
An error condition exists if the input stream is exhausted
before the right parenthesis.
: (29 WORD DROP ; IMMEDIATE
(ABORT) (E,F)
Executes after an error when WARNING is -l1. This word normally
executes ABORT, but may be altered (with care) to a user's
alternative pro- cedure.
(ABORT) ABORT ;
.") (C+,E,F)

The run-time procedure, compiled by ." which transmits the
following in-line text to the selected output device. See ."

: (.") R@ COUNT DUP 1+ R> + >R TYPE ;
(;CODE) (C,E)
The run-time procedure, compiled by ;CODE, that rewrites the

code field (see CFA) of the most recently defined word to
point to the following machine code sequence. See ;CODE.

Ow TBADTIITA A N AANTDTAIIM OATIMAT OADMITADT T TMTIDON

SK-FORTH79 USERS GUIDE PAGE 71

: (;CODE) R> LATEST PFA CFA ! ;
(+LOOP) (C2,E,F)
n (4L00P) - -

The run-time procedure compiled by +LOOP, which increments the
loop index by n and tests for loop completion. See +LOOP.

CODE (+LOOP) assembly mnemonics END-CODE
(Do) (C,E,F)

The run-time procedure compiled by DO which moves the loop
control parameters to the return stack. See DO.

CODE (DO) assembly mnemonics END-CODE
(FIND) (E,F)

addrl addr2 (FIND) -> pfa byte tf (match)
addrl addr2 (FIND) -> 3 {(no match)

Searches the dictionary starting at the name field address,
addr2, matching to the text at addrl. Returns parameter field
address (pfa), length byte of name field (b), and a boolean
true flag for a good match. If no match is found, only a
boolean false flag is returned.
CODE (FIND) assembly mnemonics END-CODE ;
(LINE) (F)
nl n2 (LINE) => addr count

Converts the line number nl and the screen n2 to the disk
buffer address containing the data. A count of 64 indicates
the full line text length.

: (LINE) >R C/L B/BUF */MOD R> B/SCR * +
BLOCK + C/L ;

(LoOP) (C2,E,F)

The run-time procedure compiled by LOOP which increments the
loop index by 1 and tests for loop completion. See LOOP.

CODE (LOOP) assembly mnemonics END-CODE
(MDISK) (s8)
Call to the main HDE FODS operating system subroutine. This
routine is mnot intended for wuser execution. Usage of this

routine assumes that the requested command and parameters have
first been set in the FODS parameter passing area at

SK-FNRTH7Q 2.0 COPYRTGHT SATIIRN SOFTWARE LIMITED

SK-FORTH79 USERS GUIDE PAGE 72

$7200-57220 for SYM and $F200-$F220 for KIM. For an example of
its usage see the disk copy routine in the appendix.

CODE (MDISK) assembly mnemonics END-CODE

(NUMBER) (F)

(ROLL)

(SET)

*f

dl addr1l (NUMBER) -> 42 addr2

Converts the ASCII text beginning at addrl+l with respect to
BASE. The new value is accumulated into a double number dl,
being left as d2. addr2 is the address of the first
unconvertable digit. (NUMBER) 1is called CONVERT in the
79-Standard. Used by NUMBER.
(NUMBER) BEGIN 1+ DUP >R C@ BASE @ DIGIT
WHILE SWAP BASE @ U* DROP ROT BASE @ U*
D+ " @ 1+ IF 1 DPL +! THEN R>
REPEAT R> ;
(E,S)
n (ROLL) =-> —--

Run time routine for ROLL. Equivalent to ROLL except that a
check is not made for the stac5 out of bounds.

CODE (ROLL) assembly mmemonics END-CODE
(s)

addrl addr2 blk flag (SET) -=> ——-
This word is called by the main disk read/write linkage to set
the command, addresss, and track/sector information in the FODS
paramater passing area. This routine is not intended for user
execution. The addrsses in the definition below are for the
SYM version. addrl is low memory address, addr2 is hi memory
address, blk is the block number being transfered and flag is
true for read and false for a write operationm.

: (SET) 0= 7218 C! 10 /MOD 7216 C! 1+ 7217 C! DUP
B/BUF 1- + 7212 ! 7210 ! MDISK OFF ;

(79)
nl n2 * => product
Leaves the signed product of the two signed numbers nl and n2.
: * U* DROP ;
(79)

nl n2 n3 */ -> nb4

OV _TADTITTIA 9 N OAADYRTAIT OAMIMAT OATMTIANT T TaTrmon

* /MOD

+!

+BUF

SK-FORTH79 USERS GUIDE PAGE 73

Leaves the ratio né4=nl*n2/n3 where all®are signed numbers.
Retention of an intermediate 31 bit product permits greater
accuracy than would be available with the
sequence nl n2 * n3 /[

: */ */MOD SWAP DROP ;

(79)

nl n2 n3 */MOD -> n4 nS

Leaves the quotient n5 and the remainder n4 of the operation
nl*n2/n3. A 31 bit intermediate product is used as for */ .

: %/MOD >R M* R> M/ ;
(79)
nl n2 + => sum
Leaves the sum of nl and n2.
CODE + assembly mnemonics END-CODE
(79)
n addr +!

S

Adds n to the word value at address addr. Pronounced

“plus—-store”.

CODE +! assembly mnemonics END-CODE
(F)

nl n2 + => n3

Applies the sign of n2 to n2 which is left on the data stack as
n2.

: +— 0 IF NEGATE THEN ;
(F)
addr1l +BUF -> addr2 £
Advances the disk buffer address addrl to the address of the
next buffer addr2. Boolean f is false when addr2 is the buffer

presently pointed to by the variable PREV.

+BUF B/BUF 4 + + DUP LIMIT =
IF DROP FIRST THEN DUP PREV @ - ;

M mANMITTIA A A AATYTONTAIIM OATIIMAT CADMIADT T TMTTEN

+LOOP

SK-FORTH79 USERS GUIDE PAGE 74

(1,C2,79)

nl +L0O0OP -> ——— (at runtime)
0ddr n2 +LOo0OP > ——— (at compile time)

Used in a colon defintion in the form:
DO seeee nl +LOOP

At run-time, +LOOP selectively controls the branching back to
the corresponding DO based on nl, the loop index and the loop
limit. The signed increment nl is added to the index and the
total compared to the limit. The branch back to DO occurs
until the new index is equal to or greater than the limit
(n1>0), or until the new index is less than the limit (nl1<0).
Upon exiting the loop the parameters are discarded and
execution continues ahead.

At compile time, +LOOP compiles the run-time word (+LOOP) and
the branch offset computed from HERE to the address left on the
stack by DO . n2 is used for compile time error checking.

: +LOOP 3 ?PAIRS COMPILE (+LOOP) BACK ; IMMEDIATE

+ORIGIN (F)

n +0RIGIN -> addr
Leaves the memory address relative by n to the origin parameter
area. n is the number of bytes offset from ORIGIN ($0200 for
SYM, $2000 for KIM). This definition is used to access or
modify the boot-up parameters and vectors in this area.

+ORIGIN 200 + ;

Stores n into the next available dictionary memory cell,
advancing the dictionary pointer. Pronounced "comma™.

, HERE ! 2 ALLOT ;
(79)
nl n2 - -> difference

Leaves the difference of nl-n2.

- NEGATE + ;

QE_ENDTOTO 2 N OOADVDTAOT CATITDON ONDTLIADE T TMTTEN

=z

-FIND

SK-FORTH79 USERS GUIDE PAGE 75

(I,F)

Continues interpretation with the next disk screen. Pronounced
"next-screen”.

: —> ?LOADING O >IN ! B/SCR BLK @ OVER MOD
- BIK +! ; IMMEDIATE

— -FIND -> pfa byte tf
S -FIND -> ff

(if found)
(if not found)

Accepts the next text word (delimited by blanks) in the input
stream moving it to HERE, and searches the CONTEXT and CURRENT
vocabularies for a matching entry. If found, the dictionary
entry's parameter field address, its length byte, and a boolean
true flag are left. Otherwise only a boolean false flag is
left.

: -FIND BL WORD CONTEXT @ @ (FIND) DUP O=
IF DROP HERE LATEST (FIND) THEN ;

-TRAILING (79)

addr nl ~-TRAILING -> addr n2

Adjusts the character count nl of a text string beginning at
address to suppress output of trailing characters less than or
equal to blank ($20). That is, the characters at addr+n2 to
addr+nl are blanks or control characters.

: -TRAILING DUP O DO OVER OVER + 1 - C@ BL >
IF LEAVE ELSE 1 - THEN LOOP ;

Prints a number from a signed 16 bit two's complement value,
converted according to the numeric BASE. A trailing blank
follows the number. Pronounced "dot”.

¢ + S5=2D D. ;
(1,79)

Used in the form: . ccceeec”
Compiles an in-line string cccccc (delimited by trailing ")
with an execution procedure to transmit the text to the

selected output device. If executed outside a definitiom, ."
will immediately print the text until the final " .

cQv_wNnRTHIQ 2 N CADVRTAHT QCATITRN QARTWARE TTMTTEN

- LINE

R

/MOD

0<

SK-FORTH79 USERS GUIDE PAGE 76

." 22 STATE @ IF COMPILE (.") WORD C@ 1+ ALLOT
ELSE WORD COUNT TYPE THEN ; IMMEDIATE
{F%)
line scr . LINE - —

Prints on the terminal device a line of text from the disk by
its line and screen numbers. Trailing blanks are suppressed.

: JLINE (LINE) -TRAILING TYPE ;
(®)
nl n2 R > ——

Prints the number nl right aligned in a field whose width is
n2. No following blank is printed.

: R DR S->D R> D.R ;
(79)
nl n2 !/ => quotient
Leaves the signed quotient of nl/n2.
: / /MOD SWAP DROP ;
(79)
nl n2 /MOD -> remainder

quotient

Leaves the remainder and signed quotient of nl/n2. The
remainder has the sign of the dividend.

: /MOD >R S->D R> M/ ;
3 (F)
-— 012o0r3 => 012o0r 3

These small numbers are used so often that it is attractive to
define them by name in the dictionary as constants.

(79)
n < = f

Leaves a true flag if the number is less than zero (negative);
otherwise leaves a false flag.

CODE 0< assembly mnemonics END-CODE

ev_pNnDTUTIO 9 N ANDYDTAUT CATITOAN OADMMIADTT ¥ Tuwrmon

0>

SK-FORTH79 USERS GUIDE PAGE 77

Leaves a true flag if the number is equal to zero, otherwise

-leaves a false flag.

CODE 0= assembly mnemonics END-CODE
(79)
n 0> = f

Leaves a true flag if the number is greater than zero
(positive); otherwise leaves a false flag.

CODE 0> assembly mnemonics END-CODE

OBRANCH (C2,E,F)

1+

2!

f OBRANCH -> ——-
The run-time procedure to conditionally branch. If f is false
(zero), the following in-line parameter is added to the
interpretive pointer to branch ahead or back. Compiled by IF,
UNTIL, and WHILE.
CODE OBRANCH assembly mnemonics END-CODE
(79)
nl + -> n2
Increments nl by 1 to give n2.
¢ 1+ 1+
(79)
nl 2= =» n2
Decremenu nl by 1 to give n2
s 1-) U
(79)
d addr 2! => ——-

Store double number d in 4 consecutive bytes beginning at addr,
as for a double number.

2! SWAP OVER ! 2+ ! ;

SK-FORTH79 2.0 COPYRIGHT SATIIRN SOFTWARE LTMTTED

SK-FORTH79 USERS GUIDE PAGE 78

i (s)
nl 2 -> n2

Multiply the top number on the data stack nl by 2 and leave as
n2.

: 2% DUP + ;
2+ (79)
nl 2+ =>» n2
Increments nl by 2 to give n2.
: 2+ 2+
2- (79)
nl 2- -> n2
Decrement nl by 2 to give n2.
2= 23
2@ (79)
addr 2@ > d

Leave on the stack the contents of the four consecutive bytes
beginning at addr, as for a double number.

: 2@ DUP 2+ @ SWAP @ ;
2CONSTANT (79)
d 2CONSTANT <name> -> ————
A defining word used as shown above to create a dictionary
entry for <name>, leaving d din its parameter field. When
<{name> is later executed, d will be left on the stack.
2CONSTANT CREATE , , DOES> 2@ ;
2DROP (79)
d 2DROP -> ——-

Drop the top double number on the data stack.

: 2DROP DROP DROP ;

CV_DTNDTUION 92 N ANDVDTOAUT CATITDNM CNATPTLIADET TTMTTEND

SK-FORTH79 USERS GUIDE PAGE 79

‘ 2DUP (79)
d 2DUP > d d
Duplicate the top double number on the data stack.
: 2DUP OVER OVER ;
20VER (79)
dl d2 20VER -> d1 d2 dl
Leave a copy of the second double number on the stack.
: 20VER 4 PICK 4 PICK ;
2ROT (79)

dl d2 d3 2ROT -> d2 d3 d1l

: 2ROT 6 ROLL 6 ROLL ;
. 2swAP (79)
dl d2 2SWAP -> d2 dl
Exchange the top two double numbers on the data stack.
: 2SWAP ROT >R ROT R> ;
2VARTABLE (79)

— 2VARIABLE <name) -> ———

All variables are initialized to zero.
: 2VARIABLE CREATE 0 0 , , DOES> ;
3% (s)
nl ¥ =» n2

Multiply the stack number nl by 3 and leave as n2.

: 3% DUP DUP + +

I SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

Rotate the third double number to the top of the data stack.

A defining word used as shown above to create a dictionary
entry of <{name> and assign 4 bytes for storage in the parameter
field. When <name> 1is later executed, it will leave the
address of the first byte of its parameter field on the stack.

SK-FORTH79 USERS GUIDE PAGE 80

79-STANDARD (79)

Execute assuring that a FORTH-79 Standard system is available,
otherwise an error condition exists.

