BASIC
REFERENCE

MANUAL

Copyright © by Synertek Systems Corporation

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval systern, or transmitted in
any form or by any means, electronic, mechanical, photo-
copying, recording or otherwise, without the prior written
consent of Synertek Systems Corporation.

SSC Pub MAN-A-260026 - A

First Printing: December, 1978

Synertek Systems Corporation

PO BOX 552 SANTA Cl ARA, CALIFORNIA 95052 TEL. 408 988-3600 TWX. 910-338-0135

Synertek 6300 BASIC Reference Manual

INTRODUCTION

TABLE OF CONTENTS

. . . .

GETTING STARTED WITH BASIC

REFERENCE MATERIAL . . .

Commands
CLEAR
LIST .
NULL .
RUN .
NEW .
CONT .
LOAD "A'
SAVE IIAII

Operators

Statements
DATA .
DEF .
DIM .
END
FOR .
GOTO .
GOSUB

IF...GOTO

IF...THEN
INPUT.
LET .
NEXT .

ON...GOTO
ON...GOSUB

POKE .
PRINT.
READ .
REM .
RESTORE
RETURN
STOP .
WAIT ,

Intrinsic Functions

.

.

.

.

ABS(X)
INT(X)
RND(X)
SGN(X)

SIN(X) opticnal

SQR(X)
TAB(D
USR(T

.

.

.

.

.

. + .

- . . .

TABLE OF CONTENTS (Continued)

Intrinsic Functions (Continued)
USRI 3,...2) .
ATN(X) optional
COS(X) optional
EXP(X)
FRE(X)
LOG(X)
PEEK 't . v v v e e e e e e
POSII} . . . o+ o e e e e
SPC() .
TAN{X)

Strings e e e e e e e e e
BIM A% . . .« .« . o« .
LET AS
INPUT xs . o
READ X$. . .

PRINT X35

String Functions
ASC (X%
CHR (D)
FRE(X3) .
LEFTS(XS,D) .
LEN(XS) .
MIDS(XS,D)
MIDS(XS,L,T)
RIGHTS(XS,D)
STRS(X)
VAL(XS)

Special Characters @, «., CR, BREAK, :;, C ', ?

Miscellaneous Comments

APPENDICES

INITIALIZATION DIALOG .

ERROR MESSAGES.

SPACE HINTS

SPEED HINTS . .

DERIVED FUNCTIONS .

CONVERTING BASIC PROGRAMS NOT
WRITTEN FOR SYNERTEK BASIC -
BASIC/MACHINE LANGUAGE INTERFACE
ASCII CHARACTER CODES .

BASIC TEXTS

VIO TmmgoOo@ere

il

mOUOFE» »
[S | 1
——— s —

ToT

—
1
—

INTRODUCTION

Before a computer can perform any useful function, it must be "told" what to do.
Unfortunately, at this time, computers are not capable of understanding English or any
other "human" language, This is primarily because our languages are rich with
ambiguities and implied meanings. The computer must be told precise instructicns and
the exact sequence of operations to be performed in order to accomplish any specific
task. Therefore, in order to facilitate human communication with a computer, program-
ming languages have been developed.

Synertek BASIC is a programming language both easily understood and simple to use.
It serves as an excelient "tool” for applications in areas such as business, science and
education. With only a few hours of using BASIC, you will find that you can already
write programs with an ease that few other computer languages can duplicate.

QOriginally developed at Dartmouth University, BASIC language has found wide accept-
ance in the computer field. Although it is one of the simplest computer languages
to use, it is very powerful. BASIC uses a small set of common English words as its
"commands.” Designed specifically as an "interactive" language, you can give a command
such as "PRINT 2 + 2", and BASIC will immediately reply with "4, [t isn't necessary
to submit a card deck with your program on it and then wait hours for the results.
Instead the full power of the computer is "at your fingertips."

We hope that you enjoy BASIC, and are successful in using it to solve all of your
programming needs.

GETTING STARTED WITH BASIC
ang
You have received +we- ROMs as your BASIC language, These ROMs are designed to
run in your Synertek SYM-1 module using the SUPERMON monitor,
Oi ['E
Insert the ROM marked @E@Eﬁl into socket U2! and-ROM-marked -562-0820«01-into
socket—1122, Before applying power, the following on-board jumpers must be changed.

Remove the following Add the following
Jumpers Jumpers

These jumper changes configure sockets U2l -and U22 for 4Kx8 ROMs each and locate
U21l at address COQ0-CFFF fand U22-ut- address—PH60-DFFF.

To run BASIC, first leg on to SUPERMON.

Apply power to the SYM-I. Do not depress any keys on the hex keypad, Enter a
n Q" from your Synertek KTM-2 or other R5-232 terminal device. (Do not use BAUD
rates above 4800,) .
o P

If you are using a TTY, enter these keys on the hex keypad:
(SHIFT) (JUMP) (1} (CR)

A prompting period should now be displayed on your terminal. Enter (3} (9 (C/R) to
start BASIC.

BASIC will respond with:
MEMORY SIZE? (type a carriage return)
BASIC will then ask:
TERMINAL WIDTH? (type a carriage return)
Now BASIC will type out:
XXXX BYTES FREE ,
BASIC V1.1
COPYRIGHT 1978 SYNERTEK CORP.
OK

Once your I/O device has typed " OK ", you are ready to use BASIC. For more detail
on memory size and terminal widths refer to Appendix A.

This section is not intended to be a detailed course in BASIC programming. It will,
however, serve as an excellent intreduction for those of you unfamiliar with the
language.

The text here will introduce the primary concepts and uses of BASIC enough to get
you started writing programs. For further reading suggestions, see Appendix L

If you are already familiar with BASIC programming, the following section may be
skipped. Turn directly to the Reference Material on page 23,

We recommend that you try each example in this section as it is presented. This will
enhance your "feel" for BASIC and how it is used.

NOTE

All commands to BASIC should end with a carriage return.
The carriage return tells BASIC that you have finished typing
the command. If you make a typing error, type a backarrow
(— , shift/delete on KTM-2, usually Shift/0 on a TTY), or
an underline to eliminate the last character. Repeated use
of "=" will eliminate previous characters, An at-sign { @)
will etiminate the entire line that you are typing.

2=

Now, try typing in the following:

PRINT 10-4 (end with carriage return)
BASIC will immediately print:

6

OK
The print statement you typed in was executed as soon as you hit the carriage return
key. BASIC evaluated the formula after the "PRINTY and then typed out its value,
in this case 6.
Now try typing this:

PRINT 1/2,3*10 ("' means multiply, "/" means divide}

BASIC will print:

.5 30
As you can see, BASIC can do division and multiplication as well as subtraction, Note
how a " , " {comma) was used in the print command to print two values instead of
just one. The comma divides the 72 character line into 5 columns, each 14 characters
wide. The last two of the positions on the line are not used, The result isa ™, "
causes BASIC to skip to the next 14 column field on the terminal, where the value
was printed.
Commands such as the "PRINT" statements you have just typed in are called Direct
Commands. There is another type of command called an Indirect Command. Every
Indirect command begins with a Line Number. A Line Number is any integer from 0O
to 64000.
Try typing in the following lines:

1G¢ PRINT 2+3
20 PRINT 2-3

A sequence of Indirect Commands is called a "Program". Instead of executing indirect
statements immediately, BASIC saves Indirect Commands in the memory. When you
type in RUN, BASIC will execute the lowest numbered indirect statement that has
been typed in first, then the next highest, etc. for as many as were typed in,
Suppose we type in RUN now:

RUN

BASIC will type ocut:

-1

OK

_3-

In the example above, we typed in line 10 first and line 20 second. However, it makes
no difference in what order you type in indirect statements, BASIC always puts them
into correct numerical order according to the Line Number,

If we want a listing of the complete program currently in memory, we type in LIST,
Type this in:

LIST

BASIC will reply with:
10 PRINT 243
20 PRINT 2-3
OK

Sometimes it is desirable to delete a line of program altogether. This is accomplished
by typing the Line Number of the line we wish to delete, followed only by a carriage
return.

Type in the following:

10
LIST

BASIC will reply with:

20 PRINT 2-3
OK

We have now deleted line 10 from the program. There is no way to get it back. To
insert a new line 10, just type in 10 followed by the statement we want BASIC to
execute,

Type in the following:

10 PRINT 2%3
LIST

BASIC will reply with:
10 PRINT 2%3
20 PRINT 2-3
OK

There is an easier way to replace line 10 than deleting it and then inserting a new
line. You can do this by just typing the new line 10 and hitting the carriage return.
BASIC throws away the old line 10 and replaces it with the new one,

Type in the following:

10 PRINT 3-3
LIST

BASIC will reply with:
10 PRINT 3-3
20 PRINT 2-3
OK

It is not recommended that lines be numbered consecutively. It may become necessary
to insert a new line between two existing lines. An increment of 10 between line
numbers is generally sufficient,
If you want to erase the ‘complete program currently stored in memory, type in
NEW " If you are finished running one program and are about to read in a new
one, be sure to type in " NEW ™ first, This should be done in order to prevent a
mixture of the old and new programs.
Type in the following:

NEW
BASIC will reply with:

OK
Now type in:

LIST
BASIC will reply with:

oK

Often it is desirable to include text along with answers that are printed out, in order
to explain the meaning of the numbers.

Type in the following:
PRINT "ONE THIRD IS EQUAL TO",1/3

BASIC will reply with:
ONE THIRD IS EQUAL TO .33333333
OK

As explained earlier, including a * , " in a print statement causes it to space over fo
the next fourteen column field before the value following the ™ , " is printed.

If we use a " ; " instead of a comma, the value next will be printed immediately
following the previous value.

-5-

NOTE

Numbers are always printed with at least one trailing space.
Any text to be printed is always to be enclosed in double
quotes. A question mark is permitted as an abbreviation
for PRINT.

Try the following examples:

A) PRINT "ONE THIRD IS EQUAL TO";1/3
ONE THIRD IS EQUAL TO .33333333

OK

B} ?1,2,3
1 2 3

OK

) PRINT 132;3
1 2 3

OK

D) ? -132;-3
-1 2 -3

OK

We will digress for a moment to explain the format of numbers in BASIC. Numbers
are stored internally to over eight digits of accuracy. When a number is printed, only
eight digits are shown. Every number may also have an exponent (a power of ten
scaling factor),

The largest number that may be reprg;ented in BASIC is 1.701#1*[038, while the

smallest positive number is 2,93874*10777,

When a number is printed, the following rules are used to determine the exact format:

1, If the number is negative, a minus sign (-) is printed. If the number is
positive, a space is printed.

2, If the absolute value of the number is an integer in the range 0 to
99999999, it is printed as an integer.

3. If the absolute value of the number is greater than or equal to .l and
less than or equal to 99999999, it is printed in fixed point notation, with
no exponent,

b, If the number does not fall under categories 2 or 3, scientific notation
is used.

6

Scientific notation is formatted as follows: SX.XXXXXXXESTT . (each X being some
integer 0 to 9) .

The leading "S" is the sign of the number, a space for a positive number
and a " - " for a negative one. One non-zero digit is printed before the
decimal point. This is followed by the decimal point and then the other
seven digits of the mantissa. An "E" is then printed (for exponent),
followed by the sign {S) of the exponent; then the two digits (TT) of the
exponent itself, Leading zeroes are never printed; i.e. the digit before
the decimal is never zero. Also, trailing zeros are never printed. If
there is only one digit to print after all trailing zeroes are suppressed,
no decimal point is printed. The exponent sign will be " + " for positive
and " - " for negative. Two digits of the exponent are always printed;
that is zeroes are not suppressed in the exponent field. The value of
any number expressed thus is the number to the left of the "E" times 10
raised to the power of the number to the right of the "E".

