
The new 68000 machines are out— Atari's ST and the
Amiga from Commodore. Three ISPUGgers have bought
ST's with color monitors for $995; all report they

are unable to penetrate below the Mac-like GEM interface, access the 68000, or
use the underlying operating system. As with the C6 4, the computer is in the
keyboard enclosure with 512K bytes of RAM. A separate power supply is required
for the computer and for each disk drive. With the two-button mouse and two
drives, you must cable together eight separate units. Have a large desk and a
tolerance for a warren of cables. Two users report they don't like the mouse; at
least you have an option with the ST; unlike Macintosh, it provides cursor con
trols on the keyboard. Atari, short of money, is trickling the machines out to
dealers and supporting it with what little advertising it can afford.

The single cutesy wee 3.5-inch disk holds 360K bytes, which in the day of 200K
byte programs and megabytes of data is about as useful as a glass of spit at a
four-alarm fire. Atari has repeated Apple's bitter mistake with the Mac, but
will, we hear, offer a double-sided 720K byte wee drive for more money.

Apple, of course, is upstaged. Its main act, the 512K byte Fat Mac, has no color
and costs twice as much; its aging ballerina, the Apple II, can compete neither
on performance nor price. Apple has a year, perhaps two, to arrange a new act
and to reduce its always-high prices, until the ST attracts enough support to
compete against Apple in software. As if that weren't enough, the new Amiga from
Commodore is far superior to the ST and no more expensive than a Mac.

BYTE magazine has long disdained Commodore products, noting them (if at all)
with quiet condescension. The August issue features the Amiga, a rave product
review, and an editorial praising it as a machine to "rekindle the enthusiasm
which drives personal computing." The September issue of COMPUTE! had an orgasm.

Why the enthusiasm? It's a home computer, a graphics computer, a music computer,
a sound computer, a business computer, a game computer, a hacker's computer— all
rolled into one. One reviewer said it's a general purpose machine which excels
at special applications. It may cool you off to know that the operating system/
library occupies 192K bytes (compared to 24K for SuperPET), and that the techni
cal data to explain it is in like proportion.

The numbers following do not tell the story; read the reviews if you can locate
them. Amiga, unlike Macintosh, has freed the 68000 from handling either graphics
or sound by employing custom chips; the graphics are reported dazzling. At $1295
the basic machine has 256K bytes of RAM and one cutesy wee drive (880K bytes,
double-sided), plus some bundled software on which the reviews disagree. You'll
have to shell out about $2300 total for two drives, add-on RAM (512K bytes total
in the system enclosure) and a color monitor. The architecture is open, the bus
being extendible to a forthcoming expansion box which can hold 6 (maybe more)
megabytes of RAM and some custom boards. Monitor, keyboard, and system enclosure
are separate, in the current fashion. A 20-megabyte hard disk is promised from
Tecmar. We're happy to see that the RETURN key is huge, Selectric-style, and
that Commodore had the wit to put the four cursor keys tight against the main
keyboard, where a touch-typist can use them without losing rhythm. (Ever had
tennis elbow? Weep for cursor wrist.)

The problem for Commodore as for Atari is software, and in the U.S. at least,
lack of a dealer network to sell and support Amiga— Kindly Uncle Jack Tramiel

SuperPET Gazette, Vol. II, No. 6 -151- August/September 1985

having thrown his dealers to the wolves before he left Commodore. Last we heard,
Commodore executives were about to safari into the commercial wilds, hunting
dealers to stock the Amiga. Computerland and some other chains have refused to
order it as a standard chain item, though their individual stores are free to
stock it. It'll be months before we see the machine on dealer shelves; maybe
more, for we don't know if the Amiga has passed the FCC tests for radio frequ
ency interference (at last report, the the C-128 was hung up there).

As does the ST, the Amiga offers a mouse and a Mac-like user interface, named
"Intuition." Commodore, unlike Atari and Apple, does not presume that mommy
knows best; users are allowed to bypass the icon jazz and access the operating
system (Amiga DOS) directly. The DOS is reported to have many of the features of
Unix and MS DOS (it damn well better allow more than 8-character filenames!); it
includes batch files. Finally we see a machine with a simple, easy-to-learn user
interface for novices and direct access to DOS for experts— at which we utter
three great cheers and cry, "About time!"

While we suspect our long search for a sensible successor to SuperPET may be
over, we aren't about to divorce the old dear. She possesses too much useful
software; we're going to keep her until the insulation rots off.

Caution before purchase is well advised on both the ST and the Amiga. New compu
ters are never quite as good as the first, enthusiastic reviews. They always
have bugs; time alone reveals their genetic mistakes. In addition, we hear that
the operating system and the languages for both are being or have been written
in 'C', not in assembly. Having been penalized by not-so-optimum compiled code
generated by a C-like language (WSL) for the last few years, we will not walk
innocent and unaware into a thicket of long, slow code which the innate speed of
the 68000 is supposed to overcome. Remember that poor Lisa died from an overdose
of an OS in Pascal despite her microprocessor; that the Mac's 68000 has never
overcome the glacial slowness of a Basic written in C, and that the chief reason
for a new computer is higher performance. We'll have to see a few benchmarks
before we draw our checkbook from its scabbard.

We didn't mention Amiga's ability to perform several functions at the same time
(concurrency and multi-tasking are the buzzwords). The machine is able to backup
disks whilst processing words whilst printing hard copy whilst running a program
or so in language. We can appreciate being able to compute while the printer
churns out hard copy and the DOS chuckles away at a copy job, but are otherwise
very skeptical of the virtues of schizophrenia. Inevitably the microprocessor
must slow down as it rotates between tasks; the user, hopping from job to job,
inevitably will become confused and make mistakes. In time, we suspect users
will paint concurrency yellow for "danger, use with caution."

Having briefly looked at the option of a new computer, we present this issue
some other options— a new, inexpensive megabyte drive; some add-on hardware and
software to give SuperPET a 68000 microprocessor and up to two megabytes of RAM;
options to use SuperPET's parallel port, a clear explanation of how to use the
ACIA for telecommunication, and (if it arrives in time) a page on 0S9.

REMARKS on REDMARKS If your address label is redmarked, your membership in
ISPUG has expired, poor thing. Clip the application on the last page, check the
RENEW block and favor us with a check made to ISPUG. Leave the address label on
the other side so we know which J. Q. Schmidt sent it.

SuperPET Gazette, Vol. II, No. 6 -152- August/September 1985

DRIVE FOLLY No reader of the Gazette can doubt that we dislike the wee 3.5-
inch drives which the computer industry is trying to cram down our throats. If
you question our logic, consider that Commodore recently demonstrated the Amiga
in IBM PC compatible mode— running Lotus 1-2-3, but with add-on 5-inch drives!
Splendid! Want PC compatibility? Buy an extra set of drives! The decision to
use wee drives on a computer designed to sell in the business market, where the
IBM PC is standard with 5-inch drives, strikes us as luminescent folly— especi-
ially when IBM provides 1.2 megabyte 5-inchers on the AT.

As if that were not enough, ask how you will back up any hard disk. If you say
by tape, we can only quote Bill Gates of Microsoft: "The makers of tape backup
systems will burn in hell." If you say by disk, we hope you're happy while you
back up 20 megs on 23 or more wee disks. The job is bad enough on 1.2 megabyte
5-inchers, of which you'll need 17. Only the makers of the expensive Bernoulli
box have come up with a simple and reliable backup for hard disks. Until we see
an inexpensive solution, we want no wee disks on any computer we own.

ONCE OVER LIGHTLY Last issue, we showed how a little structure, substituted
Miscellany for GOTO, could halve the time in which the sieve of Era

tosthenes would execute. Later, guru Terry Peterson sent
a HALGOL timing of the structured version— which executes in 1.79+ seconds (down
from 2.18+ seconds in the GOTO version in HALGOL), an 18% increase in speed. It
seems that good structure speeds up execution because it represents a minimal
path through code— in any language, we suspect.

Whilst trying to reduce the run time in the Sieve, we inadvertently discovered
that you may "next i#" as often as you wish in a FOR...NEXT loop in microBASIC
without a syntax error. We show such a loop below to illustrate. At each NEXT i#
execution jumps back to the FOR..NEXT line.

for i#=zero# to size#
if flags#(i#) then NEXT i#
prime# = i#+i#+three# : k#=prime#+i# : count#=count#+one#
if k# > size# then NEXT i#
for j# = k# to size# step prime#

flags#(j#) = one#
next j#

NEXT i#

SCHEMATICS AVAILABLE Thanks to the labors of a couple of ISPUGgers, we have
in hand a 55-page set of schematics which they say define the circuits and chips
for both 2 and 3-board SuperPETs; they also define sources and types for chips,
including EPROMs to replace any bad ROMS. If you want a set, ORDER NOW! We'll
hire somebody to slave over that hot Xerox machine and make enough copies to
fill the orders. We will not stock this item. Order from ISPUG, P0 Box , Hat-
teras, N.C. 27943. Price is reproduction cost plus postage: $11 U.S. We'll have
to delay until all orders are in before we can print and ship.

MAN VERSUS PERSON We aren't unsympathetic to the feminists, for we do think
that women have had a raw deal for a couple of millennia. On the other hand, the
effort to change English so it isn't sexist may have taken the wrong path. Now
adays, anyone who releases news to the press is called a "spokesperson", even
though she may be a spokeswoman, or he a spokesman. Shall we carry "person" to

! Why not?

! Why not?

SuperPET Gazette, Vol. II, No. 6 —153— August/September 1985

its logical penultimates: horseperson, garbageperson, milkperson, bogeyperson?
Gee, what do we do with "oneupsmanship?" Oneupspersonship?

Try personkind, personikin, personslaughter and personhole, or consider an at
tack by a person-eating shark. If you are still with us, ask if the Russians
would be unpersoned by a threat to settle a dispute with a couple divisions of
of infantrypersons, supported by some determined artillerypersons and a task
force of tankpersons. Would they back down or would they personhandle us with
their own armed personpower? Would both sides dispatch a fleet of well-personed
persons-o'-war into the Persian Gulf? Does this note constitute unpersonly fun
and gamespersonship? No, we draw your attention to what can happen when you
begin to personipulate the language on the behalf of wopersons with the wrong
word. "Person" is patent foolishness; it ain't gonna fly.

COPYING REL FILES ON MICROPOLIS DRIVES Those of you who own Micropolis-made
8050 drives may think you've crashed when you try to copy a long RELative file;
the light on the copy-from drive comes on; the light on the copy-to drive often
fails to light up for five minutes or so, and even then may only flicker a bit
now and then. Fear not; be very patient; the file is being copied. We are con
tinually surprised by the difference in performance between Tandon-made and
Micropolis drives; the Tandons are noisy as a boiler factory but very fast; the
Micropolis drives quiet but slow. Given a choice, we'll take the Tandons.

ANOTHER OBSCENITY Anent our complaint about folks hiding on/off switches and
such in 3, II, Brad Bjorndahl writes that his favorite obscenity on SPET is the
brightness control knob, which you 1) can't find, or 2) get hold of. Well, swipe
a short piece of surgical tubing from your doctor, or a snippet of soft vacuum
tubing from your service station; slip it over the knob, and you can find and
fondle the hidden, obscene, and unmentionable device as often as you please.