: 79-STANTARD ;

(1,0,79)

Used in the form called a colon definition:
: <{name> cens :

Creates a dictionary entry '<name>', defining '<named>' as
equivalent to the sequence of FORTH words and definitioms
'eeeo! until the next ; or ;CODE. The compiling process is

done by the text interpreter as long as STATE is non zero.
Other details are that the CONTEXT vocabulary is set to the
CURRENT vocabulary and that words with the precedence bit set
(P) are executed rather than being compiled.

5% ?7EXEC !CSP CURRENT @ CONTEXT ! CREATE SMUDGE
] (;CODE) assembly mnemonics END-CODE
IMMEDIATE
(1,C,79)

Terminates a colon definition and stops further compilation.
Compiles the run-time ;S .

: 3 ?7CSP COMPILE ;S SMUDGE [COMPILE] [; IMMEDIATE
(L,G,F)
Used in the form:
: <{name> ;CODE assembler mnemonics END-CODE
Stops compilation and terminates a new defining word <name)> by
compiling (;CODE). Sets the CONTEXT vocabulary to ASSEMBLER,
assembling to machine code the following assembler mnemonics up
to END-CODE . When <name> later excutes in the form
<name> <namel)>
the word <nmame> will be created with its execution procedure
given by the machine code following name. That is, when
<{namel> is executed, it does so by jumping to the code after
<{name>. An existing defining word must exist in <name> prior
to the ;CODE .

: ;CODE 7?CSP COMPILE (;CODE) [COMPILE] [AINIT ;
IMMEDIATE

Cv _TADTITA A N AATYNTAIIM OAMITNAT AATIMITANT ¥ Tisrmen

;8

<#

>IN

oK-FORTH79 USER'S GUIDE PAGE 81

(I,F)
Stops interpretation of a screen. ;S is also the run-time word
compiled at the end of a colon definition which returns
execution to the calling procedure.
CODE ;S assembly mnemonics END-CODE
(79)
nl n2 < => flag

Leaves a true flag i1if nl is less than n2, otherwise a false
flag.

CODE < assembly mnemonics END-CODE
(79)
Sets up for pictured numeric output formating using the words:
<# # #s HOLD SIGN #

The conversion is done on a double number producing text at PAD
in the form of an ASCII string.

<# PAD HLD ! ;
(79)
nl n2 = => flag
Leaves a true flag if nl=m2, otherwise a false flag.
= -0=;
(79)
nl n2 > => flag

Leaves a true flag if nl is greater than n2, otherwise a false
flag.

i > SWAP < ;
(u,79)
- >IN = addr
Leave the address of a wvariable which contains the present

character offset within the input stream (0...1024). Used in
WORD (and FIND.

OV TADTUITINA 2 N AAMUYDTATT CATITDA CATTIADE T TMTTEN

SK-FORTH79 USER'S GUIDE PAGE 82

(79)

n >R = i
Transfer n to the return stack. Every >R must be balanced by a
R> in the same control structure nesting level of a colon
definition.

CODE >R assembly mnemonics END-CODE

(79)

addr ? e P e e

Prints the value contained at the address in free format
according to the current value of BASE.

: 7 Q.
(F)
Issues error message if not compiling.
: 7?COMP STATE @ 0= 11 ?ERROR ;
(F)

Issues error message if stack position differs from value saved
in CSP.

: 7CSP SP@ CSP @ - 14 ?ERROR ;
(79)
n DUP -> n (n)
Duplicate n if it is non-zero. Pronounced “"query-dup”.

: ?DUP DUP IF DUP THEN ;

7ERROR (F)

flag n ?ERROR -> ——
Issues an error message number n, if the boolean flag is true.

: ?ERROR SWAP IF ERROR ELSE DROP ;
(F)

Issues an error message if not executing.

SK-FORTH79 2.0 COPYRIGHT SATIIRN SOFTWARE LTMTTED

SK-FORTH79 USER'S GUIDE PAGE 83

?7EXEC STATE @ 12 ?ERROR ;
?LOADING (F)
Issues an error message if not loading.
?LOADING BLK @ O= 16 ?ERROR ;
7PAIRS (F)
nl n2 ?PAIRS -> ———

Issues an error message if nl does not equal n2. The message
indicates that compiled conditionals do not match.

?7PAIRS - 13 ?ERROR ;
?7STACK (F)
Issues an error message if the stack is out of bounds.
¢ 7STACK 8E SP@ U< 1 ?ERROR SP@ 10 U< 7 7ERROR ;
78TK (F)
n ?7STK -> n flag
Leave a true flag if n indexes an out of bounds data stack
value otherwise leave a false flag. Used by PICK and ROLL for
error detection.
: ?STK DUP DUP O= SWAP DUP + SP@ + 88 > OR ;
?TERMINAL (F)
— ?TERMINAL -> flag
Performs a test of the terminal break key. If the break key is
hit followed by RETURN then the flag f is set to boolean true.
If the break key is hit followed by SPACE then the flag f is
set to boolean false. 1In both the previous cases execution is
suspended wuntil the key is hit. If the break key has not been
hit then the flag f is set to boolean false

CODE ?TERMINAL asssembly mnemonics END-CODE

@ (79)

addr @ -> n
Leaves the 16 bit word contents of address.

CODE @ assembly mnemonics END-CODE

QV_DTNDTU70 92 N OAADVDTOAUT CATITDN CARTITIADE T TMTTEN

ABORT

ABS

AGAIN

AINIT

SK-FORTH79 USER'S GUIDE PAGE 84

(79)

Clears the stacks and enter the execution state. Returns

control to the operator's terminal, printing installation
message.
: ABORT SP! DECIMAL CR ." SK-FORTH79 BY JOHN W. BROWN"
CR CR .™ COPYRIGHT (C) 1981 SATURN SOFTWARE
LIMITED" [COMPILE] FORTH DEFINITIONS CR
CR ." OK" QUIT ;
(79)

n ABS -> u
Leaves the absolute value of n as u.
: ABS DUP + ;
(1,C2,F)

addr n AGAIN >

(compiling)

Used in a colon definition in the form:

+sss BEGIN AGAIN
At run-time, AGAIN forces execution to return to the
corresponding BEGIN There is no effect on the stack. Execution
cannot leave this loop (unless R> DROP is executed one level

below).
At compile time, AGAIN compiled BRANCH with an offset from HERE
to addr. n is used for compile-time error checking.

AGAIN 1 ?PAIRS COMPILE BRANCH BACK ; IMMEDIATE
(E,8)

This is the call to the ASSEMBLER used by CODE and ;CODE. This
call holds the current system base on the stack, sets the BASE
to HEX, initializes default =zero page addressing and makes
ASSEMBLER the context vocabulary. This call is not intended
for user execution.

: AINIT ASSEMBLER BASE @ HEX SMVAR ;
(79)
n ALLOT

- ———

Adds the signed number n to the dictionary pointer DP.
be used to reserve dictionary space or to re-origin memory.

May

SK=FORTH7Q 2.0 COPYRTGHT SATIRN SOFTWARE TLIMTTRD

SK-FORTH79 USER'S GUIDE PAGE 85

ALLOT DP +! ;

AND (79)
nl n2 AND -> n3
Leaves the bitwise logical AND of nl and n2 as n3.
CODE AND assembly mnemonics END-CODE
ASSEMBLER (F)
The name of the FORTH assembler vocabulary. Execution makes
ASSEMBLER the CONTEXT vocabulary. CONTEXT is automatically set
to ASSEMBLER by ;CODE and CODE.
B/BUF (F)
e B/BUF -> n
A constant that Jleaves the number of bytes per disk buffer.
The byte count is read from disk by BLOCK.
B/SCR (F)
———— B/SCR -> n
A constant that leaves the number of blocks per editing screen.
By convention, an editing screen is 1024 bytes organized as 16
lines of 64 characters each.
BACK { F)
addr BACK -> ——-
Calculates the backward branch offset from HERE to addr and
compiles into the next available dictionary memory address.
: BACK HERE - , ;
BASE (u,79)
_— BASE -> addr
A user variable containing the current number base used for
input and output conversion.
BEEP (s)

Generate a beep sound to attract humans attention.

CODE BEEP assembly mnemonics END-CODE

SK-FORTH7Q 2.0 COPYRTEHT SATITRN SOARTWARE TLTMTTED

SK-FORTH79 USER'S GUIDE PAGE 86

BEGIN (1,79)
— BEGIN ~-> addr n (compiling)
Occurs in a colon definition in the form:
BEGIN UNTIL
BEGIN AGAIN
BEGIN WHILE REPEAT

At run-time, BEGIN marks the start of a sequence that may be
repetitively executed. It serves as a return point from the
corresponding UNTIL, AGAIN, or REPEAT. When executing UNTIL, a
return to BEGIN will occur if the top of the stack is false;
for AGAIN and REPEAT a return to BEGIN always occurs. At
compile time BEGIN leaves its return address and n for compiler
error checking.

: BEGIN ?COMP HERE 1 ; IMMEDIATE
BL (F)
—— BL -> char
A constant that leaves the ASCII value for "blank", namely $20.
BLANKS (F)
addr count BLANKS -> ——-
Fills an area of memory beginning at addr with count blanks.
BLK (0,79)
——-BLK ~-> addr

A user variable containing the block number being interpreted.
If zero, input is being taken from the terminal input buffer.

BLOCK (79)
n BLOCK -> addr

Leaves the memory address of the block buffer containing block
n. If the block is not already in memory, it is transferred
from disk to which- ever buffer was least recently writtem. If
the block occupying that buffer has been marked as updated, it
is rewritten to disk before the block n is read into the
buffer. See also BUFFER, R/W, UPDATE, and SAVE-BUFFERS.

: BLOCK >R PREV @ DUP @ R@ —~ DUP + IF BEGIN +BUF

0= IF DROP R@ BUFFER DUP R@ 1 R/W 2 - THEN
DUP @ R@ - DUP + 0= UNTIL DUP PREV ! THEN

Avr TIARMMITSA A A Assess s L e e e e = . ——

SK-FORTH79 USER'S GUIDE PAGE 87

R> DROP 2+ ;
BOOT (s)
-——- BOOT -> « ——-

A utility word used to initialize FORTH's virtual memory disk
buffers and set WARNING for text error messages from screens 1
and 2.

: BOOT FIRST USE ! FIRST PREV ! EMPTY-BUFFERS
1 WARNING ! ;

BRANCH (F,C2)
The run-time procedure to unconditiomally branch. An in-line
offset is added to the interpretive pointer IP to branch ahead
or back. BRANCH is compiled by ELSE, AGAIN, and REPEAT.
CODE BRANCH assembly mnemonics END-CODE
BUFFER (79)
Obtains the next memory buffer, assigning it to block n. If
the contents of the buffer are marked as updated, it is written
to the disk. The block is not read from the the disk. The
address left 1is the first cell within the buffer for data
storage.
: BUFFER USE @ DUP >R BEGIN +BUF UNTIL USE !
R@ @ 0 IF R@ 2+ R@ @ 7FFF AND O R/W THEN
R@ ! R@ PREV ! R> 2+ ;
c! (79)
byte addr C! -> ——ie

Stores the low 8 bits of top of stack at address.

CODE C! assembly mnemonics END-CODE

C, (F)
byte C, => ——-

Stores the low 8 bits of top of stack into the next available
dictionary byte, advancing the dictionary pointer.

: C, HERE C! 1 ALLOT ;
c/L (F)

A constant containing the number of characters per line of

SK=FORTH79 2.0 COPYRTIGHT SATIIRN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 88
FORTH text. This is set to 64 by convention. The terminal
width is contained in the variable TW.
ca (79)
addr ce -=> b
Leaves the 8 bit contents of memory address.
CODE C@ assembly mnemonics END-CODE
CCoLD (F)
The COLD start routine executed when system is booted from
disk. This word does not reset the vocabulary 1link pointers
and is not a suitable call after you have been working with the
system.
CODE CCOLD assembler mnemonics END-CODE
CFA (F)
pfa CFA -> cfa

Convert the parameter field address of a definition to its code
field address.

: CFA 2- ;
CLIT (F)
t———— CLIT => n
Within a colon-definition, CLIT is automatically compiled
before each number between 0 and 255 encountered in the input
text. Later execution of CLIT causes the contents of the next
dictionary address to be pushed to the data stack.
CODE CLIT assembly mnemonics END-CODE
CLITERAL (I,M,C2)
byte CLITERAL -> —
If compiling, then compile the low 8 bits of the stack as an 8
bit literal. This definition is TIMMEDIATE so that it will
execute during a colon definition. The intended use is:
<name> ...[calculate] CLITERAL ;
: CLITERAL STATE @ IF COMPILE CLIT C, THEN ; IMMEDIATE
CLOAD (S)

n CLOAD > i

o BADTIITA A N AANUYDTOAIM CATIMA OADMIANT T TAMTTDN

SK-FORTH79 USER'S GUIDE PAGE 89

This command will force load the next consecutive screen on the
input cassette to screen n, LIST screen n, and then LOAD screen
n. The system variable DISK must be set to 0 before using this
command .

: CLOAD DUP SGET BASE @ OVER LIST BASE ! LOAD ;

CMOVE (79)
from to count CMOVE - ==
Moves the specified quantity of bytes beginning at address from
to address to. The content of address from is moved first
proceeding toward high memory.
CODE CMOVE assembly mnemonics END-CODE
CODE (F)
Used in the form:
CODE <name> END-CODE
Constructs a new dictionary entry <name>, sets CONTEXT to
ASSEMBLER and assembles into machine code the assembler
mnemonics which follow up to END-CODE . See END-CODE in
the ASSEMBLER vocabulary.