No matter what format is used, a space is always printed following a number., BASIC
checks to see If the entire number will fit on the current line. If not, a carriage
return/line feed is exccuted before printing the number.

The following are examples of various numbers and the output format BASIC will place
them into:

NUMBER OUTPUT FORMAT
+1 1

-1 -1

6523 6523
-23.460 -23,46

1E20 1E+20
-12.3456E-7 -1.23456E-06
1.234567E-10 1.23457E-10
1006000 IE+C6
9999399 999999

.l A

.01 1E-02
.000123 1.23E-04

A number input from the terminal or a numeric constant used in a BASIC program
may have as many digits as desired, up to the maximum length of a line (72 characters).
However, only the f{irst 9 digits are significant, and the ninth digit is rounded up.

PRINT 1.23456789C1234567890
1.2345679

OK

Additionally, a number input from the terminal or a numeric constant used in a BASIC
program may be specified in HEX format. A HEX number consists of the ampersand
character {&) followed by a four character string constant specifying the HEX number
like sos

&"FFFE",

7

PRINT &"IFF"
255

OK

The following is an example of a program that reads a value from the terminal and
uses that value to calculate and print a result:

10 INPUT R

20 PRINT 3.121539*R*R
RUN

7 10

314,159

OK

"Here's what's happening. When BASIC encounters the input statement, it types a
question mark (?) on the terminal and then waits for you to type in a number. When
you do {in the above example 10 was typed), execution continues with the next statement
in the program after the variable (R) has been set (in this case to 10). In the above
example, line 20 would now be executed. When the formula after the PRINT statement
is evaluated, the value 10 is substituted for the variable R each time R appears in
the formula. Therefore, the formula becomes 3,14159*10%10, or 314.159.

If you haven't already guessed, what the pregram above actually does is to calculate
the area of a circle with the radius "R".

If we wanted to calculate the area of various circles, we could keep re-running the
program over each time for each successive circle. But, there's an easier way to do
it simply by adding amother line to the program as follows:

30 GOTO 10
RUN

7?7 10
314.159
73

28,2743
747

63.3977
?

OK

By putting a " GOTO " statement on the end of our program, we have caused it to
go back to line 10 after it prints each answer for the successive circles, This could
have gone on indefinitely, but we decided to stop after calculating the area for three
circles. This was accomplished by typing a carriage return to the input statement (thus
a blank line).

The letter "R" in.the program we just used was termed a "variable". A variable name
can be any alphabetic character and may be followed by any alphanumeric character.

_a

Any alphanumeric characters after the first two are ignored. An alphanumeric character
Is any letter {A-Z) or any number (0-9). If the variable name ends with a " § ", it
is a string variable; that is, it contains character information. If the name ends in "
% ", then the variable is an integer variable, and may contain only integer values,
Numeric information is otherwise kept in floating point format internally.

Below are some examples of legal and illegal variable names:

LEGAL ILLEGAL

A % (lst character must be alphabetic)

Z1 QR (2nd character must be numeric)

TP TO (variable names cannot be reserved

PSTGS ,words)

COUNT RGOTO {(variable names cannot contain reserved words)

The words used as BASIC statements are "reserved” for this specific purpose. You
cannot use these words as varjable names or inside of any variable name. For instance,
"FEND" would be illegal because "END'" is a reserved word.

The following is a list of the reserved words in BASIC:

_ B0 A% @ R cdi 8p 3% &8 gz 95 85 8o
- 7 ABS AND ASC ATN CHRS CLEAR CONT COS DATA DEF DIM END
=¥ 9F g1 B2 8¢ 88 84 84 AF < By 8Y
EXP FN FOR FRE GOSUB GOTO IF INPUT INT LEFTS LEN LET
J9 92 e €4 9¢ 82 A2 41 90 AR »c 26
LIST LOAD LOG MIDS NEW NEXT NOT NULL ON OR PEEK POKE
By 9% 86 8E 1) 8D c3 B5 89 94
POS PRINT READ REM RESTORE RETURN RIGHTS RND RUN SAVE
At Bo AF =g Axn 8r BE ap B3 AL Qe 9!
SGN SIN SPC{ SQR STEP STOP STRS TAB(TAN THEN TO USR
BF 82 AL AR AC A4 A% A6 RE
VAL WAIT < > paak ~t e * f

Besides having values assigned to variables with an input statement, you can also set
the value of a variable with a LET or assignment statement,

Try the following examples:
A=3
OK

PRINT A,A*2
5 10

OK
LET Z=7

OK

PRINT Z, Z-A
7 2

OK
-9.

As can be seen from the examples, the "LET" is optional in an assignment statement.
ples, g

BASIC "remembers" the values that have been assigned to variables using this type of
statement. This "remembering" process uses space in the computer’s memory to store
the data. :

The values of variables are thrown away and the space in memory used to store them
is released when one of four things occur:

1 A new line is typed into the program or an old line is deleted
2) A CLEAR command ts typed in
3) A RUN command is typed in
4) NEW is typed in
Another important fact is that if a variable is encountered in a formula before it is

assigned a value, it is automatically assigned the value zero, Zero is then substituted
as the value of the variable in the particular formula. Try the example below:

PRINT Q,Q+2,Q%2
0 2

fo) s

Another statement is the REM statement. REM is short for remark. This statement
is used to insert comments or notes into a program. When BASIC encounters a REM
statement the rest of the line is ignored.

This serves mainly as an aid for the programmer himself, and serves no useful function
as far as the operation of the program in solving a particular problem. ‘

Suppose we wanted to write a program to check if a number is zero or not. With the
statements we've gone over so far this could not be done. What is needed is a
statement which can be used to conditionally branch to ancther staterment. The
"[F-THEN" staterment does just that.

Try typing in the following program: (remember, type NEW first)
10 INPUT B

20 IF B=0 THEN 50
30 PRINT "NON-ZERQ"

406 GOTO 10
50 PRINT "ZERO"
60 GOTO 10

When this program is typed into the computer and run, it will ask for a value for B.
Type any value you wish in. The computer will then come to the "IF" statement.
Between the "IF" and the "THEN" portion of the statement there are two expressions
separated by a relation.

_10-

A relation is one of the following six symbois:

RELATION MEANING
= EQUAL TO
> GREATER THAN
< LESS THAN
<> NOT EQUAL TO
<= LESS THAN OR EQUAL TO
= GREATER THAN OR EQUAL TO

The IF statement is either trye or false, depending upon whether the two expressions
satisfy the relation or not. For example, in the program we just did, if 0 was typed
in for B the IF statement would be true because 0-0, In this case, since the number
after the THEN is 50, execution of the program would continue at line 50, Therefore,
"ZERO" would be printed and then the program would jump back to line 10 (because
of the GOTO statement in line 60).)

Suppose a 1 was typed in for B, Since 1-=0 is false, the IF statement would be false
and the program would continue execution with the next line., Therefore, "NON-ZERQ"
would be printed and the GOTO in line 40 would send the program back to line 10,

Now try the following program for comparing two numbers:

10 INPUT A,B

20 IF A<=B THEN 50

30 PRINT "A IS BIGGER"

%0 GOTO 10

50 IF A<B THEN 20

60 PRINT "THEY ARE THE SAME®
70 GOTO 10

80 PRINT "B 15 BIGGER"

30 GOTO 10

When this Program is run, line 16 will input two numbers from the terminal. At line
20, if A is greater than B, A<=B will be false. This will cause the next statement
to be executed, printing "A IS BIGGER" and then line 40 sends the computer back to
line 10 to begin again,

At line 20, if A has the same value as B, A<=B is true so we go to line 50, At line
30, since A has the same value as B, A<B js false; therefore, we Bo to the following
statement and print "THEY ARE THE SAME", Then line 70 sends us back to the
begirning again,

At line 20, if A is smaller than B, A<=B is true so we go to line 50, At line 50, A<
B will be true so we then g0 to line 80. "B IS BIGGER" is then printed and again
we go back to the beginning,

-11-

Try running the last two programs several times. It may make it easier to understand
if you try writing your own program at this time using the IF-THEN statement.
Actually trying programs of your own is the quickest and easiest way to understand
how BASIC works. Remember, to stop these programs just give & carriage return to
the input statement.

One advantage of computers is their ability to perform repetitive tasks. Let's take
a closer look and see how this works.

Suppose we want a table of square roots from [to 10. The BASIC function for square
root is "SQR"; the form being SQR(X), X being the number you wish the square root
calculated from. We could write the program as follows:

10 PRINT 1,5QR(1)
20 PRINT 2,5QR(2)
30 PRINT 3,5QR(3)
40 PRINT 4,5QR(#)
50 PRINT 5,5QR(5)
60 PRINT 6,SQR(6)
70 PRINT 7,5QR(7)
%0 PRINT 8,SQR(8)
90 PRINT 9,SQR(9)
100 PRINT 10,5QR(10)

This program will do the job; however, it is terribly inefficient, We can improve the
program tremendously by using the IT statement just introduced as follows:

[0 N=1
20 PRINT N,3QR(N)
30 N=N+l

40 IF N<=z10 THEN 20

When this program is run, its output will look exactly like that of the 10 statermnent
program above it. Let's look at how it works.

At line 10 we have a LET statement which sets the value of the variable N at 1. At
line 20 we print N and the square root of N using its current value. [t thus becomes
20 PRINT !,SQR(l), and this calculation is printed out,

At line 30 we use what will appear at first to be a rather unusual LET statement.
Mathematically, the statement N=N+! is nonsense. However, the important thing to
remember is that in a LET statement, the symbol ™ = " does not signify equality. In
this case " = " means "to be replaced with'. All the statement does is to take the
current value of N and add ! to it. Thus, after the first time through line 30, N
becomes 2,

At line &0, since N now equals 2, N<=10 is true so the THEN portion branches us back
to line 20, with N now at a value of 2,

The overall result is that lines 20 through 40 are repeated, each time adding ! to the
value of N. When N finally equals 10 at line 20, the next line will increment it to
11, This results in a false statement at line %0, and since there are no further
statemments to the program it stops.

-12-

This technique is referred to as "looping" or 'iteration". Since it is used quite
extensively in programming, there are special BASIC statements for using it. We can
show these with the following program.

10 FOR Nzl TO 10
20 PRINT N,SQR(N)
30 NEXT N

The output of the program listed above will be exactly the same as the previous two
programs.

At line 10, N is set to equal 1, Line 20 causes the value of N and the square root
of N to be printed. At line 30 we see a new type of statement. The "NEXT N"
statement causes one to be added to N, and then if N«<=10 we go back to the statement
following the "FOR" statement. The overall operation then is the same as with the
previous program.

Notice that the variable following the "FOR" is exactly the same as the variable after
the "NEXT". There is nothing special about the N in this case. Any variable could
be used, as long as they are the same in both the "FOR" and the "NEXT" statements,
For instance, "Z1" could be substituted everywhere there is an "N" in the above program
and it would function exactly the same.

Suppose we wanted to print a table of square reots from 10 to 20, only counting by
two's. The following program would perform this task:

10 N=10
20 PRINT N,SQR(N)
30 N=N+2

40 IF N«=20 THEN 20

Note the similar structure between this program and the one listed on page 12 for
printing square roots for the numbers | to 10. This program can also be written using
the "FOR" loop just introduced.