HIGH RES GRAPHICS Brad also writes that a high resolution graphics board for
SuperPET and 8032 and 4032 PETs was demonstrated to TPUG recently, having reso
lution of 640 x 250, two display pages which can be scrolled, 32K of RAM which
may be used as a RAM disk with 0S9, mixed graphics and text; price is under $300
Canadian from High Res Technologies, 16 English Ivyway, Toronto, Ontario, Canada
M2H 3M4. Brad says users will have to write their own application software and
that the board may be used in 6809 mode. If you are interested, get in touch
with the maker.

CLEANING THAT COMPUTER In the June, '85 BYTE, Jerry Pournelle writes about
dirt in computers; seems he'd never cleaned an old computer, moved it, and then
suddenly found it wouldn't work. He called in an expert, who said the move had
shifted the dirt and shorted out the board. The expert removed all boards and
cleaned with compressed air and some commercial solvents [TV tuner cleaner, some
Instant FD Zero Residue Cleaner (mostly trichlorotrifluoroethane), and a can of
DE-0X-IDE]. All cables and sockets were cleansed with the cleaners above and
then treated with DE-0X-IDE, which removes (what else?) oxide corrosion. Connec
tors and cables were then re-installed, all chips pressed firmly into sockets,
and the computer ran. Shortly after we saw the article, Marlene Pratto wrote us
that when her 3-board SPET turned flakey, her husband took it apart and cleaned
it with Blue Shower from a local electronics store. When put back together, SPET
worked perfectly. We've never done this, but pass the word.

Marlene Pratto also loves Maclnker, a gadget which re-inks cloth ribbons without
mess (see ads in COMPUTE! and BYTE); she calls it a "terrific machine". From the

SuperPET Gazette, Vol. II No. 6 -154- August/September 1985

dim print on the letters we get, about 80% of ISPUG members should buy one!

NEW SERVICE NUMBER AT COMMODORE In II, 3, Tony Klinkert gave a phone number
to be used for repair service at Commodore's main plant in West Chester PA. Lee
Seymour writes that it's wrong. There's a toll-free service number: (800) 247-
9000, manned from 9 a.m. to 12 midnight E.S.T, Monday through Friday. We called,
and the people on duty are courteous and knowledgeable. For repair, you must
call (215) 431 9235 for a Repair Authorization (RA) number. Depending on where
you live, you will be told where to ship your equipment (there are several ser
vice centers). The rumor that SuperPET is no longer being repaired at the main
plant is not true; Commodore is directing the work to several sites. We strongly
advise you not to write Commodore (you won't get an answer); call!

OOPS, AHEM, and WHOA DEPT. The EXEC file SCRC0PY:EXE which is printed in the
tutorial on batch files on ISPUG Utility disk II has a minor error in it (all

errors we make are minor; after all, we edit this rag). We
*\"\d ran and tested the file with an earlier BEDIT; the final ver

sion of BEDIT encloses all NOT searches and deletes in two
backslashes (see above). The *\"/d on disk is wrong, and fails to delete all
lines which do NOT have a quotation mark in them. Please change the file.

INEXPENSIVE 6502 ASSEMBLER We reviewed the excellent Waterloo 6502 Develop
ment system in II, 4 (page 104), which runs in 6809 mode and lets you write code
in the microEditor. It costs $250. Reginald Wood of Hawaii writes that he uses
the Label Assembler Development System (LADS) from COMPUTE! books [get "The Sec
ond Book of Machine Language, by Mansfield ($14*95) and the accompanying disk
($12.95)]. You write source code in the BASIC editor (you need the POWER chip
or something similar) and assemble it with a SYS call. The disk holds versions
for the PET/CBM, C6 4, and VIC 20; the book explains the assembler and holds the
source code plus many examples. Reg says the assembler is pretty fast.

THE BOTTOMLESS PIT OF DICKY DUMBJ0HN All our disk drives went bad on the
very same day. We assembled and linked a program named "test" in Development,

and tried to load it in the monitor with: >1 test.mod, only
1 " to have the disk drive report "no such file". At left is what
.mod" PRG we saw on directory. "Bad disk," we sighed, and tried again.

Same problem. "Bad drive," said we, and tried another drive.
Oh, God. Same problem. We shut down and cold started. Same problem. We tried
John Toebes' new linker. Same problem. For four hours we tried everything our
mind could conceive. "Major bug," said we.

Well, the major bug resided between our ears. As even Bodsworth knows, the first
line in a command file must contain the name to be given to a .mod file; the
name must be in quotation marks. We should have entered "test" on that first

line; instead, it read: ;test.cmd. The poor linker, dumb beast,
"test" finding no title for the .mod file, obediently located a carriage
vs return there and so named the file: CR.mod, which, in calmer re-

;test.cmd rospect, is splendidly logical. When we told John Toebes what had
happened, he had hysterics, but finally did promise to fix his

new linker to report and reject such follies. John asked if the error message
could be an audible giggle.

MAD ABOUT PASCAL Our APL Associate Editor, Reg Beck, is mad about Pascal;
B.C. school authorities now demand that he teach Pascal; his summer was devoted

SuperPET Gazette, Vol. II No. 6 -155- August/September 1985

to learning the language. Reg doesn't like it, and comments "Never use 20 words
when 200 will do. Worship the Great God Type! Never define a primitive function
'power', for what type would it be?" Somewhat bitterly, Reg tells us M. Montal-
bano, in "A Personal History of APL," reports that he gave a seminar a few years
ago on programming languages; one of the people attending was Niklaus Wirth, the
developer of Pascal. Montalbano says, "Unfortunately, Klaus didn't get the prop
er message from my talk. He went his own way and developed Pascal."

Reg notes that while grade 12 students who will be going on to college might as
well learn Pascal before the college forces them to, most of his grade 11 stu
dents won't go to college, but rather are interested in learning BASIC, word-
processing, and graphics for their home computers. Reg says that Pascal, in this
light, is about as applicable as PL/1. We agree with him in spades, worry about
the high school drop-out rate (read that both ways), remember the classmates who
fled similar pedantic follies, and wonder if curriculum directors are promoted
to that post only if they have credits for four semester hours in stupidity.

ON HALGOL, THE GRANDE, In Issue 1, Vol. II (Oct/Nov 1984) we directed your
AND MEGABYTES for SPET attention to HALGOL, a swift new language offered by

Hal Hardenbergh, the president of Digital Acoustics,
(DA) at 1415 E. McFadden, Suite F, Santa Ana CA 92705. At the time of that re
port, Hal had just bought a SuperPET (converted 8032), and was at work creating
the hardware to attach a 68000 board (a 12.5 MHz 68000, please note) and the
necessary auxiliary gear to SuperPET. Terry Peterson and Nick Solimene of ISPUG
are equipped with the hardware and with the latest release of HALGOL (while the
language is not yet finished, DA provides versions which run).

Speed of execution is primary in the design of the language and its hardware.
Each line of the language is compiled as entered (no wait for compilation); it
is as yet without an immediate mode but is interactive, as BASIC is. Hal has
claimed for several months that HALGOL is the fastest Basic-like interactive
language in the world; to date, nobody has disputed that claim. [Hal insisted
that we insert the phrase "Basic-like" because somebody claimed FORTH was a lan
guage (we consider it a hallucinatory drug) and somebody else said 'C' was a
language (from study, we conclude it is a form of shorthand used by gurus who
can't type). Of course, we are kidding— a little.] The accuracy and the speed
of HALGOL emerge from hand-written assembly language, including a fast set of
floating-point routines, plus the 12.5 MHz microprocessor itself.

The equipment and software we describe below is available for SuperPET, PET, the
C64 and for the Apple II. The SuperPET gear runs from the 8032 side of the ma
chine, and works with 4040 or 8x50 drives. Terry Peterson uses a $50 kit from
Skyles Electric Works (The 1541 Flash) to get the 1541 disk drive to load as
quickly as a 4040 on the C64 whilst using HALGOL. Terry Peterson did the 1/0
routines and other mods needed for the Commodore versions of HALGOL, at no small
expenditure of time and skill.

To give you a flavor of the language and some feel for its performance, we'll
use the Sieve of Eratosthenes. Terry Peterson converted the best-performing
version printed last issue to HALGOL, and comments that "What ho! Structure is

advantageous even where it's hard to see!
5 REM Structured Sieve Benchmark (at least, sometimes)." The previous best
10 START TIMER : LET size%=7000 time on HALGOL had been 2.1 seconds; the
20 DIM flags$(700l) version at left runs in 1.79 sec. Compare

SuperPET Gazette, Vol. II No. 6 -156- August/September 1985

30 SELECT PRINT 1 : that to the times below on the IBM PC:
PRINT "Start one iteration"

40 LET count#=0 : LET one#=1 True Basic BetterBasic Turbo Pascal PC Basic
50 FOR i#=0 TO size# STEP 1 21.2 31-4 15-4 190.7
60 MVA one# TO flags#(i#)
70 NEXT i# In mBASIC in Superpet: 168 seconds...
80 FOR i#=0 TO size# STEP 1
90 IF flags#(i#)=0 GOTO "skip" The "MVA" instruction at left is a quick,
100 LET prime#=i#+i#+3 temporary way to implement array assignment
110 LET k#=i#+prime# and "moves" the variable specified to the
120 LET count#=count#+1 stated array element (we said that HALGOL
125 IF k# > size# GOTO "skip" is not quite finished).
130 FOR j#=k# TO size# STEP prime#
140 MVA zero# TO flags#(j#) Named subroutines are called by a GOSUB;
150 NEXT j# a GOTO goes to a name (See "skip, at left),
160 "skip" : NEXT i# not to line numbers, which are meaningless
170 READ TIMER TO t : LET t=t/500 except to the line
180 PRINT "Done: ", count#," primes found in ",t," seconds." editor. The timer
190 SELECT PRINT 0 : END on the latest ver

sion of the boards runs in increments of
1/250th of a second, and may be STARTed and READ as shown. Although you see LET
statements and they are mandatory, you needn't type them in. When you enter an
assignment, such as: a=a+4, the compiler inserts a LET for you; similarly, it
capitalizes all keywords, which you may enter in lower case.

The Sieve is not the best way to compare number-crunching capabilities; we list
below the results on BYTE's calculation benchmark (with no math chip support;
no Commodore version of HALGOL yet handles the 32081 math chip, though we an
ticipate it will be supported later). All times are in seconds; programs were
run on the machines shown:

BYTE Calculation Benchmark in Seconds

__________________ On an IBM PC____________________ _____On SuperPET_____
True Basic BetterBasic Turbo Pascal PC Basic MicroBasic HALGOL

1 9 . 7 9 1 .3 82.6 6 9 .2 15 0 .0 2.4 6

The Dr. Dobbs benchmark, as modified by Terry Peterson and published in Vol. II,
issue 1, compares as follows (time in seconds). HALGOL time is on an Apple (it
shouldn't make any difference except for math chip support):

SuperPET HALGOL
Macintosh Basic Apple II mBasic BASIC 4 (No math chip) (32081 chip)

586 488 780 552 1 6 .8 3.7

We do wish that the language optionally allowed indented lines for those with
weak eyeballs and a liking for structure; we'd love to see the option of IF...
...ELSE...ELSEIF...ENDIF and various loop and case structures, having spent far
too much of our life puzzling out and amending the code we wrote last month to
ever go back to using unindented, unstructured sphaghetti code. We don't insist
that everybody must use structure (as Pascal does), we simply want the option,
for we dislike a language whose programs aren't both easy to read and easy to
maintain (in our business, you expend far more effort maintaining programs than
ever you did to write them— the doggone world keeps changing!).