: CODE ?EXEC !CSP CREATE LATEST PFA DUP
CFA ! SMUDGE AINIT ; IMMEDIATE

COLD (F)

The cold start procedure which truncates the dictionary at
FENCE after first adjusting the vocabulary links. System
parameters are reset according to the values'in the bootup area
following ORIGIN. The system is restarted via ABORT. May be
called from the terminal to remove application programs and
restart the system.

: COLD RVL CCOLD ;
COMPILE (79,c2)
When the word containing COMPILE executes, the execution

address of the word following COMPILE is copied (compiled) into
the dictionary. This allows specific compilation situations to
be handled, in addition to simply compiling an execution
address (which the interpreter already does).

: COMPILE ?COMP R> DUP 2+ >R @ , ;

SY_FNRTHTA 2. N MNPVRTCHT CATITRN CNRTWARFE TTMTTREN

SK-FORTH79 USER'S GUIDE PAGE 90

CONSTANT { 79}

n CONSTANT <name)>

=> ——

A defining word used to create word <name)>, with its parameter
field containing n. When <name> is later executed, it will
push the value of n to the parameter stack.
: CONSTANT CREATE , ;CODE assembly mnemonics END-CODE
CONTEXT (u,79)
_— CONTEXT -> addr

A user variable containing a pointer to the vocabulary within
which dictionary searches will first begin.

CONVERT (79)

dl addrl CONVERT -> d2 addr2
Convert to the equivalent stack number the text beginning at
addr+l with regard to BASE. The new value is accumulated into
double number dl, being left as d2. addr2 is the address of
the first non convertable character.

: CONVERT (NUMBER) ;
COUNT (79)
addrl COUNT -> addr2 n
Leaves the byte address addr2 and byte count n of a message
text beginning at address addrl. It is presumed that the first
byte at addrl contains the text byte count and the actual text
starts with the second byte. Typically, COUNT is followed by
TYPE.
COUNT DUP 1+ SWAP C@ ;
CR (79)

Transmits a carriage return and line feed to the selected
output device.

CODE. CR assembly mnemonics END-CODE
CREATE 792
— CREATE <name) -> -——
A defining word used as shown above to create a dictionary

entry for <name>, without allocating any parameter field

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

csp

CURRENT

SK-FORTH79 USER'S GUIDE PAGE 91

memory. When <name> is subsequently executed, the address of

the first byte of <name)>'s parameter field is left on the data

stack.

CREATE FIRST HERE AQ + U< 2 ?ERROR -FIND
IF DROP NFA ID. 4 MESSAGE SPACE THEN
HERE DUP C@ WIDTH @ MIN 1+ ALLOT DUP
80 TOGGLE HERE 1 - 80 TOGGLE LATEST ,
CURRENT @ ! 2 ALLOT ;CODE mnemonics END-CODE
(U,F)
—— CSP -> addr

A user variable temporarily storing the stack pointer position
for compilation error checking.

(U,79)
——- CURRENT -> addr

Leave the address of a variable specifying the vocabulary into
which new word definitions are to be entered.

(79)
dl d2 M -> dsum

Leaves the double precision sum of the two double precision
numbers dl and d2.

CODE D+ assembly mnemonics END-CODE
(F)
dl n K- -> d2

Applies the sign of n to the double number dl, leaving it as
d2.

D+ 0< IF DNEGATE THEN ;
(79)
dl dz D~ - d3
Subtract d2 from dl and leave the difference as d3.
: D- DNEGATE D+ ;
(79)
d De - =3 o =k

Prints a signed double number from a 32 bit two's complement
value. The high order 16 bits are most accessible on the

SK-FORTH7Q 2.N COPYRTGHT SATITRN SOFTWARE LIMITED

D.R

D<

D>

SK-FORTH79 USER'S GUIDE PAGE 92
stack. Conversion is performed according to current BASE. A
blank follows. Pronounced "dee-dot".
D. 0 D.R SPACE ;
(79)
d n DR = ===

Display d converted according to BASE, right aligned in an n
character field. Display the sign only if negative.

: D.R DR SWAP OVER DABS <# #S SIGN #> R>
OVER - SPACES TYPE ;

(s)
d DOK -> flag
Leave a true flag if double number d is less than O.
CODE DO< assembly mnemonics END-CODE
(79)
d DO= -> flag
Leave a true flag if the double number d is equal to zero.
CODE DO= assembly mnemonics END-CODE
(79)
dl d2 DX -> flag
Leave a true flag if double number dl is less than d2.
CODE D< assembiy mnemonics END-CODE
(¢ 79)
dl d2 D= - flag
Leave a true flag if double number dl is equal to d2.
: D= D-DO= ;
(s)
dl ﬁz D> -=> flag
Leave a true flag if double number dl is greater then d2.

D> 2SWAP DX ;

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK~-FORTH79 USER'S GUIDE PAGE 93

DABS (79)
d DABS -> ud
Leaves the absolute value ud of a signed double number.
- : DABS DUP D4+ ;
DECIMAL (79)
Sets the numeric conversion BASE for decimal input-output.
DECIMAL A BASE ! ;
DEFINITIONS (79)
Used in the form:
{vname> DEFINITIONS
Sets the CURRENT vocabulary to the CONTEXT vocabulary. In the
example executing vocabulary name <{vname> made it the CONTEXT
vocabulary and executing DEFINITIONS made both specify
vocabulary <{vname)>.
: DEFINITIONS CONTEXT @ CURRENT ! ;
DEPTH (79)
— DEPTH -> n

Leave the number of the quantity of 16 bit values contained in
the data stack, before n was added.

: DEPTH SP@ 8E SWAP - 2 / ;
DIGIT (E3

char nl DIGIT -> n2 tf (valid conversion)
char nl DIGIT -> ff (invalid conversion)

Converts the ASCII character c (using base nl) to its binary
equivalent n2, accompanied by a true flag. If the conversion
is invalid, only a false flag is left.

CODE DIGIT assembly mnemonics END-CODE

SK-FORTH79 2.0 COPYRIGHT SATIIRN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 94

DISK (8)
A system variable that selects the disk system for mass storage
when set to 1 and simulated disk in ram when set to 0. If you
have a cassette only system setting DISK to 1 will result in a
system crash!! If you have a disk system you must set DISK to 0
to use the cassette GET and PUT commands.
DLITERAL (I,F)
d DLITERAL -> d (executing)
d DLITERAL -> --— (compiling)
If compiling, compile a stack double number into a literal.
Later execution of the definition containing the literal will
push it to the parameter stack. If executing the number will
remain on the stack.
: DLITERAL STATE @ IF SWAP [COMPILE] LITERAL
[COMPILE] LITERAL THEN ; IMMEDIATE
DMAX (79)
dl d2 DMAX -> d3
Leave the larger of the two double numbers dl and d2 as d3.
: DMAX 20VER 20VER D IF 2SWAP THEN 2DROP ;
DMIN (79)
dl d2 DMIN -> d3
Leave the smaller of the two double numbers dl and d2 as d3.
DMIN 20VER 20VER D> IF 2SWAP THEN 2DROP ;
DNEGATE (79)

d DENEGATE -> -d

Leave the double number two's complement of the double number
d, ie., the difference 0 - d.

CODE DNEGATE assembly mnemonics END-CODE

QV-FNRTHT7Q 92_ 0N CAPYRTAHT QATIRN SNFTWARE T.TMTTED

DO

DOES>

DP

SK-FORTH79 USER'S GUIDE PAGE 95

(1,€2,79)

nl n2 DO (execute)

Do - addr n (compiling)

Occurs in a colon definition in the form:

D0 LOOP
DO +LOOP

At run-time, DO begins a sequence with repetitive execution
controlled by a loop limit nl and an index with an initial
value n2. DO removes these from the stack. Upon reaching LOOP
the index is incremented by one. Until the new index equals or
exceeds the limit, execution loops back to just after DO,
otherwise the loop parameters are discarded and execution
continues ahead. Both nl and n2 are determined at run-time and
may be the result of other operations. Within a loop I will
copy the current value of the index to the parameter stack, J
the first outer loop and K the second outer loop. See I, LOOP,
+LO0OP, and LEAVE. When compiling within the colon definitionm,
DO compiles (DO), leaves the following address addr and n for
later error checking.

: DO COMPILE (DO) HERE 3 ; IMMEDIATE
(1,C2+,79)

Define the run time action of a word created by a high level
defining word. Used in the form:

: <name> ... CREATE ... DOES> ... ;

and then

<{name) {namex>

Marks the termination of the defining part of the defining word
<{name> and begins the definition of the run time action for
words that will later be defined by <name). On execution of
<namex> the sequence of words between DOES> and ; will be
executed, with the address of <namex>'s parameter field on the
stack. Typical uses include the FORTH assembler,
multi-dimensional arrays, and compiler generation.

: DOES> COMPILE (;CODE) 20 C, [HERE OA + |

LITERAL , ; ASSEMBLER assembly mnemonics
(O,F)
—— DP -> addr

A user variable, the dictionary pointer, which contains the

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 96
address of the next free memory above the dictionary. The
value may be read by HERE and altered by ALLOT.
DPL (U,F)
ety DPL -> addr
A user variable containing the number of digits to the right of
the decimal on double integer input. It may also be used to
hold output column location of a decimal point in user
generated formating. The default value on a single number is
-1.
DROP (79
n DROP -> ==
Drops the number n from top of parameter stack.
CODE DROP assembly mnemonics END-CODE
DRW +(8)
addr blk flag DRW =) ~——-
This is the disk mass storage read/write linkage called by by
the word R/W when the variable DISK is set to l. This word in
not intended for user execution.
: DRW >R S/BLK * DUP 8 < IF R> 7FFF PREV @ !
6 ERROR THEN 8 - DUP 230 <
IF R> SET2 (SET) EXTI THEN
230 2 / - DUP 230 < IF R> SET1 (SET)
EXIT THEN R> 7FFF PREV @ ! 6 ERROR ;
DU (79)
udl ud2 DUC -> flag

Leave a true flag if unsigned double number udl is less than
unsigned double number ud2.

CODE DU assembly mnemonics END-CODE
DuUP (79)
n DUP -> n n
Duplicates number on top of parameter stack.
CODE DUP assembly mnemonics END-CODE
EDITOR (I,F)

The name of the FORTH text editor vocabulary. Execution makes

QV_FNRTHUTO 27 N nnwnrr:n't" CATITRN QNFTLUWARE T.TMTTED

SK-FORTH79 USER'S GUIDE PAGE 97

EDITOR the CONTEXT vocabulary. The EDITOR assists in the

development of disk screens.
ELSE (1,€2,79)

addrl nl ELSE -> addr2 n2 (compiling)

‘Occurs within a colon definition in the form:

IF ELSE THEN
At run-time, ELSE executes after the true part following IF.
ELSE forces execution to skip over the following false part and
resumes execution after the THEN. It has no stack effect.
At compile time ELSE compiles BRANCH, reserving a branch
offset, leaves the address addr2 and n2 for error testing.
ELSE also resolves the pending forward branch from IF by
calculating the offset from addrl to HERE and storing at addrl.

ELSE 2 ?PAIRS COMPILE BRANCH HERE O ,
SWAP 2 [COMPILE] THEN 2 ; IMMEDIATE

EMIT (79)
char EMIT -> —

Transmits ASCII character char to the selected output device.
The variable OUT is incremented for each character output.

CODE EMIT assembly mnemonics END-CODE
EMPTY-BUFFERS (79)
Marks all block buffers as empty, not necessarily affecting the
contents. Updated blocks are not written to the disk. This is
also the initialization procedure before first use of the disk.
: EMPTY-BUFFERS FIRST LIMIT OVER - ERASE ;
ENCLOSE (F)
addrl char ENCLOSE - addrl nl n2 n3
The text scanning primitive used by WORD. From the text
address addrl, and an ASCII delimiting character ¢, is
determined the byte offset to the first nondelimiter character
nl, the offset to the first delimiter after the text n2, and
the offset to the first character not included. This procedure
will not process past an ASCII "NUL", treating it as an
unconditional delimiter.

CODE ENCLOSE assembly mnemonics END-CODE

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

ERASE

ERROR

SK-FORTH79 USER'S GUIDE PAGE 98

{-F)

addr n ERASE -> i

Clears a region of memory to zero from addr for n bytes.

: ERASE 0 FILL ;

(F)

line ERROR -> in blk

Executes error notification and restarts system. WARNING is
first examined. If 1, the text of line n, relative to screen 1
of the file assigned to the channel number stored in VCHAN is
printed to the console device. If WARNING = 0, n is just
printed as a message number. If WARNING is -1, the definition
(ABORT) is executed, which executes the system ABORT. The user
may cautiously modify this execution by altering (ABORT).
SK-FORTH79 saves the contents of IN and BLK to assist in
determining the location of the error. The data stack is reset
and the values in and blk are located just below the first
available entry. They can be extracted by using OVER OVER.
See the definition WHERE for an example. The final action is
the execution of QUIT.

: ERROR WARNING @ 0< IF (ABORT) THEN HERE
COUNT TYPE ." ? " MESSAGE SP! DROP DROP
>IN @ BLK @ QUIT ;
EXECUTE (79)
addr EXECUTE -> ~———
Executes the definition whose code field address is on the
stack. The code field address is also called the compilation
address.
CODE EXECUTE assembly mnemonics END-CODE
EXIT (79)

EXPECT

When compiled within a colon definition, terminate execution of
that definition at the point where EXIT occurs. May mnot be
used within a DO....LOOP .

: EXIT R> DROP ;
(79)
addr count EXPECT ~> =———-

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

FENCE

FILL

FIND

FIRST

FLD

SK~FORTH79 USER'S GUIDE PAGE 99

Transfers characters from the terminal to successive addresses
starting at addr, until a return is received from the terminal.
One null is added at the end of the text. In SK-FORTH79 EXPECT
is coded in machine language and contains the dinput 1line
editor. By positioning the cursor at the desired point on your
terminal screen and specifying count as the field width, you
can program windowed input and protected fields. See also the
section of the manual entitled Line Editing Commands.