10 FOR N=10 TO 20 STEP 2
20 PRINT N,SQR(N)
30 NEXT N

Notice that the only major difference between this program and the previous one using
"FOR" [oops is the addition of the "STEP 2" clause,

This tells BASIC to add 2 to N each time, instead of 1 as in the previous program.
If no "STEP" is given in a "FOR" statement, BASIC assumes that one is to be added
each time, The "STEP" can be followed by any expression.

Suppose we wanted to count backwards from 10 to 1. A program for doing this would
be as follows:

10 1=10

20 PRINT 1

30 I=i-1

20 IF I»=1 THEN 20

_13-

Notice that we are now checking to see that I is greater than or equal to the final
value. The reason is that we are now counting by a negative number, In the previous
examples it was the opposite, so we were checking for a variable less than or equal
to the final value.

The "STEP" statement previously shown can also be used with negative numbers to
accomplish this same purpese. This can be done using the same format as in the
other program, as follows:

10 FOR I=10 TO 1 STEP -1
20 PRINT I
30 NEXT 1

"FOR" loops can also be '"nested". An example of this procedure follows;

10 FOR I=] TO 5
20 FOR J=1 TO 3
30 PRINT I,3

40 NEXT 1J

50 NEXT 1

Notice that the "NEXT J" comes before the "NEXT I". This is because the J-loop is
inside of the I-loop. The following program is incorrect; run it and see what happens,

10 FOR I=l -TO 5
20 FOR J=1 TO 3
30 PRINT 1,3

40 NEXT I

50 NEXT J

It does not work because when the "NEXT I" is encountered, all knowledge of the
J-loop is lost. This happens because the J-loop is "inside" of the I-loop.

It is often convenient to be able to select any element in a table of numbers. BASIC
allows this to be done through the use of matrices,

A matrix is a table of numbers. The name of this table, called the matrix name, is
any legal variable name, "A" for example. The matrix name "A" is distinct and
separate from the simple variable "A", and you could use both in the same program.

To select an element of the table, we subscript "A™: that is to select the I'th element,
we enclose I in parenthesis "(I)" and then follow"A" by this subscript. Therefore, "A(D"
is the I'th element in the matrix "A",

NOTE

In this section of the manual we will be concerned with
one-dimensional matrices only. (See Reference Material)

"A(I)" is only one element of matrix A, and BASIC must be told how much space to
allocate for the entire matrix.

_14-

This is done with a "DIM" statement, using the format "DIM A{15)". In this case, we
have reserved space for the matrix index "I'" to go from 0 to 15. Matrix subscripts
always start at 0; therefore, in the above example, we have allowed for 16 numbers
in matrix A.

If "A(I})" is used in a program before it has been dimensioned, BASIC reserves space
tor 11 elements (0 through 10},

As an example of how matrices are used, try the following program to sort a list of
& numbers with you picking the numbers to be sorted.

10 DIM A{8)

20 FOR I=l TO 8

36 INPUT A(D

50 NEXT 1

70 F=0

80 FOR I=1l TO 7

90 IF A(D<=A(l+1) THEN 140
100 T=A(D)

Lo A= Al«l)

120 A(l+1)=T

130 F-1

140 NEXT 1

150 IF F=! THEN 70
160 FOR =} TO 8
170 PRINT A(D,

180 NEXT 1

When line 10 is executed, BASIC sets aside space for 9 numeric values, A(0) through
A(8). Lines 20 through 50 get the unsorted list from the user. The sorting itself is
done by going through the list of numbers and upon finding any two that are not in
order, we switch them. "F" is used to indicate if any switches were done. If any
were done, line 150 tells BASIC to go back and check some more.

If we did not switch any numbers, or after they are all in order, lines 160 through
18G will print out the sorted list. Note that a subscript can be any expression,

Ancther useful pair of statements are "GOSUB" and "RETURN". If you have a program
that performs the same action in several different places, you could duplicate the
same statements for the action in each place within the program.

The "GOSUB"-"RETURN" statements can be used te avoid this duplication. When a
"GOSUB" is encountered, BASIC branches to the line whose number follows the "GOSUB".
However, BASIC remembers where it was in the program before it branched. When
the "RETURN" statement is encountered, BASIC goes back to the first statement
following the last "GOSUB" that was executed. Observe the following program.

_15-

10 PRINT "WHAT IS THE NUMBER";

30 GOSUB 100

40 T=N

50 PRINT "WHAT 1S THE SECOND NUMBER™;

70 GOSUB 100

8G PRINT "THE SUM OF THE TWQ NUMBERS IS",T+N
90 STOP

100 INPUT N

110 IF N = INT(N) THEN 140

120 PRINT "SORRY, NUMBER MUST BE AN INTEGER. TRY AGAIN."
130 GOTC 1GO

140 RETURN

What this program does is to ask for two numbers which must be integers, and then
prints the sum of the two. The subroutine in this program is lines 100 to 130. The
subroutine asks for a number, and if it is not an integer, asks for a number again, It
will continue to ask until an integer value is typed in.

The main program prints " WHAT IS THE NUMBER ", and then calls the subroutine
to get the value of the number into N. When the subroutine returns (to line 40), the
value input is saved in the variable T. This is done so that when the subroutine is
called a second time, the value of the first number will not be lost.

n WHAT IS THE SECOND NUMBER " is then printed, and the second value is entered
when the subroutine is again called.

When the subroutine returns the second time, " THE SUM OF THE TWO NUMBERS
IS " is printed, followed by the value of their sum. T contains the value of the first
number that was entered and N contains the value of the second number,

The next statement in the program is a "STOP" statement. This causes the program
to stop execution at line 90. If the "STOP" statement was not included in the pregram,
we would "fall inte" the subroutine at line 100. This is undesirable because we waould
be asked to input another number. If we did, the subroutine, an RG error would occur,
Each "GOSUB" executed in a program shouid have a matching "RETURN" executed
later, and the opposite applies, le. a "RETURN" should be encountered enly if it is
part of a subroutine which has been called by a "GOSUB".

Either "STOP" or "END" can be used to separate a program from its subroutines.
"STOP" will print a message saying at what line the "STOP" was encountered.

Suppose you had to enter numbers to your program that didn't change each time the

program was run, but you would like it to be easy to change them if necessary. BASIC
contains special statements for this purpose, called the "READ" and "DATA" statements.

-lé-

Consider the following program:

10 PRINT "GUESS A NUMBER";
20 INPUT G

30 READ D

40 IF D=999999 THEN 90

50 IF D<>G THEN 30

60 PRINT "YOU ARE CORRECT"

70 END

90 PRINT "BAD GUESS, TRY AGAIN."
95 RESTORE

100 GOTO 10

110 DATA !,393,-39,28,391,-8,0,3.14,90
120 DATA £9,5,10,15,-34,-999999

This is what happens when this program is run. When the "READ" statement is
encountered, the effect is the same as an INPUT statement. But, instead of getting
a number from the terminal, a number is read from the "DATA" statements.

The first time a number is needed for a READ, the first number in the first DATA
statement is returned. The second time one is needed, the second number in the first
DATA statement is returned, When the entire contents of the first DATA statement
have been read in this manner, the second DATA statement will then be used. DATA
is always read sequentially tn this manner, and there may be any number of DATA
statements in your program,

The purpose of this program is to play a little game in which you try to guess one
of the numbers contained in the DATA statements. For each guess that is typed in,
we read through all of the numbers in the DATA statements until we find one that
matches the guess.

If more values are read than there are numbers in the DATA statements, an out of
data (OD) error occurs. That is why in line #0 we check to see if 999999 was read.
This is not one of the numbers to be matched, but is used as a flag to indicate that
all of the data {possible correct guesses} has been read. Therefore, if -999999 was
read, we know that the guess given was incorrect.

Before going back to line 10 for another guess, we need to make the READ's begin
with the first piece of data again. This is the function of the "RESTORE". After
the RESTORE is encountered, the next piece of data read will be the first piece in
the first DATA statement again.

DATA statements may be placed anywhere within the program. Only READ statements
make use of the DATA statements in a program, and any other time they are encountered
during program execution they will be ignored.

A list of characters is referred to as a "String”. DOQG, KUMQUAT, and THIS IS A
TEST are all strings. Like numeric variables, string variables can be assigned specific
values, String variables are distinguished from numeric variables by a "§r after the
variable name.

7=

For example, try the following:
AS="SYNERTEK SYM-1"

OK
PRINT AS
SYNERTEK SYM-I

OK

In this example, we set the string variable AS to the string value "SYNERTEK SYM-1",
Note that we also enclosed the character string to be assigned to AS$ in quotes.

Now that we have set AS to a string value, we can find out what the length of this
value is {the number of characters it contains), We do this as follows:

PRINT LEN{AS),LEN('BITS"
iq 4
oK

The "LEN" function returns an integer equal to the number of characters in a string.

The number of characters in a string expression may range from 0 to 255. A string
which contains O characters is called the "NULL" string. Before a string variable is
set to a value in the program, it is initialized to the null string. Printing a null string
on the terminal will cause no characters to be printed, and the print head or curser
will not be advanced to the next column. Try the following:

PRINT LEN{(QS);Q%;3
o 3

OK

Ancther way to create the null string is: Q=" .

Setting a string variabie to the null string can be used to free up the string space
used by a non-null string variable.

Often it is desirable to access parts of a string and manipulate them. Now that we
have set A$ to "SYNERTEK SYM-I", we might want to print out only the first eight
characters of AS. We would do so like this:

PRINT LEFT%AS,2)
SYNERTEK

OK

"LEFT$" is a string function which returns a string composed of the leftmost N
characters of its string argument. Here's another example:

18-

FOR N=l TO LEN{AS:PRINT LEFT$ASN:ENEXT N
5

5Y

SYN

SYNE

SYNER

SYNERT
SYNERTE
SYNERTEK
SYNERTEK
SYNERTEK S
SYNERTEK SY
SYNERTEK SYM
SYNERTEK SYM-
SYNERTEK SYM-I
OK

Since AS has 14 characters, this loop will be executed with N=1,2,3....,13,14, The
first time through only the first character will be printed, the second time the first
two characters will printed, etc.

There is another string function called "RIGHTS" which returns the right N characters
from a string expression. Try substituting "RIGHTS" for "LEETS" in the previous
example and see what happens.

There is also a string function which allows us to take characters from the middle of
a string. Try the following:

FOR N=1 TO LEN{AS):PRINT MIDS(AS,NENEXT N
SYNERTEK SYM-I
YNERTEK SYM-1
NERTEK SYM-I
ERTEK SYM-1
RTEK SYM-!
TEK SYM-1

EK SYM-I

K SYM-1

SYM-1

SYM-1

YM-L

M-1

-1

1

OK

"MIDS$" returns a string starting at the Nth position of A% to the end {last character)
of AS. The first position of the string is position ! and the last possible position of
a string is position 233,

Very often it is desirable to extract only the Nth character from a string. This can

be done by calling MIDS with three arguments. The third argument specifies the
number of characters to return.

-19-

For example:

FOR N=! TO LEN(AS):PRINT MIDS{AS,N,1),MIDS(AS,N,2:NEXT N

ATMHD@MZ W
=
=

—1 W
-
=

OK

See the Reference Material for more details on the workings of "LEFTS", "RIGHTS"
and "MIDS".