SuperPET Gazette, Vol. II No. 6 -157- August/September 1985

We'd like to see a single symbol (! ', or whatever) to block off a comment line,
instead of that darn REM. We miss the power of "index" to locate a substring
within a string, though Hal tells us he definitely will implement it. We dislike
the requirement that you must dimension every string (you default to strings of
16 characters if they are not dimensioned). Everybody else who sees HALGOL tells
Hal how he ought to redesign it; why shouldn't we? After all, DA has only put
$100,000 of its own money into creating it; why not ask Hal to have DA spend an
other tidy fortune to accomodate us? He can always say "No!"— and probably will.

Let us pass from the language to the hardware required to use HALGOL with SPET.
We'll cover it in three sections:

1 . Hooking Up: The hardware may be installed on machines of all vintages (2-
and 3-board)without soldering. The instructions ask you to "tack" two power
leads to the 8032 motherboard; these merely pick up +5 volts and ground, which
you may do by poking the wires into the unused $9000 ROM socket pins #24 and
#12, respectively, according to Terry P. [Terry notes that there may be one 8032
motherboard type which requires modification (no factory-made SPET used it); if
you have one, Digital Acoustics supplies the parts for the change.] Everything
needed for the hookup (cables, parts, instructions) is sent from DA as part of
the Grande package, defined below:

2. The Beacoup Grande: The board on which the MC68000 and its associated RAM
and support chips are mounted is named the Beacoup Grande, for reasons which'11
soon be obvious. DA used to make a board named the Grande, which was equipped
with 64K DRAM (Dynamic RAM) chips; the new 256K DRAM chips became so plentiful
and cheap that Hal switched over to them, so that you may now equip SuperPET

with up to two megabytes of RAM. There are two ver-
Vanilla Beacoup Grande sions of the Grande, one with 150 nanosecond RAM,
With One Wait State which is priced at left, and a second with 120 nsec

RAM, with no wait state at all. Included in the
0.5 Mbytes $725 prices are installation instructions, HALGOL and its docu-
1.0 Mbytes $815 mentation, some 8032 replacement EPROMS and demonstration
1.5 Mbytes $905 software. Terry Peterson says the EPROMs are not of great
2.0 Mbytes $995 interest to SPETters, for they require soldering/desolder-

ing; if installed, they louse up 6809-side operations. Do
Beaucoup Grande + not use them.
No Wait State

0.5 Mbytes $741 Anybody who dives into this gear should subscribe to DTACK
1.0 Mbytes $847 GROUNDED, Hal's newsletter, and should get back issues. It
1.5 Mbytes $953 costs $15 for ten issues. Write DA at the address given in
2.0 Mbytes $1059 the first paragraph of this article.

3. Power Supply and Case: You must put the Grande in an enclosure and provide
some power. DA makes a stainless-steel case and power supply which will hold
any Grande plus an optional medium-high resolution graphics board and a fast,
high-density (1 megabyte) disk-drive controller board (which is being worked on
and is not yet available). The Grande works without either optional board. Case
and power supply cost $195. Terry P. recommends that all but inveterate hardware
hackers buy this rig. The power supply is reported adequate for the Grande with
up to 2 megabytes plus the two optional boards noted (5 volts, 10 amps and line
filter).

You should not expect to plug in the gear above and start using HALGOL and SPET
as a 1 megabyte workaday computer. Though board design is firm and reported very

SuperPET Gazette, Vol. II No. 6 -158- August/September 1985

reliable, the only available software is HALGOL and Terry Peterson's ASSEM68K
cross-assembler (see issue 2, Vol. II). This rig is for assembly language hack
ers, for those who want to use HALGOL for number-crunching, and those who see
the 68000 as the microprocessor which will dominate the microcomputers of the
next decade and who want a head start in writing programs for it.

USER COMMENTS ON HALGOL Nick Solimene of Woodhaven, N.Y. has had a Grande
AND THE GRANDE (early version, with 64K DRAM chips and one wait

state) for several months; he's been using HALGOL
quite a bit. We got a long letter from him, and summarize his comments below:

At first, I thought the BYTE calculations benchmark was too crude for a test
of HALGOL, since within HALGOL it yields zero error and HALGOL does not use

BCD (Binary Coded Decimal) as does BetterBasic. [Ed.
100 t=time The benchmark is at left. In many computer languages,
110 number#=5000 numerous multiplications or divisions of decimal num-
120 a=2.71828 bers cause serious errors, because the result of a
130 b=3.14159 single operation is not precise and this imprecision
140 c=1 then is incorporated at each cycle into the result.
150 for i#=1 to number# The benchmark is designed to determine relative speed
160 c=c*a and relative precision, though somewhat crudely. We
170 c=c*b show in a table below errors generated by the math
180 c=c/a packages in several current languages.] I found that
190 c=c/b the routine runs in 104 seconds in BASIC 4*0 and also
200 next i% gives zero error; in microBASIC it requires 150 sec-
210 print "Done" onds and there is no reported error. This
220 print "Time =";time-t;"seconds" does not necessarily mean there was no
230 print "Error =";c-1 actual error, but that the error, if any,

is so small it cannot be stated. You can
get an appreciation of this from the program, "Paranoia", by R. Kapinski, pub
lished in the Feb. 1985 issue of BYTE. He shows that in every math package there
is a number he calls "ulpone"; it is the smallest number which, when added to or
subtracted from one, can be recognized by the machine as different from one. Any
error smaller than ulpone is invisible. For HALGOL, ulpone is 3-553E-15; for all
of the SuperPET languages, 2.328E-10. Thus we know the errors are smaller than
ulpone for the benchmark above whenever the error is reported as zero below.

No significance should be attached to the errors shown below unless they are
related to ulpone and to the number of bits employed in the FP routines (in
HALGOL, there are 48; in SuperPET, 32). The RMS (root mean square) error which
was reported for Terry Peterson's version of the Dr. Dobbs Benchmark in Vol. II,
No. 1, p. 4 , more accurately reflects the quality of the transcendental math
and FP arithmetic routines in HALGOL.

Errors Reported in Various Languages in Calculations Benchmark

HALGOL microBASIC BASIC 4*0 True Basic BetterBasic Turbo Pascal
0 0 0 -4.583.•.E-13 0 -1.3384...E-08

HALGOL is rapidly becoming more and more complete. The current CBM version from
Terry Peterson is an excellent job of transporting HALGOL to SuperPET. I think
his BIOS (basic input/output system) for the host and the 68000 board will prove
to be useful as a nucleus for the I/O needed with languages or programs other
than HALGOL.

SuperPET Gazette, Vol. II No. 6 -159- August/September 1985

Though HALGOL does not now have an immediate mode in the same sense that other
BASICs do, you have operating commands, including LOAD, SAVE, HPR $aaaa,$aa...
(that's hex, for a memory dump), HPOKE $aaaa,$aa... (poke to memory), LIST, RUN,
SHIFT/RUN (a screen dump), RENUM, SELECT (to redirect listings, output, or error
messages to printer and maybe to other devices in the future), as well as some
others. The combination is a very convenient operating environment.

Line numbers in increments of 10 are automatically provided after entry of the
first line unless you insert new lines by using new line numbers which fall be-
ween existing line numbers. Syntax is checked as each line is entered; you get
error messages if the line is in any way wrong. You can LIST a line with a
followed by a line number if you wish, rather than using LIST #. With Terry's
Commodore version, you may enter code in either upper or lower case; the compil-
ler converts keywords to upper case.

Except for the use of labels instead of line numbers, GOTO and GOSUB are used
in the customary way. I find it very convenient to be able to declare local
variables in a subroutine, thus avoiding name conflicts. If only the language
allowed parameters to be passed to subroutines, as we can do in microBASIC or
in COMAL, HALGOL would be closer to being heavenly.

Concerning strings, I can understand your aversion to declaring string lengths.
Early on, I had no particular need for strings as a result of FORTRAN upbring
ing. Then with CBM machines I got accustomed to them. But the garbage collection
and contortions necessary to manipulate strings only prepared me for the change
to dimensioned strings. I think this is a small price to pay to avoid garbage
collection. [Ed. Maximum string length in HALGOL is 255 characters.]

HALGOL defaults to a string length of 16 characters. Since arrays must be dim
ensioned in any case, string arrays of other than default length require little
additional effort [DIM a$(n$)l00 instead of DIM a$(n%)]. Other strings require
a DIM (i.e., DIM a$56). HALGOL provides STR(a$,7,4) to refer to the substring
starting at character position 7 in a$ and extending for length 4j and a similar
arrangement for arrays. STR may be used on either side of an assignment state
ment, and integer variables [e.g., STR(a$,± % , j%)] may be substituted for literal
values. This rather nicely replaces left$, mid$ and right$. Of course, the usual
+ is used to concatenate strings on the right side of an assignment.

A nice feature of the current version of HALGOL is EDIT. The program statements
"EDIT a$" or "EDIT a$(i%)" display the string and wait for you to insert, delete
or overtype the string. On RETURN, the program continues to execute with the
modified string. Because DATASAVE and DATALOAD let you store and retrieve string
arrays from disk, and because of the large memory, EDIT should be very good for
databases, mail lists, and such. The length function LEN is not yet implemented
but I expect it will be. In summary, I do think HALGOL will be easy to use for
fast string handling if we get both the LEN and the INDEX functions.

Unfortunately, at present it isn't possible to force indentation, even using
statement separators and spaces. As for structure, only IF...THEN...ELSE is now
available. I would like to have the sort of structure provided by either micro
BASIC or COMAL. At present, the lack of structure, the inability to pass param
eters to subroutines, and things like MVA are a great pain. I know that some of
these problems will disappear when HALGOL is finished.

SuperPET Gazette, Vol. II No. 6 -160- August/September 1985

In conclusion, however, I am very satisfied with the 512K Grande board, power
supply, and case. Terry Peterson's ASSEMB68K cross assembler is very easy to
use and quite fast. I have great expectations for HALGOL as it becomes more com
plete. Then the need for more memory and speed will inevitably arise. When it
does, I expect to add the math board (which supports the National Semiconductor
32081 math chip) and a memory expansion board.