CODE EXPECT assembly mnemonics END-CODE

(U,F)

FENCE -> addr

A user variable containing an address below which FORGETing is
trapped. To forget below this point the user must alter the
contents of FENCE.

(79)

addr n byte FILL ->
Fill memory beginning at address with a sequence of n copies of
byte. If the quantity n is less than or equal to zero, take no

action.

: FILL OVER 0> IF SWAP >R OVER C! DUP 1+ R> 1- CMOVE
ELSE DROP DROP DROP THEN ;

(79)

FIND <name> -> addr

leave the compilation address of the next word name, which is
accepted from the input stream. If that word cannot be found
in the dictionary after a search of CONTEXT and FORTH leave a 0
for addr.

: FIND -FIND IF DROP CFA ELSE (THEN ;

(F)

FIRST =-> m

A constant that leaves the address of the first (lowest) block
buffer. If you are going to reconfigure your system to allow
more memory for wuser programs the value of FIRST must be
altered. See section of the manual entitled Reconfiguration.

(u,F)

r——— FILD -> addr

A user variable for control of number output field widcth.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

FORGET

FORTH

HEX

SK-FORTH79 USER'S GUIDE PAGE 100

Presently unused in SK-FORTH79.
(79)

Executed in the form: FORGET <name>

Deletes definition named <name> from the dictionary and all
entries physically following it. An error message will occur
if the CURRENT and CONTEXT vocabularies are not currently the
same.

: FORGET [COMPILE] ' NFA DUP FENCE @ U< 15 ?ERROR
>R VOC-LINK @ BEGIN R@ OVER U< WHILE
[COMPILE] FORTH DEFINITIONS @ DUP VOC-LINK !
REPEAT BEGIN DUP 4 - BEGIN PFA LFA @ DUP R@
U< UNTIL OVER 2 - ! @ ?DUP O= UNTIL R> DP ! ;

(1,79)
The name of the primary vocabulary. Execution makes FORTH the
CONTEXT vocabulary. FORTH is an IMMEDIATE definition so it

will execute even during the creation of a colon definition to
select this vocabulary at compile time.

(s)
—— HARD -> addr
A variable whose value indicates whether or not output is to be
routed to the printer. If HARD has a value of 0 output is to
the terminal only. If HARD has the value 1 output is to both
the terminal and the hard copy device. If HARD has the value
-1 output is to the hard copy device only.
€79)
_— HERE -2 addr
Leaves the address of the next available dictionary locationm.
: HERE DP @ ;
(F)
Sets the numeric conversion base to sixteen (hexadecimal).
: HEX 10 BASE ! ;
(U,F)
——— HLD => addr

A user variable that holds the address of the latest character
of text during numeric output conversion.

SK-FORTH79 2.0 COPYRIGHT SATIRN SOFTWARE LIMITED

HI

HOLD

ID.

IF

SK-FORTH79 USER'S GUIDE PAGE 101

(s)
A system variable containing the high memory bound of the
simulated disk in RAM. See the section of the manual titled

Reconfiguration for information on changing the value of this
variable.

(79)
Used between <# and #> to insert an ASCII character into a
pictured numeric output string. For example, 2E HOLD will
place a decimal point.

HOLD -1 HLD +! HLD @ C! ;

(79)

———— . =» n
Return the index of the inner most loop. May be wused only
within a DO...LOOP as follows to copy the loop index to the
data stack.

DO..oelees LOOP or DOussel.e.en +LOOP

CODE I assembly mnemonics END-CODE
(F)
addr ID. - e
Prints a definition's name from its name field address (NFA).

: ID. PAD 20 5F FILL DUP PFA LFA OVER - PAD
SWAP CMOVE PAD COUNT 1F AND TYPE SPACE ;

(1,C2,79)
flag IF = —_—— (run-time)
—— IF => addr n (compile)

Occurs in a colon definition in the form:

IF (true part) THEN
IF (true part) ELSE (false part) THEN

At run-time, IF selects execution based on a boolean flag. If
it is true (non zero), execution continues ahead through the
true part. If the flag is false (zero), execution skips till
just after ELSE to execute the false part. After either part,
execution resumes after THEN. ELSE and its false part are
optional, and if missing, execution skips to just after THEN.

At compile time IF compiles OBRANCH and reserves space for an
offset at addr. addr and n are used later for resolution of

SQ¥-FNARTHTA 2 N COPYVRTACHT QATITRN QNARTUWARE TTMTTEN

SK-FORTH79 USER'S GUIDE PAGE 102

the offset and error testing.
: IF COMPILE OBRANCH HERE 0 , 2 ; IMMEDIATE
IMMEDIATE (79)

Marks the most recently made definition so that when
encountered at compile time it will be executed rather than
being compiled; i. e., the precedence bit in its header is set.
This method allows definitions to handle unusual compiling
situations, rather than build them into the fundamental
compiler. The user may force compilation of an immediate
definition by preceding it with [COMPILE].

: IMMEDIATE LATEST 40 TOGGLE ;
INDEX (F)
from to INDEX ~-> —

Prints the first line of each screen over the range from, to.
This is used to view the comments which are wusually on the
first line of each screen describing their contents.

: INDEX CR 1+ SWAP DO CR I 3 .R SPACE 0 I .LINE
?TERMINAL IF LEAVE THEN LOOP ;

INTERPRET (F)

The outer text interpreter which sequentially executes or
compiles text from the input stream (terminal or disk)
depending on STATE. If the word name cannot be found after a
search of CONTEXT and then CURRENT it is converted to a number
according to the current base. That also failing, an error
message echoing the name with a "?" will be given. Text input
will always be taken according to the convention for WORD. If
a decimal point is found as part of a number, a double number
value will be left. The decimal point has no other purpose
than to force this action. See also NUMBER.

: INTERPRET BEGIN IF STATE @ < IF CFA ,
ELSE CFA EXECUTE THEN ?STACK
ELSE HERE NUMBER DPL @ 1+ IF [COMPILE]
DLITERAL ELSE DROP DUP FFOO AND
IF [COMPILE] LITERAL ELSE [COMPILE] CLITERAL
THEN THEN ?STACK THEN AGAIN ;

M | (79)

— J = n

Return the index of the first outer loop. May be wused only
within nested DO...LOOP's having the following form:

DOveeeDOessaJesss LOOP. ... LOOP

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 103

CODE J ‘assembly mmemonics END-CODE
K (8s)

Return the index of the second outer loop. May be used only
within nested DO....LOOP's having the following form:

DO0....DOtes.D0.0voKeu.o o LOOP....LOOP....LOOP
CODE K assembly mnemonics END-CODE

KEY (79)
= KEY -> char

Leaves the ASCII value of the next terminal key struck. The
character obtained is not echoed back to the terminal display.

CODE KEY assembly mnemonics END-CODE
L2 (s)
n L2 -> flag
Low level high speed SYM cassette load routine. n is the file
identification of the requested tape file. The flag is
returned true for a bad load and false for an OK load. Tape
motors are not operated by this command. L2 is used by the GET
command . User would begin with L2 to custom design his own
cassette interface. See also TAPE and R/T .
CODE L2 assembly mnemonics END-CODE
LATEST (F)
—— LATEST => addr

Leaves the name field address (NFA) of the topmost word in
the CURRENT vocabulary.

: LATEST CURRENT @ @ ;
LEAVE (C,79)
Forces termination of a DO LOOP at the next opportunity
by setting the loop limit equal to the current value of the
index. The index itself remains wunchanged, and execution
proceeds normally until LOOP or +LOOP is encountered.
CODE 1LEAVE assembly mnemonics END-CODE
LF2 (8)

n addrl addr2 LF2 -> flag

SE-FORTHT7Q 2.0 COPYRTOHT SATITRN QARTWARE TTMTTREN

LFA

LIMIT

LIST

LIT

SK-FORTH79 USER'S GUIDE PAGE 104

Low level SYM high speed forced load to addrl, addr2. The tape
identification n , must be S$FF or an error results. Routine
returns flag true for a bad load and false for a good load.
This routine is used by the SGET command. Tape motors are not
operated by this command. See also SGET , TAPE and R/T .

CODE

LF2 assembly mnemonics END-CODE

(F)
pfa LFA - 1fa

Converts the parameter field address of a dictiomary definition
to its link field address.

: LFA 4 -

(F)

—— LIMIT -> n

A system constant leaving the address just above the highest
memory available for a disk buffer. The value of this constant
must be changed if you plan to reconfigure the system to allot
more space for user application programs. See the section of
the manual titled Reconfiguratiom.

(79)

n LIST ->
the ASCII text of screen n on the selected output
device. SCR contains the screen number after the 1list is

complete. If the variable HARD is set to | output will be also
routed to the printer.

Displays

: LIST DECIMAL CR DUP SCR ! ." Screen " DUP . HEX
5 .R ." hex" DECIMAL 10 O DO CR I 3 .R SPACE
I SCR @ .LINE ?TERMINAL IF LEAVE THEN LOOP CR ;

(F)
e LIT -> n
Within a colon definition, LIT is automatically compiled before
each 16 bit literal number encountered in the input stream.
Later execution of LIT causes the contents of the next

dictionary entry to be pushed to the parameter stack.

CODE LIT assembly mnemonics END-CODE

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

LITERAL

LOOP

SK-FORTH79 USER'S GUIDE PAGE 105
(1,02,79)
n LITERAL -> _— (compiling)

If compiling, then compiles the stack value as
literal. This definition is immediate so that it will
during a colon definition. The intended use is:

a 16 bit
execute

: <name> [calculate] LITERAL ;

Compilation is suspended for the compile time calculation of a
value. Compilation is resumed and LITERAL compiles this value.

: LITERAL STATE @ IF COMPILE LIT , THEN ; IMMEDIATE
(s)

A system variable containing the low memory bound of the
simulated disk in ram screens. See the section of the manual
titled Reconfiguration for information on changing this value.

(79)

scr LOAD ->
Begins interpretation of screen scr. Loading will terminate at

the end of the screen, at a ;S or at an error. If an error
occurs use WHERE to be notified of the screen location of the

error. See also ;S , —> .
LOAD BLK @ >R >IN @ >R 0 >IN ! B/SCR *
BLK ! INTERPRET R> >IN ! R> BLK ! ;
(1,€2,79)
i LOOP <=> - (executing)
addr n LOOP -> — (compiling)

Occurs in a colon definition in the form:

ssse DO .ees LOOP

At run-time, LOOP selectively controls branching back to the
corresponding DO based on the loop index and loop limit. The
loop index is incremented by one and compared to the limit.
The branch back to DO occurs until the index equals or exceeds
the 1limit, at which time the parameters are discarded and
execution continues ahead.

At compile time, LOOP
calculate an offset to
error testing.

compiles (LOOP) and wuses addr to
the corresponding DO. n is used for

: LOOP 3 ?PAIRS COMPILE (LOOP) BACK ; IMMEDIATE

SK-FNRTH7Q 2_N COPYRTCHT SATIIRN SOFTWARE T.TMTTRED

M*

M/MOD

MDISK

SK-FORTH79 USER'S GUIDE PAGE 106

(F)
nl a2 Mk > d

A mixed magnitude math operator which leaves the double integer
signed product of two signed numbers.

: M* OVER OVER XOR >R ABS SWAP ABS U* R> D+— ;
(F)
d nl M/ > n2 n3
A mixed magnitude math operator which leaves the signed
remainder n2 and the signed quotient n3=d/nl, from a double

number dividend d and divisor nl. The remainder takes the sign
from the dividend.

: M/ OVER >R >R DABS R@ ABS U/MOD R> R@
XOR +- SWAP R> +— SWAP ;

(F)
udl u2 M/MOD -> u3 udé
An unsigned mixed magnitude math operation which leaves a
double quotient ud4=udl/u2 and remainder u3, from the double
dividend udl and single divisor u2.
: M/MOD >R 0 R@ U/MOD R> SWAP >R U/MOD R> ;
(79)
nl n2 MAX -> max
Leaves the greater of the two numbers nl and n2.
: MAX OVER OVER < IF SWAP THEN DROP ;
(s)
— MDISK -> e
All communication with the disk operating system is through the
word MDISK which in turn calls (MDISK). The difference between
these words is that MDISK also checks for disk access errors.
Both MDISK and (MDISK) assume that the command and parameters
are first set in FODS parameter area ($7200-7220 for SYM-FODS
and $F200-F220 for KIM-FODS). The word (SET) does this for the
standard FORTH disk linkage which uses R/W and DRW .
: MDISK (MDISK) 721B C@ FF < IF HEX 721B C@
. OFF 8 ERROR THEN ;

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUILDE PAGE 107

MESSAGE {F)

MIN

MOD

MON

MOVE

n MESSAGE -> e

Prints on the selected output device the text of line n
relative to screen 1 of the virtual memory file assigned to
channel number stored in VCHAN. The value of n must be >= 0.
MESSAGE may be used to print incidental text such as report
headers. WARNING must be set to 1 for the messages to be
printed. If WARNING is 0 only the message numbers will be
printed.

WARNING @ IF ?DUP IF .LINE THEN
ELSE ." MSG # " . THEN ;

: MESSAGE

(79)
nl n2 MIN -> min
Leaves the smaller of the numbers nl and n2.
: MIN OVER OVER > IF SWAP THEN DROP ;
(79)
nl n2 MOD -=> mod
Leaves the remainder of nl/n2 with the same sign as nl.
: MOD /MOD DROP ;
(s)
Exit to the KIM or SYM monitor. For the SYM, return to FORTH
via .G (ret) ; for KIM push the space bar and the G key. MON
can be wused within a colon definition to exit a running
program. If operations while in the monitor do not disturb the
stack or any of FORTH's memory space the program will resume
execution just ahead of MON. Note that the faster control S of
the line editor returns via the warm start entry point so that

the state of the system may be different from when the exit
occurred.