Strings may also be concatenated (put or joined together) through the use of the "+
operator. Try the following:

B$ = A$ + " " 4 "BASIC"
oK

PRINT B$

SYNERTEK SYM-1 BASIC
oK

Concatentation is especially useful if you wish to take a string apart and then put it
back together with slight modifications, For instance:

CS=LEFTS(BS,1 1)+"*"+MIDS(BS,13,5)+RIGHTS(BS,5)
OK

PRINT C$

SYNERTEK*SYM-1*BASIC

oK

Sometimes it is desirable to convert a number to its string representation and vice-versa.
"WAL" and "STRS" perform these functions.

-20-

Try the following:
STRINGS="567.8"

OK
PRINT VAL(STRINGS)
567.8

OK
STRINGS=STRS(3.1415)

OK
PRINT STRINGS,LEFTS(STRINGS,5)
31415 314

OK

"STRS" can be used to perform formatted I/O on numbers. You can convert a number
to a string and then use LEFTS, RIGHTS, MIDS$ and concatentation to reformat the
number desired.

"STRS" can also be used to conveniently find out how many print columns a number
will take. For example:

PRINT LEN(STRS(3.157))
6

OK

If you have an application where a user is typing a question such as "WHAT IS THE
VOLUME OF A CYLINDER OF RADIUS 5.36 FEET, OF HEIGHT 5.1 FEET?" you can
use "VAL" to extract the numeric values 5.36 and 5.1 from the question. For further
functions "CHRS" and "ASC" see Appendix K.

The following program sorts a list of string data and prints out the sorted list. This
program is very similar to the one given earlier for sorting a numeric list.

100 DIM AS(153%:REM ALLOCATE SPACE FOR STRING MATRIX
[10 FOR =1 TO I5:READ AS(:ENEXT LREM READ IN STRINGS
120 F=0:1-1:REM SET EXCHANGE FLAG TO ZERQO AND SURBSCRIPT

TO 1
130 IF AS{) =AS(I+1) THEN 130:REM DON'T EXCHANGE IF ELEMENTS
IN ORDER

140 TS=AS(I+1:REM USE TS TO SAVE AS(I+1)

150 AS(I+1)=AS5(1):REM EXCHANGE TWO CONSECUTIVE ELEMENTS

160 AS(I)=TS

170 F=1:REM FLAG THAT WE EXCHANGED TWO ELEMENTS

180 I=I+1: TF I 15 GOTO 130

185 REM ONCE WE HAVE MADE A PASS THRU ALL ELEMENTS,
CHECK

187 REM TO SEE IF WE EXCHANGED ANY, IF NOT, DONE
SORTING.

190 TF F THEN [20:REM EQUIVALENT TO IF F 0 THEN 126

200 FOR I=1 TO 15:PRINT AS{(ItNEXT L REM PRINT SORTED
LIST :

21

210 REM STRING DATA FOLLOWS

220 DATA APPLE,DOG,CAT,BITS,SYNERTEK,RANDOM

230 DATA MONDAY "**ANSWER***'" FOO "

240 DATA COMPUTER, FOO,ELP,MILWAUKEE,SEATTLE,ALBUQUERQUE

22

REFERENCE MATERIAL

COMMANDS

A command is usually given after BASIC has typed OK. This is called the "Command
Level." Commands may be used as program statements, <Certain commands, such as
LIST, NEW and CLOAD will terminate program execution when they finish.

NAME EXAMPLE PURPOSE/USE
CLEAR CLEARs all variables, resets "FOR" and
"GOSUB" state, RESTORES data.

LIST LIST Lists the current program in its entirety.
LIST 100 List just line 100.
LIST 100- List current program starting at line 100,
LIST 100-300 List just lines (00 through line 300,
LIST -1G0 List current program from beginning up to line

100, -

CAL o8 FEAETRY

listing the current line).

LISTx Lists just line xim. "
LISTx-y Lists lines x-y
NULL NULL 3 Sets the number of null (ASCH 0) characters

printed after a carriage return/line feed. The
number of nulls printed may be set from 0 to
71. This is a must for hardcopy terminals that
require a delay after a CRLF*. It is necessary
to set the number of nulls typed on CRLF to
0 before a paper tape of a program is read in
from a Teletype (TELETYPE is a registered
trademark of the TELETYPE CORPORATION).
Use the null command to set the number of
nulls to zere, When you punch a paper tape
of a program using the list command, null should
be set >=3 for 10 CPS terminals, »=6 for 30
CPS terminals. When not making a tape, we
recommend that you use a null setting of 0 or
| for Teletypes, and 2 or 3 for hard copy 30
CPS terminals. A setting of 0 will work with
Teletype cempatible CRT's.

RUN RUN Starts execution of the program currently in
memory at the lowest numbered statement.

Run deletes all variables (does a CLEAR} and

restores DATA. If you have stopped your pro-

gram and wish to continue execution at some

point in the program, use a direct GOTO state-

ment to start execution of your program at the

desired line. *CRLF=carriage return/line feed

RUN 200 optionally starting at the specified line number.

_23.

The listing can be control-C'd (BASIC will finish = - -

NEW

CONT

LOAD A

SAVE A

NEW

CONT

Deletes current program and all variables.

Continues program execution after a BREAK is
typed or a STOP statement is executed. You
cannot continue after any error, after modifying
your program, or befere your program has been
run, One of the main purposes of CONT is
debugging. Suppose at some point after running
your program, nothing is printed. This may be
because your program is performing some time
consuming calculation, but it may be because
you have fallen into an "infinite loop". An
infinite loop is a series of BASIC statements
from which there is no escape. The SYM-!
will keep executing the series of statements
over and over, until you intervene or until power
to the SYM-1 is cut off. If you suspect your
program is in an infinite leop, type in a BREAK.
The line number of the statement BASIC was
executing will be typed out. After BASIC hs
typed out OK, you can use PRINT to type out
some of the values of your variables, After
examining these values you may become satis-
fied that your program is functioning correctly.
You should then type in CONT to continue
executing your program where it left off, or
type a direct GOTO statement to resume
execution of the program at a different line.
You could also use assignment (LET) statements
to set seme of vour variables to different
values. Remember, if you BREAK a program
and expect to continue it later, you must not
get any errors or type in any new program
lines. I you do, you won't be able to continue
and will get a "CN" (continue not) error. It is
impossible to continue a direct command.
CONT always resumes execution at the next
statement to be executed in your program when
BREAK was typed.,

Loads the program named A from the cassette
tape. A NEW command is automatically done
before the LOAD command is executed. When
done, the LOAD will type out OK as usual.
See Appendix G for more information.

Saves on cassette tape the current program in
the mermory., The program in memory is left
unchanged. The tape file is named A. Note
that since the file is named by the user, more
than one tape file can be stored on one tape.
See Appendix G for more information.

2l

QPERATORS

SYMBOL . SAMPLE STATEMENT PURPOSE/USE

= A=100 Assigns a value to a variable
LET Z=2.5 The LET is optional
- B=-A Negation. Note that 0-A is subtraction, while
-A is negation.
N 130 PRINT X*3 Exponentiation
{usually a shift/N on a TTY} {equal to X*X*X in the sample statement)

040=1 0 to any other power = 0
A4B, with A negative and B not an integer
gives an FC error.

* 140 X=R*(B*D)} Multiplication
/ 150 PRINT X/1.3 Division

+ 160 Z=-R+T+Q Addition

- 170 J=100-I Subtraction

RULES FOR EVALUATING EXPRESSIONS:

L) Operations of higher precedence are performed before operations of lower
precedence. This means the multiplication and divisions are performed
before additions and subtractions. As an example, 2+10/5 equals 4, not
2.4, When operations of equal precedence are found in a formula, the
feft hand one is executed first: 6-3+5=8, not -2.

2) The order in which operations are performed can always be specified
explicitly through the use of parentheses, For instance, to add 3 to 3
and then divide that by %, we would use (5+3}/%, which equals 2. If
instead we had used 5+3/%, we would get 5.75 as a result (5 plus 3/4).

The precedence of operators used in evaluating expressions is as follows, in order
beginning with the highest precedence:

NOTE

Operators listed on the same line have the same precedence.

1) FORMULAS ENCLOSEN IN PARENTHESIS ARE ALWAYS EVALUATED

FIRST
2y EXPONENTIATION
3) NEGATION -X WHERE X MAY BE A FORMLULA
Yy o+ MULTIPLICATION AND DIVISION
50+ - ADDITION AND SUBTRACTION

725

6)

7)

8)

9)

RELATIONAL OPERATORS: = EQUAL
. (equal precedence for all <> NOT EQUAL
six) . < LESS THAN
> GREATER THAN
== LESS THAN OR EQUAL
= GREATER THAN OR EQUAL
{These 3 below are Logical Operators)
NOT LOGICAL AND BITWISE "NOT"
LIKE NEGATION, NOT TAKES ONLY THE
FORMULA TO ITS RIGHT AS AN ARGUMENT
AND LOGICAL AND BITWISE "AND"
OR LOGICAL AND BITWISE "OR"

A relational expression can be used as part of any expression.

Relational Operator expressions will always have a value of True (-1) or a value of
False (0). Therefore, (5=4)=0, (5=5)=-1, (4>5)=0, {4<5)=-1, etc.

The THEN clause of an IF statement is executed whenever the formula after the IF

is not equal to 0.

That is to say, IF X THEN, . . is equivalent to IF X<>0 THEN. .

Expression Less Than Or Equal To
Expression Greater Than Or Equal To

If expression | {A<3) AND expression 2
(B<2) are both true, then branch to line

If either expression | {A<1) OR expression
2 (B<?2) is true, the branch to line 2

SYMBOL SAMPLE STATEMENT PURPOSE/USE
= 10 IF A=I5 THEN 40 Expression Equals Expression
<> 70 IF A<>0 THEN 5 Expression Does Not Equal Expression
> 30 IF B>100 THEN 8 Expression Greater Than Expression
< 160 IF B<2 THEN 10 Expression Less Than Expression
<=y=< 180 IF 100<=B+C THEN 10
Expression
EER 190 IF Q+>R THEN 30
Expression
AND 2 IF A<3 AND B<2 THEN 7
7
OR IF A<l OR B<2 THEN 2
NOT IF NOT Q3 THEN &

If expression "NOT Q3" is true (because
Q3 is false), then branch to line &
Note: NOT -1=0 (NOT true=false)

AND, OR and NOT can be used for bit manipulation, and for performing beolean
operations,

These three operators convert their arguments to sixteen bit, signed two's complement
integers in the range _32768 to +32767. They then perform the specified logical
operation on them and return a result within the same range. If the arguments are
not in this range, an-"FC" error results.

The operations are performed in bitwise fashion, this means that each bit of the result
is obtained by examining the bit in the same position for each argument.

The following truth table shows the logical relationship between bits:

OPERATOR ARG. | ARG. 2 RESULT

e

AND 1 3 1 2
0 1 0 I
1 0 0 N
0 0 0 e
OR 1 1 1
1 0 1
0 1 I
Q 0 G
NOT 1 - 0
0 - 1

EXAMPLES: (In all of the examples below, leading zeros or binary numbers are not
shown.}

63 AND 16=16 Since 63 equals binary 111I11 and 16 equals binary 100000, the
result of the AND is binary 10000 or 6.

15 AND li4=14 15 equals binary 111 and 1% equals binary 1110, so 15 AND 14
equals binary 1110 or 14,

-1 AND 828 -1 equals binary L111111111111111 and 3 equals binary 1000, so
the result is binary 1000 or 8 decimal.