Hal Hardenbergh, in his newsletter, indicates that several new features will be
forthcoming: 1) a DOS in 68000 to run the fast Mitsubishi 5-inch drives (1 .2+
Megabytes) at very fast data transfer rates, 2) a high-resolution graphics board
using a high-resolution monitor. Except for the expense and the fact that all
this gear will be on an aging and discontinued SuperPET, the result should be an
excellent system. [Ed. Just as we went to press, we learned that DA hardware and
software will be adaptable to any terminal— not just to SuperPET— as soon as DA
issues its DOS for the potent Mitsubishi drives and the high-res graphics board
mentioned above. Which means that the DA gear is not tied forever to an aging
and discontinued SuperPET, but may be moved, en bloc , to other terminals. At
the moment, SuperPET is merely a host, providing a screen, keyboard, disk drives
and some I/O routines.]

A SIMULATED CENTRONICS PORT FOR SUPERPET [Ed. Josh Rovero for some months
by P. J. Rovero has been stationed overseas, where

U.S. Naval Air Station FPO New York 09523 telephone calls must pass through
telephone systems owned and oper

ated by governments (we refuse to use the words "run by" because the systems may
crawl or refuse to run at all). Add to this notorious unreliability the costs of
transocean transmission, and we aren't surprised by Josh's resorting to radio as
a simpler and far more reliable way to communicate.]

I have a special modem connected to my serial port which allows me to telecommu
nicate by radio; it works well. But I needed a way to control the radio set it
self from SuperPET; that set was configured to accept commands using Centronics
parallel protocol, which isn't supported by our software. I therefore wrote such
software to output through the User Port on SuperPET. With it, you may continue
to use both the IEEE and Serial Ports and send Centronics output through the
User Port— not only for my radio, but for printers which use Centronics output.

This article introduces you to the problems of simulating a Centronics port. The
next article will provide a filter program which lets you couple any Centronics-
compatible printer to the SuperPET user port.

The location of the User Port on SPET is sketched at left; it lies just to the
right of the IEEE port most of us use (looking at SPET
from the top or front). You may connect to it with the
same type of push-on connector used on the IEEE. The pin
identification is shown below, viewed from the rear:

1 2 3 4 5 6 7 8 9 1 0 1 1 12 Top Connections
A B C D E F H J K L M N Bottom Connections

The "G" and "I" identifications or pins are missing; the list is not in error.
The table following correlates the pins and signals for the SuperPET User Port
and for the Centronics printer plug. The dashed lines (---) show connections
between pins. Use either the NACK or BUSY protocols, not both, for CA1!

IEEE User Port i i i i

Rear
Top view of SPET

SuperPET Gazette, Vol. II No. 6 -161 — August/September 1985

User Port Centronics Plug The User Port signal names are those
Signal Pin Pin Signal of SuperPET1s 6522 VIA (Versatile In

terface Adapter), which is already
CA1 Use B ---------- 10\ Use NACK connected to the user port. When we
CA1 One! B ---------- 11/ one! BUSY discuss the VIA, we must employ the
CB2 M ----------- 1 NSTROBE names of the VIA signals; likewise,
GND N ----------- 16 GROUND when we discuss printer connections,
PAO C ----------- 2 DATA 1 we must use the Centronics names for
PA1 D ----------- 3 DATA 2 the signals— even though they are
PA2 E ----------- 4 DATA 3 wired together and comprise one line
PA3 F ----------- 5 DATA 4 of the circuit.
PA4 H ----------- 6 DATA 5
PA5 J ----------- 7 DATA 6 CB1 of the VIA comes out on pin 8 of
PA6 K ----------- 8 DATA 7 user port. Despite the programming
PA7 L ----------- 9 DATA 8 manuals, I was never able to get CB1

to sense (input, read, or test) the
logic level of a line I knew was changing. I therefore had to abandon any use of
CB1, and used CA1 instead. It works well.

The terminology on protocols may be a little confusing. Both STROBE and ACK are
negative logic (often shown by an underline above the names, as at left), but we
___ ___ can't print them that way on a Commodore machine, so we'll have to
STB ACK make do with NSTB or NSTROBE and NACK. BUSY is a positive logic sig

nal (+5 volts when true). We wait for it to go "low" or false, which
shows "unbusy". That is the same as waiting for NACK to go low (meaning "true,
acknowledged"). When we get a negative transition (no +5 volts) on SPET's user
port Pin B, the protocols noted below are satisfied; we can transmit.

Many printers and other devices utilize the Centronics parallel protocol, which
provides for 8 data bits in parallel with a two or three wire "handshake." Most
devices use one of two different two-wire handshakes, as shown at left. My pro

grams use the strobe/acknowledge method.
Strobe/acknowledge They configure the 6522 VIA in SPET as an
(both signals with negative logic) output port which can send a strobe pulse

Strobe/busy and can sense the acknowledge pulse sent
(strobe negative, busy positive) back by the printer or other device.

Port A of the 6522 VIA is already connected to the SPET user port. Pins C thru
L are the eight data pins for the eight data bits; C=1 weight bit; L=128 weight
bit; pin B is acknowledge (CA1), and pin M is strobe (CB2), an output. Always
connect to the User Port with the computer turned OFF. Also note that negative
logic means that the pulses occur when the lines are pulled low (nominal zero
volts), and that the lines are high (+5 volts) in the absence of a pulse.

The 6522 VIA is a very flexible device. It can also be a very confusing device.
A complete description of the VIA and its capabilities and quirks would take
many pages. You'll find good background material in the books at left. The VIA

configuration demonstrated
(1) Programming the PET/CBM, Raeto West, pp 386-390 here is only one of many
(2) PET Interfacing, Downey & Roberts, pp 33-50 that are possible. In the
(3) 6502 Software Design, Leo J. Scanlon, pp 192-218 first application, I con

trol a radio transceiver
through a Centronics compatible interface on the transceiver itself, and do it
from microBASIC with the assembly language program shown in listing 1.

SuperPET Gazette, Vol. II No. 6 -162- August/September 1985

Next issue, we'll see how to output any disk file from main menu to a Centronics
printer hooked to the User Port (which probably interests more people than my
radio application). Even so, the listings below may be useful for those who want
to know how to use the User Port, as well as how to do it from language.

The program in listing 1 has only one purpose: to control the transceiver. It
holds two subroutines: (1) set_via, which configures the VIA for Centronics sim
ulation, and (2) send_it, which I call whenever I output a command string to
the transceiver. The first subroutine is used only once, at start of session, to
set up the VIA. The second calls a delay subroutine to time the strobe pulse. I
need 21 milliseconds; most printers require at most 1 millisecond. The program,
of course, also sends the commands from SuperPET to the transceiver.

The assembly language program in listing 1 is called from a microBASIC driver.
The code gives you an idea of the bit-twiddling required to use the VIA. One in
teresting note: you can hear this program working. The CB-2 line is the same one
used for the SPET "bell." When the strings are output, each CB-2 pulse is heard
as a click.

Listing 1_
;icom9.asm ; Routine via_set sets up the VIA for communications by imitat-

; ing Centronics protocol. CB2 sends NOT STB; CA1 senses NOT
; ACKnowledge. This is listing 1.

Routine send_it sends commands to an icom 720 transceiver,
setting mode (USB, LSB, RTTY, CW, AM); VFO is set to "a";
frequency may be set from 0.1 to 29.9999 MHz.

Delay sets the length of the NOT STB pulse; a value of $0A60
creates a 21 millisecond delay.

port_Aca1
ddra
acr
perif
ifr
port A

; Versatile
equ $e841
equ $e843
equ $e84b
equ $e84c
equ $e84d
equ $e84f

Interface Adapter (via) Addresses
port A with CA1 handshake
Data direction register
Auxiliary control register
Peripheral control register
Interrupt flag register
Port A without handshake

set_via Ida #255
sta ddra
Ida acr
anda #227
sta acr
Ida perif
anda #254
sta perif
ora #128
ora #64
sta perif
ora #32
sta perif
rts

;Make all port_A lines outputs

;Disable shift register

;Set ca1 for negative transition

;Set up CB2 for proper pulse

;Put cb2 high

send_it Ida port_Aca1
ldx #command

;Reading port Aca1 clears ifr

SuperPET Gazette, Vol. II No. 6 -163- August/September 1985

loop
Ida ,x+
quif eq
sta port A ;Put data on
Ida perif
anda #5611011111 ;N0T 32
sta perif 5Pull CB2 low
stx count
jsr delay ;about 21 ms.
Ida perif
ora #32
sta perif ;Put CB2 high
loop
Ida ifr ;Acknowledged
anda #2 ;2 weight bit

until ne ;keep waiting
Ida port Aca1 ;Clear ifr
ldx count

delay

endloop
rts

pshs x
ldx #$0a60
loop

leax -1,
until eq
puls x
rts

• CMD file shown below:

"icom9"
org $7F01
"icom9.b09"

[causes 21 ms delay

command fcb 00,00,00,00,00,00,00,00,00,00
count fcb 00,00

end

These buffers filled from language.

Shown below is the heart of a microBASIC program which uses the ML module above.
It configures the VIA, and then sets frequency by poking the necessary values
to the buffers above and then SYSing the ML module itself. Anyone who wants a
copy of the entire program: send a self-addressed, stamped envelope to Editor,
P0 Box 411> Hatteras, N.C. 27943.

100 ! machine language loader from SuperPET Gazette Vol. I, issue 13, p 220.
! Program by P.J. Rovero
! April 4, '85.
! Set memend_ to $7fff
! load ML routine

110 if loaded=0
120 loaded=1
130 poke (hex(122')),hex('7f'),hex(' ff1)
140 chain "icom9.mod,prg",names
150 else
160 poke hex('22'),hex('7e'),254 ■ MemEnd_ to $7EFE to protect ML routine.
170 open #4 0, "keyboard", output
180 print #40, "delete 100-200"+chr$(l3)+"edit"+chr$(l3)+"run"+chr$(l3)
190 endif
200 stop
210 ! Make one call to set up the VIA properly.
220 call set_via
230 ! ...remainder of program displays on screen the various modes available
240 ! and asks for the frequency setting desired. When this data is input,

SuperPET Gazette, Vol. II No. 6 -164- August/September 1985

250 ! it is poked to the command buffer in the ML routine, which is then
260 ! SYS'd as shown below. The command buffer starts at $7F62.
270
280 for jj=1 to 9
290 poke (hex('7f6l')+jj),ord(icom_freq$(jj:jj))
300 next jj
310 poke (hex('7f6l1)+10),0 ! End the string with a 00
320 print icom_freq$
330 call send_it
340
350 proc set_via ! SYS the address of "set_via"
360 sys hex('7f01')
370 endproc
380
390 proc send it ! SYS the address of "send_it_" in the
400 sys hex"("'7f231) ! ML routine
410 endproc

The technique is easy to extend. A simple "filter" which passes a disk file
through the simulated Centronics port will be printed in the next issue of the
Gazette; it may be used to send any disk file to a printer which accepts the
Centronics protocol, and obviates the need for any hardware interface except a
home-made cable.