(79)
addrl addr2 n MOVE -> ——-
Move n 16 bit memory words from memory beginning at addrl to
memory at addr2. The word stored at addrl is moved first. If

n is negative or zero, nothing is moved.

: MOVE 2% CMOVE ;

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 108

MVAR (s)
— MVAR -=> addr
A variable used by the assembler which is initialized by CODE
and ;CODE to hold the offset ($OD) to be added to the base
opcode to produce absolute addressing. This wvariable is
modified by the assembler addressing modes and reset to $0D by
the word SMVAR after the assembly of each instruction.
MYSELF (1,C,8)
Used within a colon definition to compile the code field
address (CFA) of the word curently being defined. MYSELF is
used to comstruct recursive definitions. Use would take the
following form:
: <name> MYSELF 3}
In the example above MYSELF will compile the code field address
of <name)>.
: MYSELF LATEST PFA CFA , ; IMMEDIATE
NBUF (s8)
_— NBUF -> n
A system constant which leaves the number of disk buffers
as n.
NEGATE (79)
n NEGATE -> -n
Leave the two's complement of a number, ie., the difference of
0 less n.
CODE NEGATE assembly mnemonics END-CODE
NFA (F)
pfa NFA -> nfa
Converts the parameter field address of a definition to its
name field address. See also CFA, LFA, and PFA.
: NFA 5 - -1 TRAVERSE ;
NOT (79)

flagl NOT -> flag2

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

NUMBER

OFF

ON

OR

OVER

SK-FORTH79 USER'S GUIDE PAGE 109

Reverse the boolean value of flagl and leave as flag2. This is

identical to 0= .
: NOT 0= ;
Cr)

addr NUMBER => d

Converts a character string left at addr with a preceeding
count, to a signed double number, using the current numeric
base. If a decimal point 1is encountered in the text, its
position will be given in DPL, but no other effect occurs. If
numeric conversion is not possible, an error message will be
given.

: NUMBER O O ROT DUP 1+ C@ 2D = DUP >R + -1
BEGIN DPL ! CONVERT DUP C@ BL -
WHILE DUP C@ 2E - O ?ERROR O REPEAT
DROP R> IF DNEGATE THEN ;

(s)

This
present.

word turns the disk drives off if a disk system is
If user has no disk system it does nothing.

: OFF DISK @ IF 20 7218 C! (MDISK) THEN ;

(s)

This word turns the disk drives on if a disk system is present.
If no disk system is present it does nothing.

ON DISK @ IF 30 7218 C! (MDISK) THEN ;
(79)
nl n2 OR -> or
Leaves the bit-wise logical OR of the single numbers nl and n2.
CODE OR assembly mnemonics END-CODE
(U,F)
_— OUT -> addr

A user variable that contains a value incremented by EMIT. The
user may alter and examine OUT to control display formating.

(79)
nl n2 OVER -> nl n2 nl

Copies the second stack value, placing it as the new top.

QU-FNRTH7Q 2.N COAPYRTCHT SATIIRN SNAFTWARE TLIMTTED

PAD

PFA

PICK

PREV

SK-FORTH79 USER'S GUIDE PAGE 110

CODE OVER assembly mnemonics END-CODE
(79:)
e PAD -> addr

Leaves the address of the text output buffer, which is a fixed
offset above HERE.

PAD HERE 54 + ;
C(F)
nfa PFA -> pfa

Converts the name field address of a compiled definition to its
parameter field address. See also NFA, LFA, and CFA.

PFA 1 TRAVERSE 5 + ;
(79)
nl PICK -> n2
Return the contents of the nl-th stack value, not countine nl
itself to the top of the data stack as n2. An error condition
results for n less than 1 or for a indexing past the bottom of
the stack.
2 PICK = OVER 1 PICK = DUP
: PICK ?STK IF DROP 1 ERROR ELSE 2% SP@ + @ ;
(F)
_— PREV -> addr
A variable containing the address of the disk buffer most

recently referenced. The UPDATE command marks this buffer to
be later written to disk.

(s)
nl n2 PUT -2 it

High level high speed cassette output routine. Screen n2 is
saved to the output cassette with file identification givem by
nl. The output cassette is specified by the variable W/T.
Tape motor is automatically turned on and off. It is assumed
that the variable DISK is set to 0 indicating simulated disk in
ram screens.

PUT SAVE-BUFFERS SCRAD TEAD ! TSAD ! TFID !
1 W/T @ TAPE S2 O W/T @ TAPE BEEP A ?ERROR ;

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMTTED

QUERY

QUIT

R/T

R/W

‘operator's

SK-FORTH79 USER'S GUIDE PAGE 111

(79)
Inputs 80 characters of text (or until a “return”) from the

terminal. Text 1is positioned at the address
contained in TIB with >IN set to zero. See also EXPECT.

: QUERY TIB @ TW EXPECT 0 >IN ! ;
(79)

Clears the return stack, stops compilation, and returns control
to the operator's terminal. No message is given.

: QUIT O BLK ! [COMPILE] [BEGIN RP! CR QUERY
INTERPRET STATE @ 0= IF ." OK" THEN AGAIN ;

(U,F)
—-- R¥ -> addr

A user variable which may contain the location of an editing
cursor, or other file related function. Currently not used by
SK-FORTH79 but could be utilized to keep track of a second
cursor for visible editing.

(s)

A system variable whose value indicates which cassette is to be
used for input by the high level cassette commands GET and
SGET. A value of zero indicates the standard SYM-1 remote
controlled cassette. A value of 1 indicates the second
cassette connected as described in the RAE-]1 Manual.

(F)
addr blk flag RIW => =
The standard FORTH disk read/write linkage. addr specifies the
source or destination block buffer, and blk is the sequential
number of the referenced block. If the flag has a value of 0
then a write operation is indicated, if the flag has the value
1 then a read operation 1is indicated. R/W determines the
location on mass storage, performs the read/write, and performs
any error checking.
: R/W DISK @ IF DRW ELSE TRW THEN ;
C79)
_— R> -> n

Removes the top value from the return stack and leaves it on
the parameter stack. See also R@ and >R .

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 112

CODE R> assembly mnemonics END-CODE
R@ {79)
s R&E -> n
Copy the number on the top of the return stack to the data
stack.
CODE RE@ assembly mnemonics END-CODE
RDEPTH (s)

-—- RDEPTH ->

Determine the depth of the return stack and leave as n on the
data stack.

CODE RDEPTH assembly mnemonics END-CODE
REPEAT (1,2,79)

addr n REPEAT -> ——- (compiling)
Used within a colon definition in the form:
.sses BEGIN

WHILE REPEAT

At run-time, REPEAT forces an unconditiomal branch back to just
after the corresponding BEGIN. At compile time, REPEAT
compiles BRANCH and the offset from HERE to addr. n is used
for error testing.

: REPEAT >R >R [COMPILE] AGAIN R> R> 2-
[COMPILE] THEN ; IMMEDIATE

ROLL (79)
i ROLL =) "/ === (stack rolled)

Extract the n~th data stack value to the top of the stack, not
counting n itself, moving the remaining values into the vacated
position. An error condition results if n exceeds the stack
depth or is less than one.

3 ROLL = ROT

2 ROLL = SWAP

: ROLL ?STK IF DROP 1 ERROR ELSE (ROLL) THEN ;
ROT (79)

nl n2 n3 ROT = n2 n3 nl

QU_FNARTHUTA 2 N CADVRTCHT QATIIRN SNFTWARE T.TMTTEND

RP!

RVL

$->D

.

s2

S/BLK

SK-FORTH79 USER'S GUIDE PAGE 113

Rotates the
to the top.

top three values on the stack, bringing the third

: ROT >R SWAP R> SWAP ;

(-F)

Initializes the return from the silent wuser

variable RO.

stack pointer

CODE RP! assembly mnemonics END-CODE

(E,S)
Restore vocabulary links so that dictionary can be truncated at
FENCE. This word shares part of the code in FORGET and is not
intended for wuser execution. It is used in COLD so that the

FORTH system can be correctly cold started after new
vocabularies have been defined.

RVL FENCE @ [' FORGET 4 +] LITERAL >R ;
(F)
n $->p -> d
Sign extends a single number to form a double number.

§->D DUP 0< NEGATE ;

(s)

Nondestructive stack print. Prints the stack as signed 16 bit
numbers identifying the top and botom of the stack.

: 8. ." BOT> " DEPTH ?DUP IF 1 SWAP DO I PICK .

-1 +LOOP THEN ." <TOP " ;
(s)

A system constant containing the number of sectors
buffer. The default value of this constant is 8.

per block

(s)

nl addrl addr2 S2 -> flag

Low level high speed cassette save routine. The file is put to
tape with identification nl , addrl and addr2 are start and end
addresses respectively. Routine returns flag true for a bad
save and false for a good save. Tape motors are not operated
by this command. S2 is used by PUT and SYSSAVE .

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 114

CODE S2 assembly mnemonics END-CODE

SAVE-BUFFERS (79)

SCR

SCRAD

SET1

SET2

Write all blocks to mass storage that have been flaged as
UPDATEd. An error condition results if mass storage writing is
not completed.
: SAVE-BUFFERS NBUF 1+ 0 DO 7FFF BUFFER DROP LOOP ;
(u,79)
— SCR -> addr

A user variable containing the screen number most recently
referenced by the LIST command.

(s)

n SCRAD -> addrl addr2
Produces the start and end addresses of the simulated disk
screen n as addrl and addr2 respectively. This word uses the

system variables HI and 10 for generation and checking the
addresses of the requested screen.

: SCRAD 1- 400 * LO @ + HI @ OVER U< 6 ?ERROR
DUP 3FF + BEEP ;

-——- SETl =-> ——-

This word selects drive 1 as the default drive for disk
transactions.

: SET1 DISK @ IF 0 7215 C! 0 7214 C! THEN ;
(s)

This word selects drive 2 as the default drive for disk
transactions.

SET2 DISK @ IF 2 7215 C! 0 7214 C! THEN ;
(s)
n SGET

= S——

Force loads the next tape file from the current input cassette
disregarding the file identification and address information on
the tape. The file 1is 1loaded into the disk simulated ram
screen n. An error will result if the file is not exactly 1K
bytes long. This word uses LF2.

SK~-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 115

: SGET SAVE-BUFFERS FF TFID ! SCRAD TEAD ! TSAD !
1 R/T @ TAPE LF2 0 R/T @ TAPE BEEP
B 7ERROR EMPTY-BUFFERS ;

SIGN C79)
n d SIGN > d
Stores an ASCIT "-" sign just before a converted numeric output
string in the text output buffer whem n is negative. n is
discarded, but double number d is maintained. Must be used
between <# and #>.
: SIGN ROT 0< IF 2D HOLD THEN ;
SMUDGE (F)
Used during word definition to toggle the "SMUDGE bit" in a
definition's name field. This prevents an uncompleted
definition from being found during dictionary searches until
compiling is complete without error. If the most recently
created definition resulted in a compiling error and cannot be
forgotten by FORGET, execute SMUDGE and try again.
: SMUDGE LATEST 20 TOGGLE ;
SMVAR (s)
— SMVAR -> ——-
Reset the assembler address mode offset variable MVAR to $0D,
the value for absolute addressing.
SMVAR 0D MVAR ! ;
SP! (F)
A procedure used to initialize the stack pointer from silent
user variable SO.
CODE SP! assembly mnemonics END-CODE
sp@ (F)

_— SP@ -> addr
A procedure which returns the address of the parameter stack

pointer to the top of the parameter stack as it was before SPQ@
was executed.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 116

CODE SP@ assembly mnemonics END-CODE
SPACE (79)
Transmits one ASCII blank to the output device.
: SPACE BL EMIT ;
SPACES (79)
n SPACES -> ——-
Transmits n ASCII blanks to the output device.
SPACES 0 MAX ?7DUP IF O DO SPACE LOOP THEN ;
STATE (0,79)
o STATE -> addr

A user variable containing the compilation state. A non zero
value indicates compilation.

SWAP (79)
nl n2 SWAP -> n2 nl
Exchanges the top two values on the parameter stack.
CODE SWAP assembly mnemonics END-CODE
SYSCOLD (s)
—_— SYSCOLD -> Leiieiy
Resets the system and modifies the parameters in the boot up
area to retain all words created since the last cold start.
Usually followed by a SYSSAVE.
: SYSCOLD [COMPILE] FORTH CONTEXT @ @ [2A +ORIGIN] !
HERE DUP [3A 4ORIGIN | ! [3C +ORIGIN] !
VOC-LINK @ [3E +ORIGIN] ! CCOLD ;
SYSSAVE (s)
n SYSSAVE -> F———
Dumps the entire FORTH system to the current output cassette

with n for the file identification. If the system has been
expanded and you want to save its current state than do a

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

TSAD

SK-FORTH79 USER'S GUIDE PAGE 117

SYSCOLD first, otherwise you will save the system as it was at
the last cold start. If you only want to make a backup copy of
the system then type COLD first. Users of disk systems should
type SYSCOLD, get the last dictionary address with HEX HERE .
and then exit to FODS to save the system.

: SYSSAVE TFID ! 200 TSAD ! HERE TEAD ! 1 W/T @ TAPE
BEEP S2 0 W/T @ TAPE BEEP A ?ERROR ;

(s)
nl n2 TAPE -> —_
This word controls the cassete motors. n2 selects the
cassette, 0 is the standard recorder and 1 1is the optional
recorder. If nl is 1 the motor is turned on, if nl is 0 the
motor is turned off.
CODE TAPE assembly mnemonics END-CODE
(s)
A system constant that points to the cassette file end address.
(s)

A system constant that points to the cassette file
identification.

(s)

A system constant that points to the cassette file start
address.