4 AND 2=0 4 equals binary 100 and 2 equals binary 10, so the result is binary
0 because none of the bits in either argument match to give a |
bit in the result,

4 OR 2=6 Binary 100 OR'd with binary 10 equals binary 110, or & decimal.
10 QR 0=10 Binary 1010 OR'd with binary 1010 equals binary 1010, or 10 decimal,
-1 OR. -2=-1 Binary EI111111E1111111 (-1) OR'd with binary Lrriatrratnltio

(-2} equals binary 1111181111111111, or -1,

NOT 0=-1 The bit complement of binary 0 to 16 places is sixteen ones
(111111E111L1L1LELY or -1, Also NOT -1=0.

NOT X NOT X is equal to -(X+1). This is because to form the sixteen

bit two's complement of the number, you take the bit (one's)
complement and add cne. ’

27 -

NOT 1=-2 The sixteen bit complement of 1 is 1L1L1111111111010, which is
equal to -(1+1) or -2.

A typical use of the bitwise operators is to test bits set in SYM's I/O ports which
reflect the state of some external device. Bit position 7 is the most significant bit
of a byte, while position 0 is the least significant.

For instance, suppose bit 1 of location A800 is 0 when the door to Room X is closed,
and | if the door is open. The following program will print "Intruder Alert" if the
door -is opened:

10 IF NOT PEEK {(&"A800" AND 2) THEN 10 This line will execute over
and over until bit | (masked
or selected by the 2)
becomes a 1. When that
happens, we go to line 20.

20 PRINT "INTRUDER ALERT" Line 20 will output "INTRUDER
ALERT".

However, we can replace statement [0 with a "WAIT" statement, which has exactly
the same effect.

10 WAIT &"AZ00", 2 This line delays the execution of the next
statement in the program until bit I of
A800 becomes 1, The WAIT is much
faster than the equivalent IF statement
and also takes less bytes of program
storage.

Sense switches may also be used as an input device by the PEEK function. The
program prints out any changes in the sense switches.

10 A=300:REM SET A TO A VALUE THAT WILL FORCE PRINTING
20 J-PEEK(sense switch location):IF J=A THEN 20
30 PRINT J;:A=3:GOTO 20

The following is another useful way of using relational operators:
125 A=-(B>C)*B-{B<=C}*C This statement will set the variable A to

MAX(B,C) = the larger of the two variables B and
C.

28

STATEMENTS

NAME

NOTE

In the following description of statements, an argument of
V or W denotes a numeric variable, X denotes a numeric
expression, X$ denotes a string expression and an I or J
denotes an expression that is truncated to an integer before
the statement is executed. Truncation means that any
fractional part of the number is lost, e.g., 3.9 becomes 3,
4,01 becomes 4.

An expression is a series of variables, operators, function
calls and constants which after the operations and function
calls are performed using the precedence rules, evaluates to
a numeric or string value.

A constant is either a number {3.14) or a string literal
("FOOM),

DATA

DEF

EXAMPLE PURPOSE/USE

10 DATA 1,3,-1E3,.0% Specifies data, read from left to right, Informa-
tion appears in data statements in the same
order as it will be read in the program.

20 DATA " FOO",Z0O0O Strings may be read from DATA Statements.
If you want the string to contain leading spaces

(blanks), colons (:) or commas (,)

enclose the string in double quotes. It is impos-
sible to have a double quote within string data
or a string literal. (™SYM'™ is illegal.)

100 DEF FNA(V)=V/B+C The user can define functions like the built-in
functions (SQR, SGN, ABS, etc.)) through the
use of the DEF statement. The name of the
function is "FN" followed by any legal variable
name, for example: FNX, FNJ17, FNKO, FNR2.
User defined functions are restricted to one
line, A function may be defined to be any
expression, but may only have one argument.
In the example B & C are variables that are
used in the program. Executing the DEF state-
ment defines the function. User defined func-
tions can be redefined by executing another
DEF statement for the same function,
defined string functions are not allowed,

is called the dummy variable,

110 Z=FNA(3) Execution of this statement following the above
would cause Z to be set to 3/B+C, but the

value of V would be unchanged,

29

DIM

END

FOR

[13 DIM A(3),B(10)

114 DIM R3(5,5),D%(2,2,2)

115 BIM QI{N),Z(2%D)

117 A(8)=t

999 END

Allocates space for matrices. All matrix ele-
ments are set to zero by the DIM statement.

Matrices can have more than one dimension,
Up to 255 dimensions are allowed, but due to
the restriction of 72 characters per line the
practical maximum is about 34 dimensions.

Matrices can be dimensioned dynamically during
program execution. If a matrix is not explicitly
dimensioned with a DIM statement, it is
assumed to be a single dimensioned matrix of
whose single subscript may range from 0 to 10
(eleven elements).

If this statement was encountered before a DIM
statement for A was found in the program, it
would be as if a DIM A{10) had been executed
previous to the execution of line 117. All
subscripts start at zero (0), which means that
DIM X(100} really allocates 101 matrix
elements.

Terminates program execution without printing
a BREAK message. (See STOP}) CONT after
an END statement causes eXecution to resume
at the statement after the END statement.
END can be used anywhere in the program, and
is optional.

300 FOR V=! TO 9.3 STEP 6

310 FOR v=! TO 9.3

(see NEXT statement) V is set equal te the
value of the expression following the equal sign,
in this case L. This value is called the initial
value. .Then the statements between FOR and
NEXT are executed. The final value is the
value of the expression following the TO. The
step is the value of the expression following
STEP. When the NEXT statement is encoun-
tered, the step is added to the variable,

H no STEP was specified, it is assumed to be
one, If the step is positive and the new value
of the variable is = the final vajue (9.3 in this
example), or the step value is negative and the
new value of the variable is = the final value,
then the first statement following the FOR
statement is executed. Otherwise, the state-
ment following the NEXT statement |is
executed. All FOR loops execute the
statements between the FOR and the NEXT at
least once, even in cases like FOR V=1 TO 0.

_30-

GOTO

GOsUB

IF...GOTO

IF...THEN

315 FOR V=10*N TOQ 3.4/Q STEP SQR(R)
Note that expressions (formulas) may he used
for the initial, final and step values in a FOR
loop. The values of the expressions are
computed only once, before the body of the
FOR...NEXT loop is executed.

320 FOR V=% TO 1 STEP -l

When the statement after the NEXT is
executed, the loop variable is never equal to
the final value, but is equal to whatever value
caused the FOR...NEXT loop to terminate. The
statements between the FOR and its corres-
ponding NEXT in both examples above (310 &
320) would be executed 9 times.

330 FOR W=l TO 10: FOR W=l TO :NEXT W:NEXT W:
Error; do not use nested FOR...NEXT loops with
the same index variable. FOR loop nesting is
limited only by the available memory (see
Appendix D).

50 GOTO 100 Branches to the statement specified.

10 GOSUBR 216 Branches to the specified statement (910) until
a RETURN is encountered; when a branch is
then made to the statement after the GOSUB,
GOSUB nesting is limited only by the available
memory (see Appendix D).

32 IF X<=Y+23.4 GOTO 92
Equivalent to IF...THEN, except that IF...GOTO
must be followed by a line number, while
IF...THEN can be followed by either a line
number or another statement.

IF X<10 THEN 5 Branches to specified statement if the relation
is True.

20 [F X<0 THEN PRINT "X LESS THAN Q"
Executes all of the statements on the remainder
of the line after the THEN if the relation is
True.

25 TF X=5 THEN 50:Z=A WARNING: The "Z=A" will never be executed
because if the relation is true, BASIC will
branch to line 50. If the relation is false BASIC
will proceed to the line after line 25,

_31-

INPUT

LET

NEXT

ON...GOTO

26 IF X<0 THEN PRINT "ERROR, X NEGATIVE": GOTO 350

3 INPUT V,W,W2

5 INPUT "VALUE";V

300 LET W=X
310 V=5.1

' 346 NEXT V
345 NEXT

350 NEXT V,W

100 ON 1 GOTO 10,20,30,

In this example, if X is less than 0, the PRINT
statement will be executed and then the GOTQO
statement will branch to line 350. If the X
was 0 or positive, BASIC will proceed to execute
the lines after 26.

Requests data from the terminal {to be typed
in, Each value must be separated from the
preceeding value by a comma (). The !ast
value typed should be followed by a carriage
return. A "?" is typed as a prompt character,
Only constants may be typed in as a response
te an INPUT statement, such as #%#.3E-3 or
"CAT", If more data was requested in an INPUT
statement than was typed in, a "??" is printed
and the rest of the data should be typed in,
If more data was typed in than was requested,
the extra data will be ignored. BASIC will
print the warning "EXTRA IGNOREN" when this
happens. Strings must be input in the same
format as they are specified in DATA
statements.

Optionally types a prompt string ("VALUE"™
before accepting data from the terminal. No
"7 is typed as a prompt character. If carriage
return is typed to an input statement, BASIC
returns to command mode, Typing CONT after
an INPUT command has been interrupted will
cause execution to resume at the INPUT
statement,

Assigns a value to a variable.
"LET" is optional.

Marks the end of a FOR loop.)
If no variable is given, matches the most recent
FOR loop.

A single NEXT may be used to match multiple
FOR statements. Equivalent to

NEXT V:NEXT W.

40

Branches to the line indicated by the I'th number
after the GOTO, That is:

IF I=1l, THEN GOTO LINE 10

IF 1=2, THEN GOTO LINE 20

IF 1=3, THEN GOTO LINE 30

IF I=4, THEN GOTO LINE %40,

-32_

ON.,..GOSUB 110 ON I GOSUB 50,60

POKE

PRINT

360
370
380
390
400

If 1=0 or I attempts to select a non-existent
line {>=5 in this case), the statement after the
ON statement is executed, However, if T is
3255 or <0, an FC error message will result,
As many line numbers as will fit on a line can
follow an ON,..GOTO.

105 ON SGN(X)+2 GOTO 40,50,60

357 POKE I,]

PRINT X,Y;Z

PRINT

PRINT X,Y;

PRINT "VALUE IS%A
PRINT A2,B,

This statement will branch to line 40 if the
expression X is less than zero, to line 30 if it
equals zero, and to line 60 if it is greater than
zero,

Identical to "ON...GOTO" except that a subrou-
tine call (GOSUB) is executed instead of a
GOTO. RETURN from the GOSUB branches to
the statement after the ON...GOSUBR.

The POKE statement stores the byte specified
by its second argument (J) into the location
given by its first argument {I}. The byte to be
stored must be =>0 and <=253%, or an FC error
will occur., The address (I) must be =>0 and
<=65535, or an FC error will result. Careless
use of the POKE statement will probably cause
you to "poke" BASIC to death; that is, the
machine will hang, and you will have to reset
the SYM-! and restart BASIC and will lose any
program you had typed in. A POKE to a
non-existent memory location is harmless. One
of the main uses of POKE is to pass arguments
to machine language subroutines. You could
also use PEFK and POKE to write a memory
diagnostic or an assembler in BASIC.