AN ALARMING ARTICLE Do you have a task that gets along pretty well without
by Loch Rose you most of the time but intermittently needs some oper

ator help? I supply here a routine that will literally
make SuperPET cry for your attention from the built-in speaker. Because that
speaker is none too loud, I experimented to find the most aggravating sound,
voted most likely to jerk you rudely from your hammock. To make the alarm "ring"
twice, you need only insert 'call alarm(2)' into your program. To make the alarm
ring until you press a key, insert 'call alarm(o).' With minor revisions, it
should work in almost every SuperPET language.

9000 proc alarm(repeat^) !'repeat%' is number of alarm signals requested
9010 if repeat^ > 0
9020 for k = 1 to repeat^ ! If repeat^ <= 0, repeat alarm until user hits
9030 call noise ! a key.
9040 next k
9050 else
9060 print : print "HIT ANY KEY TO STOP NOISE:
9070 poke 301, peek(303) ! empty keyboard buffer
9080 loop
9090 call noise
9100 get keypress
9110 until keypress
9120 print : print
9130 endif
9140 endproc
9150
9160 proc noise ! actually makes the noise
9170 location = 59464
9180 poke 59467, 16 : poke 59466, 15
9190 for i = 1 to 8

SuperPET Gazette, Vol. II No. 6 -165- August/September 1985

9200 for j = 6 to 10
9210 poke location, j
9220 next j
9230 next i
9240 for i = 1 to 8
9250 for j = 71 to 75
9260 poke location, j
9270 next j
9280 next i
9290 poke 59467, 0
9300 endproc

[Those of you with 8250 drives may not be interested in a new 1001 drive; even
so, read the section on REL files at the end of the the article following. Ed.]

AN INEXPENSIVE ONE MEGABYTE DRIVE, Most of you probably have seen ads for
DEVICE SWITCHING, MEMORY WRITES, the Commodore SFD 1001 single drive; it
AND RUNNING PROGRAMS IN BEDIT seems to be, in performance, one-half of

an 8250 drive, double-sided, with a for
matted capacity of about one megabyte. We've seen it priced from $199 to $399.
It's an IEEE device. We learned that Associate Editor Reg Beck had bought one;
his SuperPET and he are happy with it, in event you're thinking about supplemen
ting that old drive. It is sold by Progressive Peripherals & Software, 2186
South Holly, Suite 200, Denver CO 80222 (303) 759-5713, and is being advertised
and discounted pretty heavily. See your favorite computer magazine.

Reg Beck sent us a short article describing his struggles to get up and running
with the 1001 drive; because you face these problems with any second drive and
we suspect a lot of you may get one, we expand on Reg's material below.

Once you buy a second drive, you gotta problem. Any 8x50 or 4040 and the new
1001 will default to device 8; you can't talk to either drive until you software
reset one of them to a new device number. Then you become annoyed. Every time
you turn the drives on, you must 1) Turn on the drive which will be device 9;
turn off the one which will be device 8; 2) software set the active drive to
device 9; and, 3) turn on the second drive, which then becomes device 8. If you
crash, lose power, or reset to 6502, both drives reset to device 8; you must
again trudge through the setup procedure.

The obvious solution is to hard-wire one of the drives as device 9 (see below),
to leave both drive switches on, and to connect the power cords of both drives
to a single outlet controlled by a master switch.

In the remainder of this article, we'll cover how to change device number by
software and how to do it by hard-wiring. There are three ways to go about a
software reset. The easiest is to employ the program on the first ISPUG Utility
disk, "chgadrs.mod", written by Terry Peterson. It loads from main menu; keep it
on your language disk and call it whenever you want a device reset. Oh, you
don't have ISPUG Utility Disk I?

The second way to get a software reset is to write a program which sends the
proper commands to the disk drive, using the Memory-Write (M-W) commands found
in the various editions of the User's Manual for your disk drive. We simplify
matters by printing below the easy way to determine the M-W code for any legal
device number.

SuperPET Gazette, Vol. II No. 6 -166- August/September 1985

You may write your own M-W program, but it's easier to copy or to revise the
one written by Terry Peterson and published on p. 115 of Vol. I, No. 9. We have
extracted Terry's algorithm below; it will generate the M-W code to set any de
vice number. The code values found below in angle brackets are the decimal ASCII
codes to transmit. Write a program in any language to send them to your drive.

new device = [choose] new__var = new_device+32 new_talk = new_device+64

The command to be sent is, in general form: M-W<12X0X2><new_var><new_talk> .
We give a specific example for a change to device 9; the variables then take on
these values: new_device = 9, new_var = 9+32, new_talk = 9+64, as shown at left.

It is quite simple to use the algorithm to determine
M-W<12 X 0 X 2 X 4 1 ><73> the commands for any legal device number. The command

is sent to the command channel of the drive itself (to
ieeeX-15, where X is the present device number). The Commodore manual says that
the drive should be initialized before you send a device-change command, but we
and Reg Beck have never found it necessary.

Now, having the code, ask yourself if you really want to load a language and a
program each time you need to change device number. Obviously you won't. What
are your other alternatives with software reset?

1. Well, poor Bodsworth sent program output to disk and then COPied the file
to a drive. Gee, that works fine at the start, but when SuperPET tries to close
the file on the old device, it can't. The old device isn't there any more. Poor
Bodsworth is still bewildered by that one.

2. Write the program in BEDIT, BEDCALC, or DEVCALC, ISPUG's superEditors—
and then PRINT it from any of them. Poor Bodsworth is still unaware that you
can do this, as we show below by using some of Reg Beck's programs.

PRINTING MACHINE LANGUAGE FROM BEDIT Joe Bostic designed BEDIT in its var
ious forms to send any possible decimal or hex value to any device— a drive, a
plotter, a printer— with the PRINT command. First, let's define the difference
between a character and a "literal." We all know that any editor sends the ASCII
code for a character to any output device, "A" being transmitted as decimal 6 5,
for example. You may send any "literal" value— the actual value itself— by
enclosing the value in angle brackets, <>; e.g., <$20> transmits hex 20, an <11>
sends decimal 11. You must PRINT (not PUT) files containing <value> to transmit
the literals. You may intermix normal text and <literals>.

The PRINT command sends as normal text all values in an editor file except the
<literals>, which may be in either hex, decimal, or ASCII mnemonic; a CR may
be PRINTed as <$0d>, <13>, or <CR>. Joe Bostic believes in being flexible.

Having this under our belts, let's send some M-W commands to change devices; we
believe these commands will work on all 4040, 8x50

Change device from 8 to 9: and 1001 drives. Put the screen cursor on the M-W
M-W<12 X 0 X 2 X 4 1 ><73> command line and issue the PRINT commands shown,
. print ieee8-15 preceded by a dot (which sends only the M-W line

to the disk command channel).
Change device from 9 to 8:
M-W<12X0><2><40><72> File (PUT) these commands to disk and GET them as
. print ieee9-15 you need them. Don't try to EXECute them from disk

SuperPET Gazette, Vol. II No. 6 -167- August/September 1985

in BEDIT, because the device number is changed in
the midst of a file operation; SuperPET tries to close a file on the old device,
not the new one— and can't, as Bodworth found out. In sum, PUT these commands
to disk, GET them into BEDIT as needed, and then PRINT them to ieeeX-15.

SECOND HURDLE DEPT. You now decide to copy some old disks to the new, big
1001 disk. Sorry to tell you that there is no way to copy entire disks between
devices in SuperPET in 6809 mode with the software which came with SPET. But
you do have four ways to solve the problem:

1 . You may rename all your files in capital letters and copy disks in 6502
mode; it's both impractical and slow.

2. You can buy MicroPIP and its manual from Waterloo (a recommended buy if
you have a lot of disk work to do) but somewhat expensive at $75. See the review
of that program in Vol. I, No. 9, p. 129. It copies whole disks flawlessly be
tween devices, but is both slow and complex if you must copy selected files.

3. Write a program which will read an edited directory list and copy the
files between devices. It's easy to make the original list with: "di disk to
index" or similar commands; it's easy to edit the list; writing the program is
equally simple. But you must first load an Editor to make and edit the list, and
then load a language and a program to copy the files. That's slow and tedious.

4. Use BEDIT's batch file capability. This is the fastest and easiest way.
In the tutorial and instructions for BEDIT are two programs: C0PYFR0M9 and
C0PYT09. You make a list of the files to be copied by editing a directory list
ing, file it as "list:bed", and then execute either of the EXEC files above. The
copying is swift, accurate, and simple.

Gee, who would have thought that buying a new disk drive could get so involved?
Sorry it sounds that way; we suspect it will take the average user about an hour
to set up and try the M-W commands and the C0PY9 files. After that, handling
files between devices is simple and easy; you'll find yourself switching disks
far less often with the added disk capacity aboard.

THIRD AND LAST HURDLE DEPT. We repeat Reg Beck's sage words on how to copy
or read REL files in 8250 or 1001 drives. If 8050-formatted REL files are to

be copied (as from an ISPUG 8050 disk) to an 8050 for
matted disk which is in an 8250 or 1001 drive, you must
disable the Expanded Relative File (ERF) capability of
the 8250 or the 1001— or the files will not copy. Reg
says the commands at left do the trick. You may PRINT
them directly from BEDIT or BEDCALC or stuff them into
a batch file which uses EXEC. Be sure to reset the 8250

or 1001 to expanded ERF when you are through copying. You must disable ERF if
you want to read 8050 formatted REL files on an 8250 or 1001. Last, a warning:
You must initialize the 8250 or the 1001 with: p ieeeX-15*i <RETURN> before you
send the ERF enable/disable. The lower case "i" initalizes both drives of an
8250 or the single drive of a 1001. You can send it in upper case if you want,
or you can PRINT it instead of PUTting it. Doesn't matter, thanks to Joe Bostic.

* * *

The early disk drive user manuals we received from Commodore held no material at
all on changing device numbers on drives; for those in the same boat, we sum
marize the information below.

Disable ERF
M-WC164X67X1 ><255>

Enable ERF
M-W<164X67X1 ><0>

SuperPET Gazette, Vol. II, No. 6 -168- August/September 1985

HARDWARE DEVICE NUMBERS We always work with two drives; the second is hard
wired as device 9 for good and obvious reasons. Unless you know your way around
electronic gear, you should have the modifications we discuss done by someone
who does. Lift the lid on any 8x50 or 4040 drive; look at the top board— the one

inside the lid itself. Near the bottom
Device No.
Wanted:

Pin 22 Pin 23 Pin 24

8 0 0 0 in the
9 0 0 1
10 0 1 0 Pin 22
11 0 1 1 Pin 23
12 1 0 0 Pin 24

of the board, you'll see a large chip
(ours is 6532) in socket UE1. Just left
of the socket are three circular spots

traces on the board itself:

6532 chip
in UE1

0 means leave alone. 1 means cut trace
or bend this pin so that it doesn't en
ter the socket when chip is replaced.

Cut the center trace on
24 to obtain device 9•

Pins 22, 23, and 24 of the chip in UE1 are normally grounded by the traces.