(1,€0,79)
addr o THEN -> —== (compiling)
Occurs in a colon definition in the form:

IF ELSE THEN
IF THEN

At run time, THEN serves only as the destination of a forward
branch from IF or ELSE. It marks the conclusion of the
conditional structure.

At compile time, THEN computes the forward branch offset from
addr to HERE and stores it at addr, n is used for error tests.

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 118
: THEN 7?COMP 2 ?PAIRS HERE OVER - SWAP ! ; IMMEDIATE
TIiB (u,79)
e TIB -> addr

A user variable containing the address of the terminal input
buffer,

TOGGLE (F)
addr b TOGGLE -> e
Complements the contents of addr by the bit pattern b .
CODE TOGGLE assembly mnemonics END-CODE
TRACECOLON (s)

After this word executes all colon definitions will be traced
at the terminal. Form of the trace is:

: <name)
definition.

where <{name> is the name of executing colon
To stop tracing hit the break key, to exit trace mode hit
RETURN, and to continue tracing type SPACE.
CODE TRACECOLON assembly mnemonics END-CODE
TRACEOFF (s)

When TRACEOFF is executed the trace feature will be turned off.
Intended use is shown below:

+sss TRACEON TRACEOFF

By using TRACEON and TRACEOFF you can trace only those parts of
your program which are giving you trouble.

CODE TRACEOFF assembly mnemonics END-CODE
TRACEON (s)

When this word executes both colon and code definitions will be
traced at the terminal. Format of the trace is

iiii nnon wwww pp rrrr

where 1iiii is the high level interpretive pointer

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

1

SK-FORTH79 USER'S GUIDE PAGE 119

nonn is the word name.

wwww is the code field pointer to actual machine code

PP is pointer to top of parameter stack in page zero

rrrr is pointer to top of the return stack in page one
To stop tracing hit break key, to exit tracemode type RETURN
and to continue the trace type SPACE.

CODE TRACEON assembly mnemonics END-CODE
TRAVERSE (F)

addrl n TRAVERSE -> addr2

Moves across the name field of a MTU-FORTH79 variable length
name field. addrl is the address of either the length byte or
the last letter. If n=1 the motion is toward hi memory, and if
n=-1 the motion is toward low memory. The addr2 resulting is
address of the other end of the name.

: TRAVERSE SWAP BEGIN OVER + 7F OVER C@ < UNTIL
SWAP DROP ;

TRIAD (F)
scr TRIAD -> ————

Displays on the selected output device the three screens which
begin with that numbered scr. Output is suitable for source
text records, and includes a reference line at the bottom taken
from 1line 1[5 of screen l. If HARD is set to 1 before TRIAD
then output will be routed to the printer.

: TRIAD DUP 3 + SWAP DO CR I LIST LOOP
CR OF MESSAGE ;

TRW (s)
addr blk flag TRW -> ———o

The standard disk linkage for the simulated disk in ram
screens. TBW is called by R/W if the system variable DISK is
set to 0.

TRW R> DUP B/SCR < IF R> 7FFF PREV @ !
6 ERROR THEN B/SCR - B/BUF * LO @ +
HI @ B/BUF - OVER U< IF R> 7FFF PREV @ !
6 ERROR THEN R> IF SWAP THEN B/BUF CMOVE ;

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

TYPE

U*

U.

U/MOD

SK~-FORTH79 USER'S GUIDE PAGE 120

(79)
addr n TYPR >
Transmits n characters from addr to the selected output device.

: TYPE ?DUP IF OVER + SWAP DO I C@ EMIT LOOP

ELSE DROP THEN ;
(s)
e ™ = n

A system constant that returns the output character width, n ,
of the console device.

(79)

ul u2 u* -> ud

Leaves the unsigned double number product of the two unsigned
numbers.
CODE U* assembly mnemonics END-CODE
(79)
un u. =-> e

Display un converted according to BASE as an unsigned
in a free field format, with one trailing blank.

number,

5 W 0D. 3

(79)
ud ul U/MOD -> w2 u3

Leaves the unsigned remainder u2 and the unsigned quotient u3
from the unsigned double dividend ud and the wunsigned divisor
ul.

CODE U/MOD assembly mnemonics END-CODE

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 USER'S GUIDE PAGE 121

114 C79)
unl un2 W = flag
Leave a true flag if the 16 bit unsigned integer unl is less
than the unsigned integer un2.
CODE U< assembly mnemonica END-CODE
UNTIL (1,€2,79)
flag UNTIL @ -> —— (run time)
addr n UNTIL -> ——— (compiling)
Occurs within a colon definition in the form:
esss BEGIN .ses UNTIL .ese
At run time, UNTIL controls the conditiomal branch back to the
correspondin BEGIN. 1If the flag is false, execution returns to
just after BEGIN. If the flag is true, execution continues
ahead. At compile-time, UNTIL compiles (OBRANCH) and an offset
from HERE to addr. n is used for error tests.
: UNTIL 1 ?PAIRS COMPILE OBRANCH BACK ; IMMEDIATE
UPDATE (79)
Marks the most recently referenced block (pointed to by PREV)
as altered. The block will subsequently be transferred
automatically to disk should its buffer be required for storage
of a different block.
: UPDATE PREV @ @ 8000 OR PREV @ ! ;
USE (F)
— USE -> addr
A variable containing the address of the block buffer to use
next, as the least recently written.
USER (F)

A defining word used in the form

n USER {uname>

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

VARIABLE

VLIST

VOC-LNK

VOCABULARY

SK-FORTH79 USER'S GUIDE PAGE 122

which creates a user variable <uname>. The parameter field of
{uname> contains n as a fixed offset relative to the user
pointer register UP for this user variable. When <uname> is
later executed, it places the sum of its offset and the user
area base address on the stack as the storage address of that
particular variable.

CODE USER assembly mnemonics END-CODE
(79)
A defining word used in the form:
VARIABLE

{vname>

When VARIABIE is executed, it creates the definition <{vname)
with its parameter field initialized to 0. The application
program must initialize the stored value. When <vname> is
later executed, the address of its parameter field is left on
the data stack, so that a fetch or store may access this
location.

: VARIABLE CREATE 0 , ;
(F)
Lists the names of the definitions in the context vocabulary.
Hit break key to stop listing, followed by RETURN to quit or
SPACE to continue listing.
: VLIST 80 OUT ! CONTEXT @ @ BEGIN OUT @ TW 10 - >
IF CR O OUT ! THEN DUP ID. SPACE SPACE
PFA LFA @ DUP 0= ?TERMINAL OR UNTIL DROP ;
(U,F)
— VOC-LINK -> addr
A user variable containing the address of a field in the
definition of the most recently created vocabulary. All
vocabulary names are linked by these fields to allow control
for FORGETing through multiple vocabularies.
(79)
A defining word used in the form

VOCABULARY <vname)

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

WARNING

SK-FORTH79 USER'S GUIDE PAGE 123

to create a vocabulary definition <vname>. Subsequent use of
{vname>» will make it the CONTEXT vocabulary which 1is searched
first by INTERPRET. The sequence " <vname> DEFINITIONS *“
will also make <{vname> the CURRENT vocabulary into which new
definitions are placed. In MTU-FORTH79, <{vname> will be so
chained as to include all definitions of the wvocabulary in
which <vname> itself is defined. All vocabularies ultimately
chain to FORTH. By convention vocabulary names are to be
declared IMMEDIATE. See VOC-LINK.

: VOCABULARY CREATE AO81 , CURRENT @ CFA , HERE
VOC-LINK @ , VOC-LINK ! DOES> 2+ CONTEXT ! ;

(U,F)
——-- WARNING -> addr

A user variable containing a value to control messages. If
WARNING is 1 then disk is selected and screen 1 1is the base
location for messages. If WARNING is O then no disk is present
and messages will be presented by number only. If WARNING is
-1 then (ABORT) is executed. (ABORT) can be modified for user
specified error recovery. See also MESSAGE and ERROR.

(F)

If an error is encountered when executing LOAD then executing
WHERE will print the offending screen number and the offending
line marking the error.

: WHERE OVER OVER B/SCR / DUP SCR ! ." Screemn “
DECIMAL . CR C/L /MOD SWAP 2+ HERE C@ -
SPACES .™ @/" [COMPILE] EDITOR DUP CR
3 .R SPACE SCR @ .LINE ;

(1,79)
flag WHILE -> A =——= (run time)
addrl nl WHILE => addrl nl addr2 n2 (compiling)

Occurs in a colon definition in the form:

esss BEGIN WHILE REPEAT
At run time, WHILE selects conditional execution based on the
flag. If the flag is true (non zero), WHILE continues

execution of the true part through to REPEAT, which then
branches back to BEGIN. If the flag is false (zero), execution

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

WIDTH

WORD

XOR

SK-FORTH79 USER'S GUIDE PAGE 124

skips to just after REPEAT, exiting the structure. At compile
time, WHILE compiles OBRANCH and leaves addr2 of the reserved
offset. The stack values will be resolved by REPEAT.

: WHILE ([COMPILE] IF 2+ ; IMMEDIATE
(U,F)
—-- WIDTH -> addr

A user variable containing the maximum number of letters saved
in the compilation of a definition's name. It must be 1
through 31. The name character count and its natural
characters are saved, up to the value of WIDTH. The value may
be changed at any time within the above limits.

(79)
char WORD <{text) -> addr

Reads the next text characters from the input stream being
interpreted until a delimiter char is found, storing the packed
character string beginning at the dictionary buffer HERE. WORD
leaves the character count in the first byte, then the
characters, and ends with two or more blanks. Leading
occurences of char are ignored. If BLK is zero, text is taken
from the terminal input buffer, otherwise from the disk block
stored in BILK. The address of the beginning of this packed
string is left on the data stack as addr. See also >IN and
BLK.

: WORD BLK @ IF BLK @ BLOCK ELSE TIB @ THEN
>IN @ + SWAP ENCLOSE HERE 22 BLANKS >IN +!
OVER - >R R@ HERE C! + HERE 1+ R> CMOVE HERE ;
(79)
nl n2 XOR -> Xor

Leaves the bitwise logical exclusive OR of the single numbers
nl and n2.

CODE XOR assembly mnemonics END-CODE
(1,79)
Used in a colon definition in the form:
: ‘{name> +.es [words | ;

Suspend compilation. The words after | are executed, not
compiled. This allows calculation or compilation exceptions

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

[COMPILE]

SK~-FORTH79 USER'S GUIDE PAGE 125

before resuming compilation with]. See LITERAL and] .
[O STATE ! ; IMMEDIATE
(1,79)
Used in a colon definition in the form:

: <name> [COMPILE] FORTH ;
[COMPILE] will force the compilation of an immediate definition
that would otherwise execute during compilation. The above
example will select the FORTH vocabulary when <name> executes,
rather than at compile time.

: [COMPILE] -FIND 0= 0 7ERROR DROP CFA , ; TMMEDIATE
(79)

Resumes compilation, to the completion of a colon definition.
See [.

:] 0CO STATE ! ;

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 APPENDIX PAGE A- 1

FORTH BIBLIOGRAPHY

The primary source of information and applications with direct
application to SK-FORTH79 is our own newsletter Saturn Softnews.
Saturn Softnews is a quarterly publication of Saturn Software
Limited.

Subscription Rates:

Volume 1 (Four issues beginning with June 1, 1981)
$10 US/$12 CAN (+$4 for overseas mailing).

Volume 2 (Four issues planned beginning with June 1, 1982)
$14 US/$16CAN (+$4 for overseas mailing).

Mail your subscriptions to:
SATURN SOFTWARE LIMITED, P. O. BOX 397,
NEW WESTMINSTER B. C. , V3L 4Y7, CANADA
Most of the manuals and books that follow are available either from:
FORTH INTEREST GROUP, P. 0. BOX 1105, SAN CARLOS, CA 94070
MOUNTAIN VIEW PRESS, P. O. BOQRABSG, MOUNTAIN VIEW, CA 94040

We suggest you write to both groups for their product list and order
form with their current prices.

1. 6502 FIG FORTH Installation Manual- complete language model,
glossary, and installation instructions.

2. 6502 Assembly source listing of fig-FORTH- requires customization
to particular system. Assembler and cassette interface not included.

3. FORTH 79-STANDARD- Publication of the FORTH standards team.

4, Using FORTH, by FORTH, Inc. - This is claimed to be the best
users manual available (160 pages)

5. Kitt Peak Primer, by W. R. Stevens (275 pages, student
exercises, some differences from fig-FORTH)

6. The CALTECH FORTH Manual, by M. S. Ewing (100+ pages, good on
FORTH structure)

7. URTH Tutorial Manual, by Berg, Forsley, Hardwick (70 pages, URTH
is the University of Rochester implementation of FORTH)

8. SYSTEMS GUIDE TO FIG-FORTH, by C. H. Ting (148 pages, details of
the inner workings of fig-FORTH, 6 page errata included!)

QY_FNRTHTG 2 N CADVRTOHT CATITRN CARTWIARE TTMTTRND

SK-FORTH79 APPENDIX PAGE A- 2

9. Threaded Interpretive Languages, by R. G. Loeliger (250 pages,
hard cover, an adaption of FORTH to the Z80)

10. Byte Magazine, Aug. 1980, The FORTH Issue

11. Byte Magazine, Sept. 1980, page 206, Varieties of Threaded Code
for Language Implementation by T. Ritter and G. Walker

12. Byte Magazine, Oct. 1980, page 274, The FORTH Standards Team by
W. R. Ragsdale.

13. Byte Magazine, Feb. 1981, page 152, Stacking Strings for FORTH
by J. Cassady. .

14, Byte Magazine, Mar. 1981, page 155, A Coding Sheet for FORTH

15. Dr. Dobb's Journal, Number 25, page 21 FORTH for Microcomputers
by John James.

16. Dr. Dobb's Journal, Number 28, page 26, FORTH Dump Programs by
John James.

17. Dr. Dobb's Journal, Number 46, page 25, Adding Arrays to FORTH
by Ralph Deane.

18. Dr. Dobb's Journal, Number 50, page 40, A Proposal on Strings
for FORTH, by Ralph Deane.

19. Dr. Dobb's Journal, Number 59, Special FORTH Issue.

20. Starting FORTH, by Leo Brodie of FORTH Inc. Published by
Prentice-Hall Inc. This 1is inmn our opinion, the best available
introductory FORTH text book. It is probably available at your local
computer store.