Prints the value of expressions on the termi-
nal. If the list of values to be printed out
does not end with a comma {,} or a semico-
lon {;}, then a carriage return/line feed is
executed after all the values have been print-
ed. Strings enclosed in quotes (") may also be
printed. If a semicolon separates two expres-
sions in the list, their values are printed next
to each other, If a comma appears after an
expression in the list, and the print head is at
print position 56 or more, then a carriage
return/line feed is executed. If the print head
is before print position 36, then spaces are
printed until the carriage is at the beginning
of the next 1% column field {until the carriages
is at column L4, 28, 42, or 56..). If there is

_33-

READ

REM

RESTORE

RETURN

STOP

410 PRINT MIDS(AS,2);

490 READ V,W

300 REM NOW SET V=0

505 REM SET V=0: v=0

506 V=0: REM SET v=0

510 RESTORE

50 RETURN

9000 STOP

no list of expressions to be printed, as in line
370 of the examples, then a carriage return/line
feed is executed. ‘

String expressions may be printed.,

Reads data into specified variables from a
DATA statement. The first piece of data read
will be the first piece of data listed in the
first DATA statement of the program. The
second piece of data read will be the second
piece listed in the first DATA statement, and
so on. When all of the data have been read
from the first DATA statement, the next piece
of data to be read will be the first plece listed
in the second DATA statement of the program.
Attempting to read more data than there is in
all the DATA statements in a program will
cause an OD {out of data) error, The line
number given in the SN error will refer to the
line number where the error actually is located,

Allows the programmer to put comments in his
program, REM statements are not executed,
but can be branched to, A REM statement is
terminated by end of line, but not by a "™".

In this case the V=0 will never be executed by
BASIC,

In this case V=0 will be executed.

Allows the re-reading of DATA statements,
After a RESTORE, the next piece of data read
will be the first piece listed in the first DATA
statement of the program. The second piece
of data read will be the second piece listed in
the first DATA statement, and so on as in a
normal READ operation.

Causes a subroutine to return to the statement
after the most recently executed GOSUB.

Causes a program to stop execution and to
enter command mode. Prints BREAK IN LINE
9000 (as per this example). CONT after a STOP
branches to the statement following the STOP,

“3h.

WAIT

805 WAIT 1,3,K
306 WAIT 1,

INTRINSIC FUNCTIONS

ABS{X)

INT(X)

RND(X)

SGN(X)

SIN(X)

SQR(X)

TAB(D

120 PRINT

140 PRINT

170 PRINT

230 PRINT

190 PRINT

180 PRINT

240 PRINT

ABS(X)

INT(X)

RND(X)

SGN(X)

SIN(X)

SQR(X)

TAB{D |

This statement reads the status of location I,
exclusive OR's K with the status, and then
AND's the result with J until a non-zero result
is obtained. Execution of the program continues
at the statement following the WAIT statement.
If the WAIT statement only has two arguments,
K is assumed to be zero. If you are waiting
for a bit to become zero, there should be a
one in the corresponding position of K. I, T
and K must be =>0 and ¢=63333.

Gives the absolute value of the expresssion X.
ABS returns X if X>»=0, -X otherwise

Returns the largest integer less than or equal
to its argument X. For example: INT(.23)=0,
INT(7)=7, INT{-.1)=-1, INT(-2)= -2, INT{L.1)=L.
The following would round X to D decimal
places:

INT(X*104D+.5}/ 104D

Generates a random number between G and l.
The argument X controls the generation of
random numbers as follows:
X<0 starts a new sequence of random
numbers using X. Calting RND with the
same X starts the same random number
sequence., X=0 gives the last random
number generated. Repeated calls to
RND(0) will always return the same ran-
dom number. X>0 generates a new random
number between 0 and l.
Note that (B-APRNI¥1)+A will generate
a random number between A & B,

Gives 1 if X>0, 0 if X=0, and -I if X<O.

Gives the sine of the expression X. X is
interpreted as being in radians. Note: COS5
(X)=SIN(X+3.14159/2) and that 1 Radian=180/PI]
degrees=57.2958 degrees; so that the sine of X
degrees= SIN(X/57.2958). (This function must
be loaded separately. See Application Note #
53-55C)

Gives the square root of the argument X. An
FC error will occur if X is less than zero.

Spaces to the specified print position {(column)
on the terminal. May be used conly in PRINT
statements. Zero is the leftmost column on
the terminal, 7! the rightmost. If the carriage
is beyond position 1, then no printing is done.
I must be =>0 and <=233,

_35.

USR(D

USR{1,7d,...,2)

ATN(X)

COS5{X)

EXP(X}

FRE(X)

LOG(X)

PEEK{}

POS(D

SPCAI)

2090

340

210

200

150

270

160

356

260

250

PRINT USR(l)

PRINT USR (I,],K)

PRINT ATN(X)

PRINT COS(X)

PRINT EXP(X)

PRINT FRE(O)

PRINT LOG(X)

PRINT PEEK(I)

PRINT POS(D)

PRINT SPC(D

Calls the user's machine language sub-routine
with the argument I. The sub-routine's address
must have been previously POKE'ed into loca-
tions in page zero. See POKE, PEEK, and

Appendix HI 7

Calls the user's machine language sub-routine
whose address is specified by the {first para-
meter [, with the arguments J thru Z. No
POKING of page zero is necessary. Note that
at least one argument must be given, or BASIC
will assume that the call is of the format given
above. See Appendix H.q

Gives the arctangent of the argument X. The
result is returned in radians and ranges from
-P1/2 to PI/2. (PI/2=1.5708) (This function
must be loaded separately. See Application
Note # 53-S5C)

Gives the cosine of the expression X. X is
interpreted as being in radians. (This function
must be loaded separately, Sce Application
Note # 53-5S5C)

Gives the constant "E" (2.71828) raised to the
power X. (E+X) The maximum argument that
can be passed to EXP without overflow occuring
is 87.3365.

Gives the number of memory bytes currently
unused by BASIC.

Gives the natural {(Base E) logarithm of its
argument X. To obtain the Base Y logarithm
of X use the formula LOG{X)/LOG(Y). Example:
The base 10 {common) log of 7 =
LOG(7)/LOG(10).

The PEEK function returns the contents of
memory address 1. The value returned will be
=>0 and <=255. M I is »65535 or <0, an FC
error will occur, An attempt to read anon-
existent memoty address will return an unknown
value. {see POKE statement)

Gives the current position of the terminal print
head {or cursor on CRT's). The leftmost charac-
ter position on the terminal is position zero
and the rightmost is 71.

Prints I space {or blank} characters on the
terminal. May be used only in a PRINT state-
ment. i must be =>0 and <=253 or an FC
error will result.

-36-

TAN(X) 200 PRINT TAN(X)

STRINGS

1)

Gives the tangent of the expression X, X is
interpreted as being in radians. (This function
must be loaded separately. See Application
Note # 53-85C)

A string may bhe from G to 255 characters in length. All string variables end
in a dollar sign { §) for example, AS, B9S, K$, HELLOS.

String matrices may be dimensioned exactly like numeric matrices. For instance,
DIM AS$(10,10) creates a string matrix of 121 elements, eleven rows by eleven
columns (rows 0 to 10 and columns 0 to 10). Each string matrix element is a
complete string, which can be up to 255 characters in length.

2)

NAME EXAMPLE

DIM 25 DIM AS(10,10)
LET 27 LET AS="FOO"+V$
>

<

< =

&

+ 36 LET Z35=R$+Q8%
INPUT 40 INPUT X§
READ 50 READ X$
PRINT 60 PRINT XS

70 PRINT "FO0"+AS$

PURPQSE/USE

Allocates space for a pointer and length for
each element of a string matrix. No string
space is allocated. See Appendix D.

Assigns the value of a string expression to a
string variable. LET is optional,

String comparison operators. Comparison s
made on the basis of ASCIl codes, a character
at a time until a difference is found. If during
the comparison of two strings, the end of one
is reached, the shorter string is considered
smaller.

Note that "A " is greater than "A" since trailing
spaces are significant.

String concatentation. The resulting string must
be less than 256 characters in length or an LS
error will cccur,

Reads a string from the user's terminal. String
does not have to be quoted; but if not, leading
blanks will be ignored and the string will be
terminated on a "," or """ character,

Reads a string from DATA statements within
the program. Strings do not have to be quoted;
but if they are not, they are terminated on a
"M or ™" character or end of line and leading
spaces are ignored. See DATA for the format
of string data.

Prints the string expression on the user's term-
inal.

_37.

STRING FUNCTIONS

ASC(XS) 300 PRINT ASC{X$%)
CHRS(MD 275 PRINT CHRS()
FRE({XS) 272 PRINT FRE(™)

LEFTS(XS,I} 316 PRINT LEFTS(XS,D
220 PRINT LEN{X$)

LEN(XS)

MID3(XS,D) 330 PRINT MIDS(XS,D

MIDS(X$,1,1) 330 PRINT MID3X4,1,T)

Returns the ASCII numeric value of the first
character of the string expression X5. Sec
Appendix K for an ASCI/number conversion
table. An FC error will occur if X$ is the null
string.

Returns a cone character string whose single
character is the ASCII equivalent of the value
of the argument (I) which must be =30 and
<=255. See Appendix K.

When called with a string argument, FRE gives
the number of free bytes unused by BASIC.
Identical to FRE with numeric argument.

Gives the leftmost I characters of the string
expression XS§, If <=0 or >255 an FC error
CCcurs.

Gives the length of the string expression X$ in
characters (bytes), Non-printing characters and
blanks are counted as part of the length.

MIDS called with two arguments returns charac-
ters from the string expression X$ starting at
character position I. If I>LEN($), then MID$
returns a null {zZero length) string. If I¢=0 or
»255, an FC error occurs.

MIDS called with three arguments returns a
string expression composed of the characters
of the string expression X$ starting at the Ith
character for J characters. If I>LEN(X$), MID$
returns a null string, If T or J ¢=0 or >253, an
FC error occurs., If J specifies more characters
than are left in the string, all characters from
the Ith on are returned,

RIGHTS(XS,I) 320 PRINT RIGHTS(XS,]) Gives the rightmost I characters of the string

STRS(X) 290 PRINT STRS(X)

expression XS, When [£=0 or >255 an FC error
will occur. If I>>LEN(XS) then RIGHTS returns
all of XS.

Gives a string which is the character represen-

tation of the numeric expression X, For
instance, STRS(3.1}=" 3.1".

_38%-

VAL(XS) 280 PRINT VAL(X$) Returns the string expression X$ converted to

SPECIAL CHARACTERS

CHARACTER
@

CARRIAGE RETURN

BREAK

: {colon)

CONTROL/T

a number. For instance, VAL("3,1")=3.1. If the
first non-space character of the string is not
a plus (+) or minus (-) sign, a digit or a decimal
point {,) then zero will be returned,

USE

Erases current line being typed, and types a carriage
return/line feed.

(backarrow or underline) Erases last character typed. IF no
more characters are left on the line, types a carriage
return/line feed, "o is usually a shift/0.

A carriage return must end every line typed in. Returns
print head or CRT cursor to the first position {leftmost) on
line. A line feed is always executed after a carriage return.

Interrupts execution of a program or a list command. BREAK
has effect when a statement finishes execution, or in the
case of interrupting a LIST command, when a complete line
has finished printing. In both cases a return is made to
BASIC's command level and OK is typed.

Prints "BREAK IN LINE XXXX" , where XXXX is the line
number of the next statement to be executed,

A colon is used to separate statements on a line. Colons
may be used in direct and indirect statements. The only
limit on the number of statements per line is the line length,
It is not possible to GOTO or GOSUB to the middle of a
line,

Typing a Control/T once causes BASIC to suppress all output
until a return is made to command level, an input statement
is encountered, another control/T is typed, or an error occurs.

Question marks are equivalent to PRINT, For instance, ?
2+2 is equivalent to PRINT 2+2, Question marks can also
be used in indirect statements. 10 7 X, when listed will be
typed as 10 PRINT X.

MISCELLANEOUS COMMENTS

1) To read in a paper tape with a program on it, type a control/T and feed in
tape. Type control/T again when the tape is through.

Alternatively, set nulls=0 and feed in the paper tape, and when done reset nulls
to the appropriate setting for your terminal.