You have three choices: 1) remove the chip, bend the appropriate pin, and re
install the chip, 2) scratch out (cut) the trace as shown in the table above for
permanent change. We've marked the place to cut for device 9 in the sketch, at
the small center trace between the large, circular spots shown (see the carat
for exact position); last, 3) if you feel this will reduce the resale value of a
drive, you can set in a switch, but it is not a job for amateurs. The switch
cannot "bounce" (make several contacts); it cannot affect the circuit it's in,
and it should never get flipped accidentally. It should only be "switched" when
the drive is off unless you use the UJ command defined in the drive manual. Pick
the method which suits your needs.

THE ACIA AND HOW TO USE IT The 6551 ACIA in SuperPET is the chip resposible
FOR INTERRUPT-DRIVEN TC for running SuperPET's serial port. (ACIA means

by Loch Rose Asynchronous Communications Interface Adapter;
Associate Editor we'll later see that the title is appropriate.)

This article outlines how to use the ACIA when
you write interrupt-driven telecommunications programs; it owes a great deal to
Terry Peterson's article in the April, 1983 issue of MICRO, to which you should
refer if you need more detail.

Basic Information & Terminology Dept.: a byte consists of eight bits, numbered
(as a matter of convention) 7 through 0 from left to right. A bit is set if it
contains 1, and is clear if it contains 0. On a terminological note, RECEIVED
data is that which comes into the computer through the serial port, from a modem
for example, and TRANSMITTED data is that sent by the computer, such as text to
a serial printer.

I will now describe some of the functions of the ACIA registers. There are four
registers in all:

The data register (ACIAdata for short) at hexadecimal address $EFF0 is the
register through which both received data and transmitted data pass. To transmit
a byte of data, you need only store it in ACIAdata; the ACIA then takes care of
actually transmitting it. But since the ACIA places received data bytes in ACIA-

SuperPET Gazette, Vol. II No. 6 -169- August/September 1985

data, you should check ACIAdata for a received byte before placing an outgoing
byte in it. ACIAstat (below) allows you to do so.

The status register (ACIAstat) at $EFF1 gives you the status of various oper
ations. (l) Bit 3 is set when the ACIA receives a data byte, and cleared when
you write to or read from ACIAdata. (2) Bit 4 is cleared when you store an out
going byte in ACIAdata, and set when that byte is actually transmitted. (3) Bit
7 is set when the ACIA requests an interrupt (of which more below).

The command register (ACIAcmd) at $EFF2 allows you to request a receiver
interrupt by clearing bit 1. If you do so, then whenever the ACIA receives a
data byte and places it in ACIAdata, it sends an interrupt request signal (IRQ)
to the CPU. (See Gazette I, No. 15, p. 276ff for articles on interrupts.) To
take advantage of the receiver interrupt, you must supply an interrupt-handling
routine that checks the ACIA and removes the received byte from ACIAdata. This
method deals with each data byte as soon as it arrives, so any following bytes
cannot overwrite it.

The control register (ACIAcont) at $EFF3 controls serial port parameters
such as baud rate.
is documented on p

You can set it with SETUP or with subroutine sioinit , which
185 of the Assembler manual.

I shall now outline some machine language routines that perform interrupt-driven
telecommunications. At the end of this article,

"tc"
include "disk/1.watlib.exp"
org $1000
"main.b09"
"init.b09"
"signoff.b09"
"send.b09"
"handler.b09"

"main.asm" will weave them together. If "main"
and the subroutines following are assembled, you
may link this package into a working telecommuni
cations package which loads at main menu.

Should you choose to use the package, the command
file is printed at the left.

;init.asm - Initializes input buffer, connects user interrupt-handling routine.

xref IRQhndlr,conbint_,nextread,nextstore,inbuffer
xdef init

init

equ $eff2

sei ;Mask off interrupts.
ldd #inbuffer ;Initialize our own input buffer.
std nextread ;Set read pointer to start of the buffer.
std nextstore ;Set write pointer to the same address.
ldd #8 ;Offset of 8 bytes into IRQ handling table.
pshs d
ldd #IRQhndlr ;Address of our interrupt-handling routine.
jsr conbint ;Connect user interrupt-handling routine.
leas 2,8
Ida ACIAcmd ;Command register—
anda #5611111101 ;Clear bit 1, enabling receiver interrupt
sta ACIAcmd
cli
rts

;Reenable interrupts.

SuperPET Gazette, Vol. II No. 6 -170- August/September 1985

;handler.asm - A user interrupt-handling routine.

xdef IRQhndlr,input,nextread,nextstore,inbuffer,endbuffer

reglRQ equ $deOb
ACIAdata equ $effO
ACIAstat equ $eff1

IRQhndlr bsr input
if ne

jsr reglRQ
bsr input

endif
rts

input Ida ACIAstat
anda #$00001000
if eq
andcc

else
ldb
andb
ldx
stb
cmpx
if

ldx
endif
cmpx
if

stx
endif
orcc

endif
rts

1111011

ACIAdata
#$01111111
nextstore
,x+
#endbuffer
hs
#inbuffer

nextread
ne
nextstore

#$00000100

;Address of usual interrupt-handling routine

Is there a received byte in ACIA?
NO, interrupt was generated by clock.
Go to usual interrupt-handling routine.
Recheck for received byte (one might arrive

during the previous routine.)
Return from interrupt process.

Check ACIA status:
Is bit 3 set? (= byte received).
NO, byte not received.
Clear zero flag (means 'nonzero result found')
YES, byte received, so
read received byte.
Clear bit 7 of received byte.
Load input buffer store pointer,
store received byte in buffer.
Is pointer past end of buffer?

Yes, wrap pointer to start of buffer.

Has pointer caught up to read pointer?

No, store new pointer value.

Set zero flag (means 'zero result found')

nextstore rmb 2
nextread rmb 2
inbuffer rmb 80
endbuffer fcb 0

;Input buffer store pointer.
;Input buffer read pointer.
;An 80-byte buffer - you can make it any size.
;Just a marker for end of buffer.

NOTE: I do not recommend simply printing received bytes directly on the screen,
because the printing process can be too slow when data arrives at 1200 baud; you
may lose bytes. That is the reason we employ a buffer.

Next is a routine that transmits one byte (to send a series of bytes, you simply
call it repeatedly). You'll note that it checks for received bytes; this should
not be necessary, because received bytes should trigger an interrupt which deals
with them immediately. However, I find it necessary to do it this way to avoid
losing an occasional byte, and will be delighted if someone can tell me why.

;send.asm - Subroutine transmits a byte supplied in register B.

SuperPET Gazette, Vol. II No. 6 -171- August/September 1985

xref input
xdef send

bputscn equ $d714
ACIAdata equ $effO
ACIAstat equ $eff1

send pshs
clra
jsr
loop

loop
Ida

bputscn

ACIAstat
bita #$00001000
quif eq
sei
jsr
cli

input

endloop
anda #$00010000

until ne
puls b
stb ACIAdata
rts

;Routine prints char, in B register to screen.

;Save a copy of outgoing byte on stack.

;Print byte on screen.

;Load status.
;Is ACIAstat bit 3, 'byte received', set?
;N0, byte not received, quit.
;YES, received. Mask off interrupt,
;deal with received byte.

;Is bit 4, 'byte transmitted', set?
;YES, go ahead and transmit new byte.
;Restore outgoing byte, and transmit
;by storing outgoing byte in data register.

Note that it is essential to wait until the 'byte transmitted' flag is set. You
otherwise might put a new byte into ACIAdata before its predecessor is sent.

Finally, when you are through with TC, you should disenable the receiver inter
rupt and return interrupt-handling to the usual routine:

;signoff.asm - Disconnects user interrupt-handier, disenables receiver interrupt

xdef signoff

reglRQ equ $de0b
ACIAcmd equ $eff2

signoff sei ;Mask off interrupts.
Ida ACIAcmd
ora #$00000010 ;Disenable receiver interrupt.
sta ACIAcmd
ldd #regIRQ ;Address of usual interrupt-handler.
std $0108 ;Restore usual interrupt-handler.
cli ;Reenable interrupts.
rts

If you want to combine these routines for TC, use "main.asm", below. It employs
the subroutines to create a working telecommunications program.

;main.asm - Mainline routine, which calls the subroutines above.

xref nextread,nextstore,inbuffer,endbuffer,init,signoff,send

SuperPET Gazette, Vol. II No. 6 -172- August/September 1985

kyputb equ $dd82
bputscn equ $d714
service_ equ $32

main jsr init
loop
jsr kyputb
if ne
cmpb #139
beq endit
jsr send

endif
ldx nextread
cmpx nextstore
if ne

ldb , x+
cmpx #endbuffer
if hs

ldx #inbuffer
endif
stx nextread
guess

tstb
quif eq
cmpb #10
quif eq
jsr bputscn

endguess
endif

endloop
endit jsr signoff

clr service_
rts

Gets character from keyboard into B register.
Prints character in B on screen.
See end of program.

Connect user interrupt-handier.

Get character from keyboard.
If character found in keyboard,
is it "shifted period" on the keypad (PF.)?
YES, end program;
else, transmit character.

Load input buffer read pointer.
Is buffer empty?
NO, input buffer not empty, so
load character from buffer, increment pointer.
Is pointer past end of buffer?
YES, wrap pointer to start of buffer.

;Store new value of read pointer.

;Test character taken from input buffer,
;if character is a null, skip.

;If character is a <line feed>, skip.
;Print character to screen.

;Disconnect interrupt-handier.
;Causes program to return to main menu.

B I T S B Y T E S & B I J E S toy (Eaairy l a t l l f f » Sir.

215 Pemberton Drive, Pearl, Mississippi 39208

We have completed a milestone in this column— all the details of how to create
assembly language programs using the SuperPET have now been covered, the two-
part series on math processing routines (printed last issue) being the end.

Now we are ready to turn our attention to the development of larger programs,
using the ability of the Development system to create separate modules. We first
introduce the concept of table processing and then advance to the study of com
mand tables and their drivers.

Table processing is the heart of any complex system. A table may consist of
simple one-character commands, as in the monitor, where the commands are, for
example, m for modify, t for translate, d for dump, and so on. In high-level
languages, a command table again must be processed, but the commands consist of
full words such as: print, for, next, etc. How do we set up and use the tables?

We will introduce the art of processing tables with an example which is familiar
to all. When you were a child, you probably sent encrypted messages to a friend.

SuperPET Gazette, Vol. II No. 6 -173- August/September 1985

To translate a message into code, each of you had a table which consisted of the
alphabet and the code symbol which replaced it in your code. You converted the
encrypted messages into English by looking up the coded letter and replacing it
with its table value.

To keep the coding of this example simple, we'll restrict our message to lower
case characters of the alphabet. The program follows. Before you go through it,
please look at the label TABLE, at the end of program, for that governs what
characters are substituted for those in our original message.

xref getrec_, putrec , islower_, printf System routines to be used

buf1 equ $1500
buf2 equ $1600
msize equ 80

; Buffer 1 will hold the original message.
; Buffer 2 will hold the encrypted message.
; Maximum size of the message will be one screen line.

Get the message from the screen and store in buffer 1.
ldd #msize
pshs d
ldd #buf1
jsr getrec_
leas 2,s

; Get one line or less. This is P2 for GETREC.

; The address of buffer 1 is P1 for GETREC.
; Get record from terminal. Number of chars read returns in B.