2l. Invitation to FORTH, by Harry Katzan Jr. Published by Petrocelli
Books Inc. Very elementary but complete and through introduction to
FORTH.

22. Proceedings of the 1981 Rochester FORTH Standards Conference.

For the latest developments and research into FORTH extensions and
standardization.

SK-FORTH79 APPENDIX PAGE A= 1.3

MEMORY MAP FOR 32K-CASSETTE SYSTEM

kkkhkkhkhkhhhkhhkhhhhhhkhhhhkhhkhhhhhkkk

HI = $8000-—-->% *
* SIMULATED DISK IN RAM *
% 1K PER DISK SCREEN *
L0 = $6000--—>% *
7 kkkkhkkhkkhkhkkhhkkhkhkkhkhhkhhkhkhhkhkkkkkhk
* *(—MEM = $6000
* USER AREA *
* 80 HEX BYTES *
UP = $5FB0-——-D>% *(—-UAREA = $5F80
khkkhkkkkhkhkhkhkhkhkhhkkihhkihdkkkikhkiikkk
LIMIT = $5F80->* *
* DISK BUFFERS *{--USE
* 808 HEX BYTES *{-~PREV
FIRST = $5778->% *(-~DAREA
e e g o g gk v de e d e ok e e v e s e o o e e e o e s e e e e ek
* FREE *
* MEMORY *
dhkkkkhkhkhkhkhhkhkhkhkkkhhhhhhkhhhhhhhkk
%* *
* TEXT BUFFER *
* *{—=PAD
khkkhkkkhkhkkhkhkhkhkhkhdkhhhdhhkhkhhhhhbhkik
* *
* WORD BUFFER *
* *{—~HERE
v o e o e e e e o o e ok e e o e e e e ok ke de e de e e e e ke ok
DP - === mm e —* *
* DICTIONARY *
* %
e e e e e o e e ok ok o o e vl ok e ok e o oo o e e e e e e e ok
¥ *
* BOOT UP AREA *
$0200--—>% *(——+ORIGIN
e e o o ok o g e ok ok ok de v e e de e ek e e b sk dedede e e e ke
* *<—-RO
* RETURN - STACK *{—RP
* *
o %*
% *
* TERMINAL INPUT BUFFER *
TIB = $0100-—->% *

e vl i e o v v o e o e ook e ok ke e e e de ek e koo e ke

* *
$00B8——->* N IP W UP XSAVE YSAVY TEMP *
$00A6-——>% *
dede e e e e e e e e e e s e v e v e e e v e e v e e e vk e e e ke
TOS = $009E * *#¢-=50
* PARAMETER STACK *{—SP
* *¢(--BOS = $0020

e e e e e e de de e e e e ok e e e o ok e e o e ek e e ke e e e o

O DADBMIITA 9 N AADYTDTADT CATIOAN CADPTITADE T TMTTEND

SK-FORTH APPENDIX PAGE A - 4
Screen 4 4 hex
0 (SK-FORTH 6502 ASSEMBLER-1 J.W.B. 26:09:81)

1 FORTH DEFINITIONS
: ATASK ; (DUMMY TO MARK START OF ASSEMBLER)

ASSEMBLER DEFINITIONS HEX (START ASSEMBLER DEFINITIONS)
(INSTALLATION DEPENDENT CONSTANTS) !

AE CONSTANT IP Bl CONSTANT W A6 CONSTANT N

B5 CONSTANT XSAVE B6 CONSTANT YSAVE B3 CONSTANT UP

10 25E CONSTANT PUT 263 CONSTANT NEXT 25C CONSTANT PUSH
11 6A2 CONSTANT PUSHOA 433 CONSTANT POP 431 CONSTANT POPIWO
12 33E CONSTANT SETUP

NN

13
14
15
Screen 5 5 hex
0 (SK-FORTH 6502 ASSEMBLER-2 J.W.B 26:09:81)

1 (n1 OPCHK --> flag 1 if valid opcode 0 otherwise)
2 CREATE OPCHK 00B5 , B586 , (CREATE AN ENTRY CALLED OPCHK)
3 4AB8 , 0990 , 4A C, 44B0O , 22C9 , 40F0 , 3A50 , 904A , 4A12 ,

4 0690 , 13C9 , 34F0 , 2E50 , 4A C, 23B0O , 0AC9 , 27F0 , 2950 ,

5 BO4A , 4A09 , 1FBO , 08C9 , 1FFO , 1950 , 4A C, 1AFO , 08BO ,
6 ’ ’ ’

7 s
8

0D29 , 04C9 , 06DO , 1050 , 09C9 , OCFO , 904A , 4AO5 , 02C9 ,
04D0 , O0A9 , 02F0 , O1A9 , B5A6 , 4C C, PUSHOA ,
OPCHK DUP CFA ! (PUT PFA IN CFA)
9 : OPREL CREATE C, DOES> (OPREL - TO CREATE RELATIVE OPCODES)
10 Ce C, DUP FF > IF HERE 1+ - DUP DUP 80 > SWAP -80 < OR
11 IF 0 HERE ! 1 1A ?ERROR THEN FF AND THEN C, ;
12

13 90 OPREL BCC, BO OPREL BCS, FO OPREL BEQ, DO OPREL BNE,
14 30 OPREL BMI, 10 OPREL BPL, 50 OPREL BVC, 70 OPREL BVS,
15

Screen 6 6 hex
0 (SK-FORTH 6502 ASSEMBLER-3 J.W.B 26:09:81)
1 (CREATE ADDRESS MODES)
2
3 : MODE CREATE C, DOES> C@ MVAR ! ;
4
5 09 MODE IM, OD MODE AB, 05 MODE Zp, 1D MODE X,
6 01 MODE IX, 11 MODE IY, 1D MODE AX, 19 MODE Y,
7 19 MODE AY, 15 MODE ZX, 15 MODE ZY,
8
9 : EXCODE MVAR @ DUP 1D = OVER 0D = OR
10 IF 3 PICK FF00 AND O=
11 IF DUP 8 - MVAR ! THEN THEN
12 DROP MVAR @ SWAP C@ OVER + OPCHK
13 1B ?ERROR C, DUP OD = SWAP 18 > OR
14 IF , ELSE C, THEN SMVAR ;
15

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 APPENDIX PAGE A - 5
Screen 7 7 hex
(SK-FORTH 6502 ASSEMBLER-4 J.W.B.

(BUILD TWO AND THREE BYTE OPCODES

: OPCODE CREATE C, DOES> EXCODE ;
: OPXY CREATE , DOES> MVAR @ DUP

9 = IF 1 MVAR ! THEN

19 = IF 1+ THEN EXCODE ;
60 OPCODE ADC, 20 OPCODE AND, 01 OPCODE ASL,

7F OPCODE STY,
E3DF OPXY CPX,
C3BF OPXY CPY,

A5A1 OPXY LDX,
A39F OPXY LDY,

— b e
LVpWUN=OOVONOOTWVMEWN=O

Screen 8 8 hex

0 (SK-FORTH 6502 ASSEMBLER-5

1 (BUILD ONE BYTE OPCODES

2 : OPBYI CREATE C, DOES> C@ C, ;

3 OA OPBYT ASLA, 4A OPBYT LSRA, 2A OPBYT ROLA, 6A OPBYT

4 18 OPBYT CLC, D8 OPBYT CLD, 58 OPBYT CLI, B8 OPBYT
5 CA OPBYT DEX, 88 OPBYT DEY, E8 OPBYT INX, C8 OPBYT
6
7
8
9

J.W.B.

EA OPBYT NOP, 48 OPBYT PHA, 08 OPBYT PHP, 68 OPBYT
28 OPBYT PLP, 40 OPBYT RTI, 60 OPBYT RTS, 00 OPBYT
38 OPBYT SEC, F8 OPBYT SED, 78 OPBYT SEI, AA OPBYT
A8 OPBYT TAY, BA OPBYT TSX, 8A OPBYT TXA, 9A OPBYT

10 98 OPBYT TYA,

11 (BUILD JUMP OPCODES

12 : JMP, 4&C C, , ;

13 : JMI, 6C C, , ;

14 : JSR, 20 C, , ;

Screen 9 9 hex
(SK-FORTH 6502 ASSEMBLER-6
: NOT, 20 XOR ; : BEGIN, HERE 1 ;
: UNTIL, SWAP 1 ?PAIRS NOT, C, HERE - 1- C, ;
: AGAIN, 1 ?PAIRS JMP, ; : IF, NOT, C, HERE 0 C, 2 ;
: ELSE, 2 ?PAIRS B8 C, 50 C, HERE 0 C, OVER
HERE SWAP - 1- ROT C! 2 :
: THEN, 2 ?PAIRS HERE OVER - 1- SWAP C! ;
: WHILE, SWAP 1 ?PAIRS IF, 2 + ;
: REPEAT, 4 ?PAIRS B8 C, 50 C, HERE OVER - SWAP C!
HERE - 1- C, ;
10 (CREATE ASSEMBLER CONDITIONALS
11 30 CONSTANT 0<, 10 CONSTANT 0>, FO CONSTANT 0=,
12 BO CONSTANT CS, 90 CONSTANT CC, DO CONSTANT 0<>,
13 : TOPO X, 5+ : SBC 2 X, 3 : R 101 X, ;
14 : END-CODE BASE ! ?CSP SMUDGE [COMPILE] FORTH ;
15 FORTH DEFINITIONS DECIMAL

J.W.B.

COeENOTWUVPWN~=O

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

26:09:81)

)

1F OPCODE BIT,
CO OPCODE CMP, Cl OPCODE DEC, 40 OPCODE EOR, El1 OPCODE INC,
AD OPCODE LDA, 41 OPCODE LSR, 00 OPCODE ORA, 21 OPCODE ROL,
61 OPCODE ROR, EO OPCODE SBC, 80 OPCODE STA, 81 OPCODE STX,

26:09:81)

RORA,
cLv,
INY,
PLA,
BREK,
TAX,
TXS,

26:09:81)

SK-FORTH79 APPENDIX PAGE A - 6
Screen 30 1E hex
0 (SK-FORTH EDITOR VOCABULARY-1 J.W.B. 26:09:81
1 EDITOR DEFINITIONS HEX
2 3 ETASK ;
3 2 TEXT (ACCEPT THE FOLLOWING TEXT TO PAD
4 HERE C/L 1+ BLANKS WORD PAD C/L 1+ CMOVE ;
5 : LINE (RELATIVE TO SCREEN LEAVE ADDRESS OF LINE
6 DUP FFFO AND 17 ?ERROR SCR @ (LINE) DROP ;
7 : -MOVE (MOVE IN BLOCK BUFFER ADDRESS FROM-2, LINE TO-1
8 LINE C/L CMOVE UPDATE ;
9 8 (HOLD NUMBERED LINE AT PAD
10 LINE PAD 1+ C/L DUP PAD C! CMOVE ;
1l = B (ERASE NUMBERED LINE WITH BLANKS
12 LINE C/L BLANKS UPDATE ;
13 518 (SPREAD MAKING NUMBERED LINE BLANK
14 DUP 1 - OE DO I LINE I 14 -MOVE -1 +LOOP E ;
15
Screen 31 1F hex
0 (SK-FORTH EDITOR VOCABULARY-2 J.W.B. 26:09:81
1= B (DELETE NUMBERED LINE BUT HOLD AT PAD
2 DUP H OF DUP ROT DO I 1+ LINE I -MOVE LOOP E ;
3 : SPCR (DO CR IF TW <= 64 ELSE DO A SPACE
4 ™ 48 < IF CR ELSE SPACE THEN ;
L YEH R (TYPE NUMBERED LINE AND ALSO HOLD AT PAD
6 DUP H DUP 3 .R SPCR SCR @ .LINE CR ;
7:L (LIST CURRENT SCREEN
8 SCR @ LIST CR ;
9 : R (RETURN CONTENTS OF PAD TO NUMBERED LINE
10 PAD 1+ SWAP -MOVE ;
1k P b oTRXY R 3 (PUT FOLLOWING TEXT AT NUMBERED LINE
12558 DUP--S 'R = (INSERT TEXT FROM PAD AT NUMBERED LINE
13 : CLEAR (CLEAR SCREEN SPECIFIED BY NUMBER
14 SCR ! 10 0 DO FORTH I EDITOR E LOOP SAVE-BUFFERS ;
15
Screen 32 20 hex
0 (SK-FORTH EDITOR VOCABULARY-3 J.W.B. 26:09:81
1
2
3 : COPY SAVE-BUFFERS (DUPLICATE SCREEN-2 ONTO SCREEN-1
4 B/SCR * SWAP B/SCR * B/SCR OVER + SWAP
5 DO DUP FORTH I EDITOR BLOCK 2- !
6 1+ UPDATE LOOP DROP SAVE-BUFFERS ;
7
8
9 : FIX (ECHO NUMBERED LINE AND GO INTO LINE EDIT MODE
10 DUP PAD 50 O FILL LINE C/L -TRAILING PAD SWAP CMOVE
11 DUP E DUP 3 .R SPCR PAD C/L EDIT ROT LINE
12 SWAP CMOVE ;
13
14 FORTH DECIMAL
15