39

2)

3)

4)

Each line must be followed by three rubouts. If there are lines without line
numbers {direct commands) the SYM-1 will fall behind the input coming from
paper tape, so this is not recommended.

Using null in this fashion will produce a listing of your tape (use control/T
method if you don't want a listing)

To punch a paper tape of a program, set the number of nulls to 3 for 110
RAUD terminals (Teletypes) and 6 for 300 BAUD terminals. Then, type LIST;
but, do not type a carriage return.

Now, turn on the terminal's paper tape punch. Put the terminal on local and
hold down the Repeat, Control, Shift and P keys at the same time. Stop after
you have punched about a 6 to 8 inch leader of nulls. These nulls will be
ignored by BASIC when the paper tape is read in. Put the terminal back on
line.

Now hit carriage return. After the program has finished punching, put some
trailer on the paper tape by holding down the same four keys as before, with
the terminal on local. After you have punched about a six inch trailer, tear
off the paper tape and save for later use as desired.

Restarting BASIC at location zero (by entering the SYM-1 command G§ (CR))
e

will cause BASIC to return to command level and type "OK" P B

The maximum line length is 72 characters.** If you attempt to type toc many
characters into a line, a bell {ASCII 7) is executed. At this point you can either
type backarrow to delete part of the line, or at-sign to delete the whole line.
The character you typed which caused BASIC to type the bell is not inserted
in the line as it occupies the character position one beyond the end of the line.

#**For inputting only.

_40-

APPENDIX A

INITIALIZATION DIALOG

STARTING BASIC

After you execute BASIC, it will respond:

MEMORY SIZE?

If you type a carriage return to MEMORY SIZE?, BASIC will use all the contiguous
memory upwards from location 0200 hex that it can find., BASIC will stop searching
when it finds one byte of ROM or non-existent memory. Memory must be greater

than 512 bytes,

If you wish to allocate only part of the computer's memory to BASIC, type the number
of bytes of memory you wish to allocate in decimal. This might be done, for instance,
if you were using part of the memory for a machine language subroutine.

There are 4096 bytes of memory in a 4K system, and 16,536 bytes in a 6K system.

BASIC will then ask:

TERMINAL WIDTH? This is to set the output line width for PRINT
statements only. Type in the number of

characters for the line width for the particular
terminal or other output device you are using.
This may be any number from 1 to 255,
depending on the terminal. If no answer is
given (i.e., a carriage return is typed) the line
width is set to 72 characters.

Now BASIC will type out: Py

XXXX BYTES FREE «£¢: fig¢

BASIC V1.1
COPYRIGHT 1978 SYNERTEK CORP.

"XXXX" is the number of bytes available for
program, variables, matrix storage and string
space,

OK

You will now be ready to begin using BASIC.

APPENDIX B
ERROR MESSAGES
After an error occurs, BASIC returns to command level and types OK., Variable values

and the program text remain intact, but the program can not be continued and all
GOSUB and FOR context is lost.

When an error occurs in a direct statement, ne line number is printed.
Format of error messages:

Direct Statement ?XX ERROR

Indirect Statement ?XX ERROR IN YYYYY

In both of the above examples, "X X" will be the error code. The "YYYYY" will be
the line number where the error occured for the indirect statement.

The following are the possible error codes and their meanings:

ERRCOR CODE MEANING
BS Bad Subscript. An attempt was made to reference a
Bad Subscript matrix element which is outside the dimensions of the

matrix. This error can occur if the wrong number of
dimensions are used in a matrix reference; for
instance, LET A{l,1,1)=Z when A has been dimensioned

NIM A(2,2).
DD Double Dimension. After a matrix was dimensioned,
Redim'd Array another dimension statement for the same matrix was

encountered, This error often occurs if a matrix has
been given the default dimension l0 because a state-
ment like A{l)=3 is encountered and then later in the
program a DIM A{100) is found. f

FC Function Call error, The parameter passed to a math
[legal Quantity or string function was out of range.
FC errors can occur due to:

a) a negative matrix subscript (LET A(-1)=0)

b) an unreasonably large matrix subscript
(»32767)

) LOG-negative or zero argument

o) SQR-negative argument

) A+B with A negative and B not an integer

B-1

ERROR CODE

FC (Con't)

D
Iltegal Direct

NF
Next without For

oD
Qut of Nata

oM
Out of Memory

oV
Overflow

SN
Syntax

RG

Return without GOSUB

us
Undef'd Staftement

70
Division by Zero

CN
Can't Continue

MEANING

) a call to USR before the address of the

machine language subroutine has been
patched in

g) calls to MIDS, LEFTS, RIGHTS, INP,
OUT, WAIT, PEEK, POKE, TAB, SPC or
ON...GOTO with an improper argument.

Illegal Pirect. You cannot use an INPUT or DEFFN
statement as a direct command.

NEXT without FOR. The variable in a NEXT state-
ment corresponds to no previously executed FOR
statement.

Out of Data, A READ statement was executed but
all of the DATA statements in the program have
already been read. The program tried to read too
much data or insufficient data was included in the
program.

Out of Memory. Program too large, too many vari-
ables, too many FOR loops, too many GOSUB's, too
complicated an expression or any combination of the
above (see Appendix D)\

Overflow. The result of a calculation was too large
to be represented in BASIC's number format. If an
underflow occurs, zero is given as the result and
execution continues without any error message being
printed.

Syntax error. Missing parenthesis in an expression,
illegal character in a line, incorrect punctuation, etc.

RETURN without GOSUB, A RETURN ‘statement
was encountered without a previous GOSUB statement
being executed.

Undefined Statement. An attempt was made to GOTQ,
GOSUB or THEN to a statement which does not exist.

Drivision by Zero.

Continue error, Attempt to continue a program when
an error occured, or after a new line was typed into
the program.

B-2

ERROR CODE

LS
String too long

ST
Formula too complex

™
Type Mismatch

UF
Undef'd Function

MEANING

Long String. Attempt was made by use of the con-
catenation operator to create a string more than 255
characters long.

String Temporaries. A string expression was too
complex. Break it into two or more shorter ones.

Type Mismatch. The left hand side of an assignment
statement was a numeric variable and the right hand
side was a string, or vice versa; or, a function which
expected a string argument was given a numeric one
or vice versa.

Undefined Function. Reference was made to a user
defined function which had never been defined.

B-3

APPENDIX C

SPACE HINTS

In order to make your program smaller and save space, the following hints may be
useful.

1) Use multiple statements per line. There is a small amount of overhead (5 bytes)
associated with each line in the program. Two of these five bytes contain the
line number of the line in binary. This means that no matter how many digits
you have in your line number (minimum line number is 0, maxirmum is 64000),
it takes the same number of bytes. Putting as many statements as possible on
a line will cut down on the number of bytes used by your program.

2) Deiete all unnecessary spaces from your program. For instance:
10 PRINT X, Y, Z
uses three more bytes than

10 PRINTX,Y,Z

NOTE

All spaces between the line number and the
first non-blank character are ignored.

3) Delete all REM statements. Each REM staterment uses at least one byte plus
the number of bytes in the comment text. TFor instance, the statement 130 REM
THIS IS A COMMENT uses up 24 bytes of memory,

In the statement 140 X=X+Y: REM UPDATE SUM, the REM uses 14 bytes of
memory including the colon before the REM,

4) Use variables instead of constants. Suppose you use the constant 3.1%4159 ten
times in your program. If you insert a statement
10 P=3.14159
in the program, and use P instead of 3.14159 each time it is needed, you will
save 40 bytes. This will also result in a speed improvement.

5) A program need not end with an END; so, an END statement at the end of a
program may be deleted.

&) Reuse the same variables. If you have a variable T Wwhich is used te hold a
temperary result in one part of the program and you need a temporary variable
later in your program, use it again. Or, if you are asking the terminal user to
give a YES or NO answer to two different questions at two different times
during the execution of the program, use the same temporary variable AS to
store the reply.

7) Use GOSUB's to execute sections of program statements that perform identical
actions.
) Use the zero elements of matrices; for instance, A(0), B(0,X).

C-1

STORAGE ALLOCATION INFORMATION

Simple {non-matrix} numeric variables like V use 6 bytes; Z for the variable name, and
4 for the value. Simple non-matrix string variables also use 6 bytes; 2 for the variable
name, 2 for the length, and 2 for a pointer,

Matrix variables use a minimum of 12 bytes. Two bytes are used for the variable
name, two for the size of the matrix, two for the number of dimensions and two for
each dimension along with four bytes for each of the matrix elements.

String variables also use one byte of string space for each character in the string.
This is true whether the string variable is a simple string variable like AS, or an
element of a string matrix such as Q15(5,2).

When a new function is defined by a DEF statement, 6 bytes are used to store the
definition.

Reserved words such as FOR, GOTO or NOT, and the names of the intrinsic functions
such as COS, INT and STRS take up only one byte of program storage. All other
characters in programs use only one byte of program storage each,

When a program is being executed, space is dynamically allocated on the stack as
follows:

1) Each active FOR...NEXT loop uses 22 bytes,
2) Each active GOSUB (one that has not returned yet) uses 6 bytes.

3) Each parenthesis encountered in an expression uses # bytes and each
temporary result calculated in an expression uses 12 bytes.

APPENDIX D

SPEED HINTS

The hints below should improve the execution time of your BASIC program. Note that
some of these hints are the same as those used to decrease the space used by your
programs. This means that in many cases you can increase the efficiency of both the
speed and size of your programs at the same time,

D

2)

3)

4)

Delete all unnecessary spaces and REM's from the program. This may cause a
small decrease in execution time because BASIC would otherwise have to ignore
or skip over spaces and REM statements.

THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT BY A FACTOR OF
10, Use variables instead of constants. It takes more time to convert a constant
to its floating point representation than it does to fetch the value of a simple
or matrix variable, This is especially important within FOR...NEXT loops or
other code that is executed repeatedly.

Variables which are encountered first during the execution of a BASIC program
are allocated at the start of the variable table, This means that a statement
such as 5 A=0:B=A:C=A, will place A first, B second, and C third in the symbo]
table {assuming line 5 is the first statement executed in the program). Later
in the program, when BASIC finds a reference to the variable A, it will search
only one entry in the symbol table to find A, two entries to find B and three
entries to find C, etc,

NEXT statements without the index variable, NEXT is somewhat faster than
NEXT I because no check is made to see if the variable specified in the NEXT
is the same as the variable in the most recent FOR statement.

APPENDIX E

DERIVED FUNCTIONS

The following functions, while not intrinsic to BASIC, can be calculated using the existing

BASIC functions.