; End the string with a null and print it for verification,
ldx #buf1
pshs x
abx
clr ,x

ldd #msg1
j sr printf_
leas 2,s

This address is the substitution address P2 of printf_.
Add the number of characters read to address of buffer.
This ends our original message with a null.

; Message 1 prints "Your text message was..."
; and prints the original message.

; Check message for illegal characters; abort if any found.
ldx # buf1
loop

ldb ,x+
quif eq
cmpb #" "
if ne
jsr islower_
if eq

ldd # msg2
jsr printf_
swi

endif
endif

endloop

; Check for spaces.
; If not a space...

; 0000 returns for FALSE— we found a character NOT in
; lower case alphabetics.

; Error, so abort program.

; Well, if there was no error...

We begin translating the message into code, using the TABLE at end program.
ldu #buf1
ldx #buf2
ldy #table -1

Load address of original message.
Set up to store the enciphered message in buffer 2.
Load address of TABLE (and offset, since "a" will
be 1, "b" will be 2, etc.).

SuperPET Gazette, Vol. II No. 6 -174- August/September 1985

pshs x
loop

ldb ,u+
quif eq
cmpb #" "
if ne
andb #$1f
ldb b,y

endif
stb , x+

endloop
stb , x+

We stack the address of the enciphered message,
so we can print it at the end of program.
Get a character from buffer 1,
Stop if it's the endstring null,
bypass spaces;
if not a space, encipher
AND ASCII code for character with Decimal 31•
Offset to desired position in TABLE
(see comments below on effect of AND)
Store enciphered character in buffer 2.

; Store endstring null as last character.

[Ed. If you're confused by the ANDB #$1f, above: it changes the ASCII code num
ber for a character to its alphabetic place; e.g., a (ASCII $61) becomes 1, and
z (ASCII $7a) becomes 26. You may find it clearer to subtract: SUBB #$60.]

; print out the converted message.

ldd # msg3 ; We have already stacked the address of the encipherment
jsr printf_ ; and now print the that converted message.
swi

; data area
msgl fee "Your text message was:%nsn"

fcb 0
msg2 fee "text must contain only lower case letters. ABORTED THE PROGRAM.%n"

fcb 0
msg3 fee "your coded message is:% n% s% n"

fcb 0

table fee "qwertyuiopasdfghjklzxcvbnm" ; TABLE which enciphers the message,
fcb 0
end

"transl" To the left we have our .cmd file for the
org $1000 program above. Note in particular the use
include "disk/1.watlib.exp" of the index registers to save the places
"transl.b09" within the tables. One is needed for the

input text buffer, another for the output
buffer, and a third is required for the place in the translation table itself.
This is a fairly simple but often-used technique for table translation.

We could expand this idea to a game in which we try to identify the characters
contained in a hidden message. This idea is similar to that of the popular TV
show "Wheel of Fortune." This exercise will greatly increase your understanding
of the techniques of table handling, so we'll have a contest. Submit your solu
tion to find a hidden message and to display it.

For example, have a screen line which displays the alphabet and highlights the
letters which have been used; display a blank message line, which fills in as
you guess correctly: ___ __ ___
The hidden message might be "now is the time for all ispuggers to solve this
problem." If you guess an "a", then "a" is highlighted on the alphabet line, and

SuperPET Gazette, Vol. II No. 6 -175- August/September 1985

the message line shows an "a" wherever one appears in the hidden message. We'll
award a small prize for the best solution; if it isn't too long, we'll print the
best program in a future issue. In any event, we'll name the winners.

No, I'm not going to type in each entry! Send the solution both as an .asm file
and as an executable .mod file to me at the address shown at the top of this
column, on 8050 disk. If you have a 4040, send the disk to ISPUG to be converted
to 8050 format. ISPUG will return your disk and forward the copy to me.

Next issue, we will continue our treatment of table handling by taking a closer
look at the structure of a command table and its driver.

T H E A P IL E X IP IB I) 25 25 Iby IEE(£ B E C K

Box 16, Glen Drive, Fox Mountain, RR#2, Williams Lake, B.C., Canada V2G 2P2

The absence of the diamond statement separator in SuperPET's APL can frustrate
the user (when implemented, it allows several statements on one line). It prob
ably was left out because Waterloo ran out of banks for APL interpreter code and
because our APL was designed for schools, where beginning programmers are encou
raged to write one statement per line.

I recently worked on a function which set the cursor sequentially to positions
in a grid. A loop was slow and resulted in a sluggish cursor. I wound up with a
51-line function which could have been made quite compact using the diamond
statement separator; each statement was only a few characters long. Readability
would not have suffered because each pair of statements did the same thing, but
at a different place on the screen. Unfortunately, there does not seem to be a
way to synthesize a statement separator for statements which do not return res
ults. Yet a simple function will work as a separator if each statement to its
right returns a result and each statement to its left requires an argument. The
separator shown below throws away each result returned to it as a right argument
but permits any variables which are defined to be retained.

VA[Q]V
[0] R ■*- A & B
[1] R*-A

A:a r\IN DIRECT D EFIN ITIO N

6 A 55 A “22
6

'QEXAMPLEl Q]V
[0] R + EXAMPLE ; A ; B ; C
[1] R *-(A + B -C)*2 A A W] A A+Q

EXAMPLE
□ :

1 5 8 7
□ :

2 0 6 5
4 9 121 64

EXAMPLE is a simple demonstration of how statement separators can be employed to
avoid several lines of code. These statements obviously could be written as a
one-liner; appropriate parts of long one-liners are, however, often written as

SuperPET Gazette, Vol. II No. 6 -176- August/September 1985

separate statements for readability. Del is a good choice for this function, as
it resembles the diamond and is the only non-alphabetic symbol which can be used
as a function name.

* * *

The following pair of functions will remove and replace the blanked lines which
are normally found between text lines on screen to make the text easy to read.
Data for doing this in all Waterloo languages is found on page 69 of the Super
PET System Overview manual.

VNOBLANKlD]V
[0] NOBLANK
[1] UAVLUIO+H 40 5 5 7 33 9 7] QPOKE 8p59520+0 1

VBLANKLmv
[0] BLANK
[1] O4KCOI0+4- 32 5 3 7 29 9 9] QPOKE 8p59520+0 1

These functions are useful for graphics. You can't draw a decent box or grid
without first removing the blank lines. Writing functions to draw grids can be a
formidable task, since a vector must be created which contains the code for each
character to be POKEd to the screen. This can run to several hundred numbers
for a large grid. The function GRID, which follows, does all this for you. I
received it some time ago from Jim Swift of Nanaimo, BC. GRID takes its time to
draw a grid of the required size and sets up two global variables, CHAR9 and
PK9. CHAR9 is the vector of characters and PK9 is a matrix of POKE locations
required by QUAD POKE. Once these have been generated, FASTGRID will create
the grid in a flash and GRID is no longer necessary for that particular job.
[The reverse field box graphics (+128 supplements) need not be poked; they may
be printed to screen freely. The box graphics which must be poked are the low
CONTROLS, from ASCII 1 through 11. Ed.]

vfff?iz?[[]]v
0] SIZE GRID CELL ;niO;LINE;STARTiR;C;S;CL;TYPE

; 1] flDRAWS A GRID SIZE IS THE NUMBER OF CELLS
2] nCELL IS THE SIZE OF A CELL
3] r\START IS THE POKE NUMBER OF TOP LEFT CORNER

; 4] R THE SYNTAX IS 4 6 GRID 3 4 FOR 24 CELLS EACH 3 BY 4
5] n NOTE - A SQUARE CELL SHOULD BE 2 4 OR 3 6 OR 4 8 ETC
6] nRECEIVED FROM JIM SWIFT

; 7] QTC^l
; 8] -K) *xv/ 24 80 < S+SIZExCELL +-CELL-1

9] NOBLANK
10] START+32768
11] □27C[5, (l+i?<-S[l]) p3]
1 2] LINE (4 , l + O S [2]) p O
13] LINEl1;>5,((C-l)p(CL+(CELL[2]-1)p2),9),6
14] LINE[2;]+ (C+l)pl,CL+30
15] LINE[3;]-«-8, ((C-l) pCL,11), 10
16] LI'MC4;>4,((C’-l)pCL,7),3
17] TYPE'*■ 1, ((R-l) p((CELL[1]-1) p2),3),4
1 8] (CHAR9+UAVCniO+,LINE[TYPE;n) OPOKE PK9+START+C 0,80*\R) « . +0 ,C

VFASTGRIDtD]V
0] FASTGRID
1] NOBLANK
2] Q rC[5, (l+ l-t-pP #9)p3]

SuperPET Gazette, Vol. II No. 6 -177- August/September 1985

C 3] CHARS UPOKE PK9

If you wish the program to fill the grid with information or to let a user enter
information in the grid, you can write a function which calls up SETCURS, which
will set the cursor to any screen row and column (not grid row and column).

VSETCURSL []]V
[0] R SETCURS C
[1] fiSETS POS OF CURSOR ON SCREEN TO R0W=R,C0L=C
[2] 0 Op(256 l+.x.ff,C)QSTS 45191

* * *
The Fibonacci series interests mathematicians and programmers. Writing a pro
gram to generate Fibonacci numbers is a good exercise. If you're not familiar
with this series: The first and second Fibonacci numbers are both 1. Each
subsequent Fibonacci number is the sum of the two immediately preceding it in
the series. Thus, the first 10 numbers in the series are 1 1 2 3 5 8 1 3 21 34
55. We can easily write a recursive function in direct definition which will
return a specific Fibonacci number (try it yourself before reading on). FIB 10
returns 55, the 10th Fibonacci number.

FIB: {FIB ui-D+FIB w -2 : (w=l)va=2 :1

Recursive functions can be SLOW in SuperPET APL. Try generating some larger
Fibonacci numbers and see for yourself how the system slows down to a crawl.

* * *

In the last column we discussed APL idioms. Since then, The APL Idiom List, by
Perlis and Rugaber, arrived. It is published by Yale University, Department of
Computer Science, as its Research Report #87, 1977. Perlis and Rugaber have
extended the meaning of idiom (from that given last column) to refer to any ex
pression which occurs repeatedly in various contexts. The idioms which follow
are from their list. (The FINNAPL Idiom Library from APL Press arrived today and
is an excellent companion to Perlis and Rugaber.)

(+/A\L= ’ »)$L nlEFT JUSTIFY A WORD LIST.
(1 -(£=» 1)±l)<j>L nRIGHT JUSTIFY A WORD LIST.
(v\S*» ')/S f\,ELIMINATE LEADING BLANKS.
(<t>v\<|>S*' ») / 5 nELIMINATE TRAILING BLANKS.
V+A,A+(xB-A)x\\B-A r\A VECTOR OF INTEGERS FROM A TO B .
*/(V\V)=\pV nARE ALL ELEMENTS OF V UNIQUE?
A/l=+/AfA .=§M nARE ANY ROWS OF MATRIX M DUPLICATED?
S*-(A ,B) [M ip i4) > (p B) pff] nPUT THE STRING B INTO THE STRING A

r\AT POSITION N.
* * *

I return to writing this column after a couple of weeks away from the keyboard.
School is almost over and summer holidays are near. We have been informed that
the Computing Science curriculum guide will be ready for next school year and
that, yes, the language will be Pascal— sigh. Good APL books keep turning up
but go on the shelf for later as all available time must be devoted to Pascal.