St St Nt

SK-FORTH79 APPENDIX PAGE A - 7
Screen 33 21 hex
0 (KIM-2 CURSOR AND CONTROL FUNCTIONS J.W.B. MARCH 17, 1981)
1 FORTH DEFINITIONS HEX : KTASK ; (FORGET KTASK TO DUMP)
2 : ES-EM 1B EMIT EMIT ; (SEND ESCAPE AND EMIT TOP STACK)
3 : CS 45 ES-EM BEEP ; (CLEAR SCREEN AND BEEP)
4 : HC 48 ES-EM ; (HOME CURSOR)
5 :. CES 4A ES-EM ; (ERASE END OF SCREEN)
6 : CEL 4B ES-EM ; (ERASE END OF LINE)
7 : BR 52 ES-EM ; (BEGIN REVERSE)
8 : ER 72 ES-EM ; (END REVERSE)
9 : BG 47 ES-EM ; (BEGIN GRAPHICS)
10 : EG 67 ES-EM ; (END GRAPHICS)
11 (HOR VER CABS 0 O CABS HOMES CURSOR)

12 : CABS 3D ES-EM 20 + EMIT 20 + EMIT ;

13 (HOR VER CREL

0 0 CREL DOES NOT MOVE)

14 : CREL 2B ES-EM 20 + EMIT 20 + EMIT ;

15 DECIMAL

Screen 34

oSNNS WN=O

15 DECIMAL

Screen 35

(FANCY EDITOR USING KTM-2 FEATURES
(ALL NEW COMMANDS TAKE TWO LETTERS)
EDITOR DEFINITIONS HEX
: BK O 12 CABS CES ;

(TITLE FOR TOP OF SCREEN)
: TL HC ." EDITOR (LI,LL,PP,EE,DD,SS,II,MM,CC,<<,>>) " BK ;

¢ L 05 LT 3

(SHORT CALL TO EDITOR)
FORTH DEFINITIONS : ED (COMPILE] EDITOR EDITOR LL ;

EDITOR DEFINITIONS HEX

10 ¢ << -1 SCR +! LL ;
11 : LI CS LIST TI ;
12 : FL DUP O SWAP 2+ CABS ;

13 : PP FL FIX BK ;

14 : EE DUP E FL 3 .R 40 SPACES BK ;

22 hex
J.W.B. MARCH 17, 1981)

(MOVE BACK TO BOTTOM OF SCREEN)

1 2> 1 8CR +! 1L ;
(CLEAR SCREEN THEN LIST AS BEFORE
(POSITION CURSOR AT LINE
(PUT OR FIX LINE IN SCREEN
(ERASE LINE ON SCREEN

e e

23 hex

0 (FANCY EDITING FUNCTIONS FOR KTM CONTINUED JWB MARCH 17, 1981)

1 EDITOR DEFINITIONS HEX

2 : TT FL 44 SPACES FL T ; (TYPE LINE AT SCREEN POSITION)

3 (TYPE INDICATED LINE FROM PAD)
4 : RR DUP R FL TT ;

5 (SPREAD AT INDICATED LINE)
6 : SS DUP S 10 SWAP DO FORTH I EDITOR TT LOOP BK ;

7 (DELETE LINE AND MOVE REST DOWN)
8 : DD DUP D 10 SWAP DO FORTH I EDITOR TT LOOP BK ;

9 (MOVE FROM TO INDICATED LINE ERASE FROM LINE)
10 : MM SWAP DUP H SWAP RR EE ;

11 (COPY FROM TO INDICATED LINE DO NOT ERASE)
12 : CC SWAP H RR BK ;

13 (SPREAD TO ALLOW INSERTION AT INDICATED LINE)

14 : II DUP SS BEEP PP ; FORTH DECIMAL

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 APPENDIX PAGE: (k=118

Screen 12 C hex
0 (SYM-FORTH DISK COPY ROUTINE J.W.B. 27:04:81)
1 FORTH DEFINITIONS HEX
2
3 : BOOT FIRST USE ! FIRST PREV ! EMPTY-BUFFERS 1 WARNING ! ;
4
5 :» CSET 7216 C! 1 7217 C! 7218 C! 6000 7210 !
6 67FF 7212 ! MDISK ;
7
8 : CMESS CR ." READY TO COPY FROM 1 TO 2 ? (Y¥/N) " ON
9 KEY OFF 59 = 0= 8 ?ERROR ;
10
11 : DCOPY CMESS 22 0 DO SET1 O I CSET SET2 1 I CSET LOOP OFF ;
12 DECIMAL
13 : LOADS OVER + SWAP DO 1 12 EMIT BEEP
14 BASE @ OVER LIST BASE ! LOAD LOOP ;
15 ;5
Screen 33 21 hex
0 (INTERRUPT DRIVEN PADDLE DEMO-1 J.W.B. 13:05:81)
1 (CONNECT JUMPER POINT CC TO CONECTION POINT P ON AA CONECTOR)
2 (SEE SYM-PHYSIS 2-23) FORTH DEF INITIONS HEX
3 (IF DFLAG<>0 THEN IKEY HAS CURRENT KEY PUSHED, YOU MUST RESET)
4 (DFLAG TO ZERO AFTER GETTING VALUE OF IKEY)
5 FORTH DEF INITIONS 79-STANDARD O CONSTANT IKEY O CONSTANT DFLAG
6 CODE TIN 8188 JSR, 00 IM, LDA, F9 Zp, STA,
7 A402 AB, LDA, BABGA JMP, END-CODE
8 CODE IOUT SEI, B8AAOQ JSR, CLI, RTS, END-CODE
9 CODE IRK PHA, ' TIN JSR, 7F IM, AND,
10 ' IKEY AB, STA, 11 IM, CMP,
11 0=, IF, 02 IM, LDA, ACOE AB, STA, ACOl1 AB, LDA,
12 A0 IM, LDA, 16C0 AB, STA, 8A IM, LDA,
13 16C1 AB, STA, THEN,
14 ' DFLAG AB, DEC, ACOl1 AB, LDA,
15 PLA, RTI, END-CODE
Screen 34 22 hex
0 (INTERUPT DRIVEN PADDLE DEMO-2 J.W.B. 13:05:81)
1 CODE INIT SEIL, PHA, 00 IM, LDA, ' DFLAG AB, STA,
2 ACOC AB, LDA, 01 IM, ORA, ACOC AB, STA,
3 82 IM, LDA, ACOE AB, STA, ' IRK IM, LDA,
4 A678 AB, STA, ' IRK 100 / IM, LDA,
5 A779 AB, STA, ' IOUT IM, LDA, 16C0 AB, STA,
6 ' IOUT 100 / IM, LDA, 16C1 AB, STA, ACO1 AB, LDA,
7 PLA, CLI, NEXT JMP, END-CODE
8 FORTH DEFINITIONS DECIMAL (< MOVES LEFT AND > MOVES RIGHT)
9 VARIABLE PPOS VARIABLE DIR 40 PPOS ! 0 DIR !
10 : DPDL-PPOS @ 23 CABS BG ." tttttttttt” EG ;
11 : GDIR 0 DIR ! DFLAG IF IKEY 4 = IF -3 DIR ! THEN
12 IKEY 46 = IF 3 DIR ! THEN O ' DFLAG ! THEN ;
13 : MOVPDL GDIR DIR @ IF O 23 CABS CEL DIR @ PPOS @
14 + 0 MAX 69 MIN PPOS ! DPDL THEN ;
15 : DO-IT CS DPDL INIT BEGIN MOVPDL IKEY 17 = UNTIL ;

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 APPENDIX PAGE A - 9

Screen 39 27 hex
0 (DONALD FULL'S UTILITIES J.W.B. 24:04:81)
1 (SOM MOM STACK-MEMORY SWAP MEMORY-MEMORY SWAP)
2
3 FORTH DEFINITIONS

(sOM N1 ADDR -> N2 SWAPS N1 WITH N2 AT ADDR)

4

5

6

7 : SOM DUP @ ROT ROT ! ;
8

9 (MOM ADDR1 ADDR2 -> —-- SWAPS 2 VALUES IN MEMORY)
11 : MOM DUP @ ROT SOM SWAP |

12 (IN FORTH, <> SOMETIMES DENOTES " NOT EQUAL TO ", BUT)

13 (I HAVE USED A CONVENTION OF HEWLETT-PACKARD, WHERE <)
14 (DENOTES SOME KIND OF SWAP) ¥

15
Screen 40 28 hex

0 (DONALD FULL'S UTILITIES J.W.B. 24:04:81)

LR PRINT N WITH ANYBASE N ANYBASE #. —> -—)

2 FORTH DEFINITIONS DECIMAL

3

4 : #. BASE SOM SWAP . BASE ! ;

5

6 (#.R PRINT N FORMATTED, WITH ANYBASE)

7 (N FIELD ANYBASE #.R -> -—)

8 : #.R BASE SOM ROT ROT .R BASE ! ;

9

10 : B. 2 #. ; (BINARY PRINT NB. => —=)

11 : 0. 8 #. ; (OCTAL PRINT NO0. > —)

12 : H. 16 #. ; (HEX PRINT NH, => -—)

13 : B.R 2 #.R ; (BINARY PRINT FMTD N FIELD B.R -> —)

14 : 0.R 8 #.R ; (OCTAL PRINT FMTD N FIELD 0.R -=> —-)

15 : H.R 16 #.R ; (HEX PRINT FMTD N FIELD H.R =) —)
Screen 41 29 hex

0 (DONALD FULL'S UTILITIES J.W.B. 24:04:81)

1

2 FORTH DEFINITIONS DECIMAL

3

4 : VERIFY (<addr> VERIFY -> --——)

5 DUP CR 0 6 D.R DUP 8 + SWAP DO I C@ 4 H.R LOOP SPACE ;

6 : DUMP (<addr1> <addr2> DUMP -> —-- MEMORY DUMP)

7 SWAP DO I VERIFY 8 +LOOP SPACE ;

8

9 : ,HS 1 HARD ! ; : .HC O HARD ! ; (HARD COPY SET AND CLEAR)
10 : HLIST .HS CR CR LIST .HC ; (HARD COPY LIST COMMAND)
11 : HTRIAD .HS CR TRIAD .HC ; (HARD COPY TRIAD COMMAND)
12 (<last+l> <first> RPUT or RGET -» ———)
13 : RBUT DO I T PUT CR I I . . ." PUT ™ LOOP ; (RANGE PUT)
14 : RGET DO I SGET CR I . ." SGET " LOOP ; (RANGE SGET)
15

SK-FORTH79 2.0 COPYRIGHT SATURN SOFTWARE LIMITED

SK-FORTH79 APPENDIX PAGE A - 10

A SMALL MUSIC LANGUAGE USING CB2 SOUND

Screen 6 6 hex
(STEP 1 — DEFINE THE SOFTWARE INTERFACE TO THE HARDWARE

FORTH DEFINITIONS HEX
A80B CONSTANT CONTROL.REGISTER A808 CONSTANT FREQUENCY
A80A CONSTANT SHIFT.REGISTER

DECIMAL

WeeNNBMEWN-O

10 : ON 16 CONTROL.REGISTER C! 0 FREQUENCY C! ;
12 : OFF 00 CONTROL.REGISTER C! ;

14 : TONE ON 15 SHIFT.REGISTER C! FREQUENCY C! ;

Screen 7 7 hex
0 (STEP 2 CREATE THE APPLICATION LANGUAGE

VARIABLE TIME.BASE 500 TIME.BASE !
: 1BEAT TIME.BASE @ O DO I DROP LOOP ;
: NOTE CREATE , DOES> @ TONE 0 DO 1BEAT LOOP OFF ;

240 NOTE C 226 NOTE C# 213 NOTE D 201 NOTE D# 190 NOTE E
179 NOTE F 169 NOTE F# 160 NOTE G 151 NOTE G# 142 NOTE A
134 NOTE A# 127 NOTE B 119 NOTE C2 113 NOTE C2# 106 NOTE D2
100 NOTE D2# 95 NOTE E2 89 NOTE F2 84 NOTE F2# 80 NOTE G2
10 75 NOTE G2# 71 NOTE A2 67 NOTE A2# 63 NOTE B2 59 NOTE C3
11 56 NOTE C3# 53 NOTE D3 50 NOTE D3# 47 NOTE E3 44 NOTE F3

o ONON W N

12 42 NOTE F3# 40 NOTE G3 37 NOTE G3# 35 NOTE A3 33 NOTE A3#

13 0 NOTE R (REST)
14 : SCALE 1 C 1 D1E1F1G1A1B2C22C2
15 1B1A1G1F1EL1DG4C;
Screen 8 8 hex
0 (STEP 3 WRITE THE APPLICATION PROGRAM
1 (IN THIS CASE IT IS A SONG CALLED " TURKEY "
2 (THE SONG HAS 6 PARTS SOME OF WHICH ARE REPEATED
3 : Pl 1 F2# 1 E2 1D2 1C2#1D2 1E2 1D2 1A1F#16G
4 1A 1B 1A 1 F# 2 A 1 D2 1E2;
5 ¢ P2 2 F24 2 F2#4 1 F2# 1 E2 1 D2 1 E2 1 F2# 1 E2 1 D2
6 1 F2# 2 E2
7 : P3 1 F2# 1 E2 1 F2# 1 G2 1 A2 1 F2# 1 D2 1E2
8 1 F2# 1 D2 1E2 1A 2D2 2R ;
9 : P4 1F# 1E 1 F# 16 1A 16 1 F#
10 1E 1F# 1E 1F# 1G;
11 + P5 1D2 1E2 1F2#1D2 1B 1 C2#1D2 1A
12 1F# 1G 1A 1F# 2E 1D 1 E;
13 : P6 1F# 1E 1F# 16 1A 1F# 1D
14 1B 1F# 1D 1E 108 .2D 2R
15 : TURKEY Pl P2 Pl P3 P4 2A2RP42B1B1C2# P5P6 ;

)
)

SK-FORTH79 APPENDIX PAGE A - 11

THIS PAGE RESERVED FOR YOUR NOTES