FUNCTION

SECANT

COSECANT

COTANGENT

INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLIC TANGENT

HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS

SEC(X) = 1/COs00

CSC(X) = 1/SIN(X)

COT(X) = I/TAN(X)

ARCSIN(X) = ATN(X/SQR(-X*X+1))

ARCCOS(X) = —ATN(X/SOQR({-X*X+1D+1.5708
ARCSEC(X) = ATN(SQR(X*X-1D+{(8GN(X)-1)*1,5708
ARCCSC(X) = ATN(L/SQR{X*X-1))+(SGN(X)-1)*1.5708
ARCCOT(X) = ~ATN{X)+1,5708

SINH(X) = (EXP{X)-EXP{(-X)}/2

COSH(X) = (EXP(X)+EXP{-X))/2

TANH(X) = -EXP-XIH{EXP(X)M+EXP(-X))*2+1
SECH(X) = 2/(EXP(X)+EXP{-X))

CSCH(X) = 2/(EXP(X}-EXP{-X))

COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))*2+]

ARGSINH(X) = LOG(X+SQR{X*X+1))
ARGCOSH(X) = LOG(X+SQR(X;X-1))
ARGTANH(X) = LOG((1+X)/(1-X))/2
ARGSECH(X) = LOG((SQR{-X*X+1)+1}/X)
ARGCSCH(X) = LOGUSGNX)*SQR{X*X+1)+1)/X)

ARGCOTH(X) = LOG{X+1)/(X-1))/2

E-1

APPENDIX F

CONVERTING BASIC PROGRAMS NOT WRITTEN FOR SYNERTEK BASIC

Though implementations of BASIC on different computers are in many ways similar,
there are some incompatibilities which you should watch for if you are planning to
convert some BASIC programs that were not written in Synertek BASIC,

1)

2)

3)

Matrix subscripts, Some BASICs use " " and " " to denote matrix subscripts.
Synertek BASIC uses " (" and ") "

Strings. A number of BASICs force you to dimension (declare} the length of
strings before you use them. You should remove all dimension statements of
this type from the program. In some of these BASICs, a declaration of the
form DIM AS(I,J) declares a string matrix of J elements each of which has a
tength . Convert DIM statements of this type to equivalent ones in
BASIC: DIM AS(J).

Synertek BASIC uses " + " for string concatenation, not " , " or " & ",

Synertek BASIC uses LEFTS, RIGHTS and MIDS to take substrings of strings.
Other BASICs uses AS(I) to access the Ith character of the string A%, and AN
to take a substring of AS from character position I to character position I,
Convert as follows:

OLD NEW
AS(D) MIDS(AS,LD
ASLD MIDS(AS,1,T-1+1)

This assumes that the reference to a substring of AS is in an expression or is
on the right side of an assignment. If the reference to AS is on the left hand
side of an assignment, and X$ is the string expression used to replace characters
in AS, convert as follows:

OLD NEW
AS{N=XS AS=LEFTS(AS,1-1)+ X5+ MIDS(AS,1+1)
AS(1,7)=X$ AS=LEFTSAS, -1+ X3+MIDS(AS,3+1)

Multiple assignments. Some BASICs allow statements of the form: 500 LET
B=C=0, This statement would set the variables B and C to zerc.

In Synertek BASIC this has an entirely different effect. All the " ='s " to the
right of the first one would be interpreted as logical comparison operators. This
would set the variable B to -1 if C equaled 0. If C did not equal 0, B would
be set to 0. The easiest way to convert statements like this one is to rewrite
themn as follows:

506 C=0:B=C

4)

5)

6)

Some BASICs use " \ " instead of " : " to delimit multiple statements per line,
Change the " \'s " to " :5 " in the program.

Paper tapes punched by other BASICs may have no rubouts at the end of each
line, instead of the three per line recommended for use with Synertek BASIC.

To get around this, try to use the tape feed control on the Teletype to stop
the tape from reading as soon as BASIC types a carriage return at the end of
the line. Wait a second, and then continue feeding in the tape.

When you have finished reading in the paper tape of the program, be sure to
punch a new tape in BASIC's format. This will save you from having to repeat
this process a second time.

Programs which use the MAT functions available in some BASICs will have to
be re-written using FOR...NEXT loops to perform the appropriate operations.

F-2

APPENDIX G

BASIC/MACHINE LANGUAGE INTERFACE

Synertek BASIC provides two forms of the USR function to provide the BASIC program
with access to assembly language subroutines written by the user.

The first format of the USR function is the one most commonly seen in formal BASIC
definition, though not necessarily, the most convenient. The format is:

USR (D)

This format of USR assumes that the address of the subroutine to be called has
previously been placed in loecation(s) 0GOB and 000C of page zero with the POKE
command, 000B containing the low order address, 000C containing the high order
address, The parameter I is passed to the subroutine as a 16-bit signed integer in the
[A,Y] register pair., Any result of the subroutine call is assumed to be returned as a
16-bit signed integer in the (A, Y] register pair.

The second format of the UUSR function allows the user to specify the subroutine
address in the call, and also allows the passing of multiple parameters. The format
is:

USR{L3,...,Z)

This format of USR assumes that [is the address of the subroutine to be called, and
that J through Z are the parameters to be passed to the subroutine, Each parameter
starting with 1 is passed to the subroutine as a l6-bit signed integer that has been
placed on the stack. The last parameter is the list i35 placed in the [A, Y] register
pair instead of on the stack. No POKE'ing of page zero is necessary. Any result of
the subroutine call is assumed to be returned as a lé6-bit signed integer in the [A, Y]
register pair.

Regardless of the format, the USR function should use an RTS to return to BASIC,
or a JMP to a routine that will put the result in the [A, Y] register pair as a 16-bit
signed integer value before returning,

To use separately loaded machine language routines, it is necessary to reserve some
RAM space. This is done by replying appropriately to the MEMORY SIZE? question,

Example: To reserve the last 256 bytes of RAM on a 4K system, answer as follows:
MEMORY SIZE? 3840

BASIC will use only the first 3840 bytes of RAM, leaving 256 bytes
available for your routines.

Example: The 5YM-! SUPERMON Program contains a subroutine, OUTBYT, which
will output a two digit hexadecimal representation of the accumulator
when called. Its address is 82FA. It could be called in either of the
following ways,

POKE &"000B", & "00FA"
POKE & "00QC", & "Q082"
X=zUSR (& "FF00"™

FF will be printed.
X=USR {& "82FA", & "FFGQ")

FF will be printed,

APPENDIX H
ASCIl CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
000 NULYR, Hioss iy 086 A Y
001 SoB * i o4 2, 087 56 W
002 STX + & 045 [E 088 5 X
003 ETX *C 046 o 089 &y
004 EOT *[047 1w f 090 58 Z
005 ENQ4E 048 e 0 091 $9 1
006 ACK #F 049 1ol 220 092 60N
007 BEL 4 050 i 2 093 61 1
008 BS ¢ 051 3 094 62 {
009 £ 1 1%0052 oo 095 23 - -
010 E}I 21 gga S5 096 g9 e SHIFT-RETURN Z
011 VT - 054 J1 6 097 %7 a
012 FF fL 055 2i 7 098 66 b
013 CR ¥ 056 75 8 099 61 ¢
0i4 5o £ 057 259 100 & d
015 sto7 o 058 FEE. 101 ¢3 e
0l6 DLE # P 059 s 230102 ot
017 DCL #& 180060 o1 < 103 1 g
0138 DC2 4 R 061 R = 104 7 h
019 DCI ¢, 062 30 > 105 L
020 DC4 §7 063 3y ? 106 ¥4 j
021 NAK *i 064 2 @ 107 5k
022 SYN 4v 065 3% A 108 Y6 |
023 ETB aw 066 4 B 109 7 m
024 CAN % 4 067 1w C 110 f&n
025 EM #V 068 % D 11 &% o
026 SUB 4 > 069 I E 2481112 p
027 ESCAPE*L 070 % F 113 q
028 FS 4 071 L BGg 114 r
029 GS & | 200072 in H 115 5
030 RS 44 073 di 1 116 t
031 US 4 4~ 074 RN 117 u

440 032 ¢ SPACE 075 4n K 118 v
033 i1 076 4L 119 w
03 - o 077 oM 120 X
035 . 078 46 N 121 y
036 i 8 079 i1 o t$v 122 z
037 n % 080 2d p 123 ¥z
038 o & 081 49 Q 124 4T
039 - . 215082 o R 125 }¥
040 | 083 LA 126 ~
041 2) 084 =T 127 DEL

7o 042 o 085 33 U

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout
e

CONTRuL oy 7

H-1

CHRS is a string function which returns a one character string which contains the
ASCII equivalent of the argument, acceording to the conversion table on the preceeding
page. ASC takes the first character of a string and converts it to its ASCIl decimal
value.

One of the most common uses of CHRS is to send a special character to the user's
terminal. The most often used of these characters is the BEL (ASCII 7), Printing
this character will cause a bell to ring on some terminals and a "beep" on many CRT's.
This may be used as a preface to an error message, as a novelty, or just to wake up
the user if he has fallen asleep. (Example: PRINT CHRS(7);)

A major use of special characters is on those CRT's that have cursor positioning and
other special functions (such as turning on a hard copy printer).

As an example, try sending a form feed (CHRS(12)) to your CRT. On the KTM-2 and
most other CRT's this will usually cause the screen to erase and the cursor to "home"
or move to the upper left corner.

Some CRT's give the user the capability of drawing graphs and curves in a special
point-plotter mode. This feature may easily be taken advantage of through use of
BASIC's CHRS function.

APPENDIX I

BASIC TEXTS

Below are a few of the many texts that may be helpful in learning BASIC.

1 BASIC PROGRAMBMING, John G. Kemeny, Thomas E. Kurtz, 1967

2} BASIC, Albrecht, Finkel and Brown, 1973

3) A GUIDED TOUR OF COMPUTER PROGRAMMING IN BASIC, Thomas A. Dwyer
and Michael 5. Kaufman; Boston: Houghton Mifflin Co., 1973

Books numbered 1 & 2 may be obtained from:
People's Computer Company
P.O. Box 310
Menle Park, California 94025

They also have other books of interest, such as:

101 BASIC GAMES, Ed. David Ahl, 1974

WHAT TO DO AFTER YOU HIT RETURN or PCC's FIRST BOOK OF
COMPUTER GAMES

COMPUTER LIB & DREAM MACHINES, Theodore H. Nelson, 1974

CORRECTIONS TG BASIC REFERENCE MANUAL (MAN-A-260026-A) fﬁ?ﬂ‘

First Printing: December 1978
Revised: July 1980

Page 1: The following should be corrected as shown:
' You have received one ROM as your BASIC Tanguage. This ROM
is designed to run in your Synertek SYM-1 using the SUPERMON
monitor. : .

Insert the ROM marked 02-0058A into socket UZ21. Before
applying power, the following on-board jumpers must be

changed.
Remove the following Add the following
Jumpers Jumpers
B-2 : B-1
F-5 F-4
L-12 K-11, 12, 13, & 14
M-13

If you have a program in socket U23 running at address CPp@-
DFFF, then it must be relocated so as to not conflict with

BASIC.
Page 23: The following Tine should be corrected:

WAS: The listing can be control--C'd {BASIC will finish
1isting the current line}.

SHOULD BE: The listing can be interrupted by pressing the BREAK key
(BASIC will finish 1isting the current Tine).

WRITE PROTECT BUG

When a warm-start entry to BASIC is made, system RAM (A6PP-A67F) remains
write protected. This will cause any calls to monitor routines to fail.
It will also cause BASIC SAVE and LOAD to fail.

To get around this problem with MON-1.0, after a warm-start perform a
call to ACCESS to remove write protect.

.G P - Warm-Start BASIC

oK : ‘
A=USR(&"8B86",P) Un-Write Protect System RAM
0K

To get around this problem with MON-1.1, after a warm-start do a "save A"
with the recorder off. After this "dummy" save operation, all save and

LOAD operations will function properly.

Page G-1: In order to return a 16 bit value, load the accumulator with
the high order 8 bits, and the y-register with the Tow order
8 bits. - Then perform a JMP $D14C.

If no value is to be returned, a RTS may be used instead of
JMP D14C. _

HEXADECIMAL CONSTANTS

Hexadecimal constants in the range of PPPP-7FFF and 8pP1-FFFF may be used
as the first argument of the USR statement. . In the PEEK and POKE state-
ments, the permissable range of PPP@-7FFF only. Use decimal constants for

other values.

26-0033 REV E