I received a letter from a happy owner of the direct function definition disk.
He wanted to know if it was possible to extend the compiler to handle multiple
conditions without rewriting it. This is readily accomplished through multiple
functions. A direct definition of the signum function serves to demonstrate
how this works. Sgn A has the value -1 if A<0, 0 if A=0 and 1 if A>0.

SuperPET Gazette, Vol. II No. 6 -178- August/September 1985

SGN: l:w<0 -.ELSE u
ELSE: 1:cij=0:0

The function ELSE handles the condition that A is non-positive.

WINDOW INTO OS/9 What the User Receives with Super-OS/9 Version
by Gerry Gold and Avy Moise 1.1; In mid-August, four disks will be distri

buted to all OS/9 owners. This provides the TPUG
release of V1 .1 [disk 1] (V1.0 with XCom9 telecom software), a subset of the Su-
per-OS/9 ".asm" and ".b09" files that permit user redefinition of many defaults
(e.g., the keyboard and I/O ports)[disks 2-3] and an extensively revised manual
that includes sample source codes for various system utilities. All other source
files which are not copyrighted by Microware Inc. and which are not included on
the release disks, may be obtained on request from Avygdor Moise for $49, at 120
Torresdale Ave., Apt #1207 Willowdale, Ontario, Canada M2R 3N7, Tel. 1 (416) 667
9898 at home, or with the same prefixes 3954 at work.

XC0M9 is a telecommunication program with terminal emulation mode, upload and
download capabilities, supports X-on/X-off and X-modem protocols. Since XC0M9 is
a compact program, it can co-reside with any other OS/9 program.

Commercial Software available from TPUG: Although TPUG does not normally dis
tribute commercial software, OS/9 programs, on Commodore disks, are being sold
on a cost recovery basis. All of this software is tested, configured and trans
ferred to CBM disk format before release. The following programs are available
or in work; status is as shown. Cost is in $ U.S. and in ($ Canadian). Quoted
prices for asterisked items is subject to a minimum number of orders; single
quantity prices are higher. If you wish to obtain your software at a lower cost,
you may have to wait until we fill enough orders (typically 5).

BASIC09: $110 (152). Three times faster than BASIC 4*0 with features of mBASIC.

FULL C COMPILER: $120 (166). Comes with a macro assembler/linker; supports 8/16
floating point digits precision.

PASCAL COMPILERS*: $175 (2 42). Two packages are being tested.

FORTRAN 77 COMPILER: $120 (166). Under test by Microware; release Oct. 1st, '85*

KANSAS CITY BASIC: $25 ($34)* Approximate price. TRS80 compatible BASIC. Now
being tested.

Other languages such as COBOL, Introl-C, etc. will be available on demand.

STYLOGRAPH III: $149 (189). Includes a full screen editor/word processor, spel
ling checker and mail merge...better than Wordstar & Wordpro, etc.

DYNASTAR: $90 (122) - approximate price Full featured screen editor/text format
ter. Two versions are being tested. Spelling checker is optional.

DYNACALC: $99 (129)*. Full-featured screen-oriented spread sheet.

We have decided not to carry SCRED until a new version is available. TPUG will
convert any OS/9 Level I software that is purchased from any vendor, provided

SuperPET Gazette, Vol. II, No. 6 -179- August/September 1985

that the software is distributed on an 8" SS SD disk. There is a $25 charge per
package for this conversion which includes the mailing, media and testing. Mail
to TPUG at the address below; include your own disk format, name, and address.

PUBLIC DOMAIN SOFTWARE (Our Major Interest):

XLISP: (avail. July, 1985) A subset of LISP and SMALL TALK 80, artificial intel
ligence language. Includes object code (20K ready to run), full source in C and
manual.

XC0M9: (avail. August, 1985) A 'Freeware' terminal program includes executable
object, full assembler source, manual.

Utilities Package, to be available in September, 1985:

RatAsm: OS/9 filter that converts Waterloo structured assembler to OS/9 format.

COP: copy and replace a file. TREE: Display hierarchical directories.

WC: A word count facility. GREP: String search and display facility.

AT: Submit jobs at specified times. STRIP: Remove/add file control characters.

DATES: Personal secretary and reminder service.

Many OS/9 programs are available on the OS/9 SIG on CompuServe, if you are a
member of the OS/9 National Users Group ($25 to P.O. Box 7586, Des Moines, Iowa,
50322). Before you spend time and money downloading this software, remember that
TPUG already has much of this library and is converting it to run on SuperPET.
The user's group is still worth belonging to if only for MOTD, the newsletter.

As for our efforts, please remember that the SuperPET portion of TPUG is small
and that it sometimes takes a few weeks to process an order or to return a
request for information. The work is done by volunteers such as Avygdor (Avy)
Moise, Gerry Gold, Bill Dutfield and others. In other words, please be patient
and call if there is any problem.

To our knowledge no two board SuperPETs have had any problem with OS/9. Almost
all problems with 3-boarders have been solved; we are still working on a few,
especially on the early 3-board machines with soldered memory chips.

As of September, TPUG members will have also be members of DELPHI information
service where TPUG will store public domain SuperPET and OS/9 software. There
will be monthly workshops to bring SuperPET and Super-OS/9 users anywhere in the
world in contact with persons who have the expertise to help and to advise.

If you do not receive your copy of V1 .1 by mid-September, please call or write
TPUG. Observe TPUG's new address and telephone number listed below. Toronto Pet
Group Inc., 101 Duncan Mill Rd. Suit 7G, Don Mills Ontario, Canada M3B 1Z3, Tel.
1-416-445-4524.

* * *

Tips on Using OS/9 : Part I

1. Formatting a new floppy on your 2031, 4040, 8050, 8250 etc.: The CBM Disk
utility cannot format a disk since the OS-9 file system is contained in one CBM

SuperPET Gazette, Vol. II, No. 6 -180- August/September 1985

RELATIVE file, "0S9 DRIVE A".

To format a new disk, use the BASIC 4*0 program, 1 FORMAT.OS/91, which is on your
system disk. When the disk is ready, insert it in drive 1 and type the following
commands:

0S9: dir /d1 | This will initialize the system pointers (you have to do it
ERROR #241 I only once before you access a drive for the first time).

0S9: format /d1 | This will build an OS-9 file system inside the RELATIVE
| file. At this point, you are done.

The number of blocks (sectors), which are allocated by 'FORMAT.OS/9' and the
OS-9 'FORMAT' utility should be equal to the number of tracks requested x 16.
The following values are recommended:

CBM Drive Model Sectors Tracks(cylinders) Capacity
2031.4040.8050 640 40 160 K
2031.4040.8050 624 39 (system disk) 156 K
8250 4000 250 1000 K

2. If the above procedure is too lengthy, you may speed it up in two ways. The
first is to follow the above procedure only once, then use the CBM DOS DUPLICATE
command to create additional file systems. The second is to wait until we pro
duce second generation direct access disk driver software that will eliminate
most of the difficulties. Meanwhile, as a temporary solution, users may build
two logical file systems on each 8050 drive, extending the storage capacity of
a single 8050 to about 350K. We'll cover this matter in more detail next issue.

Prices, back copies, Vol. I (Postpaid), $ U.S. : Vol. I, No. 1 not available.
No. 2: $1.25 No. 5: $1.25 No. 8: $2.50 No. 11: $3.50 No. 14: $3-75
No. 3: $1.25 No. 6: $3.75 No. 9: $2.75 No. 12: $3-50 No. 15: $3-75
No. 4: $1.25 No. 7: $2.50 No. 10:$2.50 No. 13: $3.75 Set: $36.00
------------------------------- Volume II---------------------------------------

Numbers 1 thru 6: $3.75 each.
Send check to the Editor, P0 Box 411, Hatteras, N.C. 27943. Add 30$ to prices
above for additional postage if outside North America. Make checks to ISPUG.

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$
APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP

(A non-profit organization of SuperPET Users)

Name: Disk Drive: Printer:

Address:__
Street, P0 Box City or Town State/Province/Country Postal ID#

[] Check if you're renewing; clip and mail this form with address label, please.
If you send the address label or a copy, you needn't fill in the form above.

For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check payable
to ISPUG in U.S. Dollars. DUES ELSEWHERE: $25 U.S. Mail to: ISPUG, P0 Box 411,
Hatteras, N.C. 27943, USA. SCHOOLS!: send check with Purchase Order. We do not
voucher or send bills.

SuperPET Gazette, Vol. II, No. 6 -181- August/September 1985

/

This journal is published by the International SuperPET Users Group (ISPUG), a
non-profit association; purpose, interchange of useful data. Offices at PO Box
411, Hatteras, N.C. 27943. Please mail all inquiries, manuscripts, and applica
tions for membership to Dick Barnes, Editor, PO Box 411» Hatteras, N.C. 27943.
SuperPET is a trademark of Commodore Business Machines, Inc.; WordPro, that of
Professional Software, Inc. Contents of this issue copyrighted by ISPUG, 1985»
except as otherwise shown; excerpts may be reprinted for review or information
if the source is quoted. TPUG and members of ISPUG may copy any material. Send
appropriate postpaid reply envelopes with inquiries and submissions. Canadians:
enclose Canadian dimes or quarters for postage. The Gazette comes with member
ship in ISPUG.

ASSOCIATE EDITORS
Terry Peterson, 8628 Edgehill Court, El Cerrito, California 94530
Gary L. Ratliff, Sr., 215 Pemberton Drive, Pearl, Mississippi 39208
Stanley Brockman, 11715 West 33rd Place, Wheat Ridge, Colorado 80033
Loch H. Rose, 102 Fresh Pond Parkway, Cambridge, Massachusetts 02138
Reginald Beck, Box 16, Glen Drive, Fox Mountain, RR#2, B.C., Canada V2G 2P2
John D. Frost, 7722 Fauntleroy Way, S.W., Seattle, Washington 98136
Fred Foldvary, 1920 Cedar Street, Berkeley, California 94709

Table of Contents. Issue 6. Volume II
The Atari ST and Commodore Amiga.151
Multiple NEXT I in mBASIC....... 153
High Resolution Graphics........ 154
Service at Commodore.............155
User Comments on HALGOL..........159
An Audible Alarm.................165
The ACIA and How to Use It.......169
The APL Express..................176

Drive Folly: Those teeny disks......153
SuperPET Schematics................. 153
Cleaning That Computer........154
HALGOL and The Grande...............156
A Centronics Port for SuperPET...... 161
The 1001 Drive; Changing Device....166
Bits and Bytes on Tables.......... 173
A Window into OS/9.................. 179

SuperPET Gazette
P0 Box 411
Hatteras, N.C. 27943
U.S.A.

First Class Mail
in U.S. and Canada.
Air Mail Overseas.

