
The shape of Commodore's future begins to appear.
We recently received word that the 8050 and 8250
drives will no longer be produced; this is the end

of the PET computer line. We also learned that Commodore Canada is now selling a
PC clone which obviously is one of Commodore's new business machines. The other
entry is the Commodore 900, which runs a Unix-like operating system, Coherent.
Commodore has hedged its bets by matching the business machines of both IBM and
AT&T. Last quarter, Commodore lost over $20 million; the C64 isn't selling well;
the C128 and the new machines haven't taken up the slack.

Will the new machines be sold in the U.S.? We don't know, for Commodore no long
er has a U.S. dealer network. The prices for both new machines are in the range
of Radio Shack's PC clones and Unix stuff, which is well supported. If Radio
Shack isn't doing too well against IBM ($400 million vs. $2.5 billion in micro
computer sales last year), we think Commodore will do far worse— and is in fact
dead in the U.S. business market.

If you plan to eventually replace SuperPET with another computer, what are your
choices? Loyalty to a particular brand of computer is nonsense; reasonable folks
will buy gear (1) offering gobs of software (2) locally supported for training
and maintenance, and (3) with reasonable performance— in that order. There are
three alternatives: the AT&T Unix machine, a PC or clone, or a Macintosh. Unfor
tunately, all options are grievously flawed: the AT&T machine by the complexity
of Unix, the lack of commercial software, and the high cost of the system; the
PC by MS DOS, which is an archaic, clumsy, complex operating system best suited
to computer professionals— not users. We have seen too many PCs and clones sit
ting on desks as status symbols, gathering dust, to have any illusion that the
average business user or secretary can or will cope with MS DOS.

We think the Macintosh as now configured will fail. Its disk accesses are mor
tally slow; those silly 3.5-inch disks don't hold enough data; you must have
two cutesy wee drives for serious work; even then you must love disk-switching.
It needs cursor controls on the keyboard (we refuse to tear down a wall to get
room on our desk for a mouse) and we aren't about to get a case of "mouse elbow"
by reaching cross-country five thousand times a day to move the cursor. The Mac
should have been both modifiable and expandable. If you want a hard disk in Mac,
for example, you pay $2500 to get the disk, to rip out the 68000, to install the
disk, and to relocate the chip (you can stuff a hard disk in a PC for well under
$1000). Although Mac is easy to use the day it arrives, you are forever after
bound to the slow drag-an-icon, pull-down-a-menu, click-the-mouse drill. It's
simple to learn but you'll never speed it up, no matter how experienced you are.
As for modifying its routines and writing your own assembly language programs—
forget it unless you're a pro. Apple will then sell you the system data and you
get to spend six months figuring it out. How is Mac selling? Badly. Steve Jobs
was removed as head of the Mac division a couple of weeks back...

Unless Apple redesigns Mac, we think the firm is down the tubes. The majority of
its income still comes from the ancient Apple II series, which isn't going to
sell forever. Will Apple create a flexible Mac you can use in your own way, an
adaptable Mac with open architecture (which made Apple rich), an adult Mac with
the disk storage and memory capacity required for business? Mortal question.

Which, all told, is not a happy picture. Upgrade to a new computer? To what? At
this writing, Commodore's Amiga Lorraine and Atari's ST series, both based on

SuperPET Gazette, Vol. II, No. 5 -120- June/July 1985

the MC 68000, are still in the wings. We're inclined to watch them and to follow
the progress of GEM, Digital Research's new Mac-like overlay for MS DOS. If you
are new to MS DOS, GEM lets you run a PC as you'd run a Macintosh. As you gain
experience, you can leave GEM and go directly to MS DOS. But— we hear that GEM
is buggy; if the software houses don't write their stuff to use it... Is there
any hope for those who simply want to use a computer without becoming a profes
sional, for those those business people who can't afford to spend a couple of
months training a new computer operator every 21 months (which is normal turn
over time for such employees in these parts)? Sigh. The computer we'd buy for
ourselves is hardly the computer we'd buy for employees Ginnie or Sam, who view
computers as tools, and have no interest in them apart from the job. For them,
there still isn't a sensible business machine on the market.

DEAR RED: PLEASE RENEW!

If your address label is redmarked, check the RENEW block on the last page and
send it with your address label or a copy. Bless us with a renewal check; your
ISPUG membership has expired. Also send articles or gifts up to $10 million.

BEDIT’S HOST and UTILITY DISK II Last issue, we warned that BEDIT, ISPUG's
new superEditor, wouldn't support HOST and

asked those who wanted the capability to wait. Joe Bostic has fixed the prob
lems; the current versions of BEDIT (and BEDCALC) support HOST fully. On some
early disks, we furnished a version of DEVCALC (BEDCALC revised for the editor
in Development) which wasn't final, and told those who got the disk to send the
disk back, upon announcement, to get the final DEVCALC. If you aren't sure which
version you have, check the instructions for DEVCALC; if a NOT search is done
by: \searchphrase/, you have the early version. Send your disk; we'll give you
the final version [in the final, a NOT search is done by: \searchphrase\].

Lacking room last issue, we did not show all of the files on Utility Disk II;
we supplement the list in the last issue with that below:

71 "DEVCALC" PRG A special form of BEDCALC for use in Development
15 "devcalc instr:e" SEQ (with the assembler/linker)

8 "mfor patch3:bp" SEQ The last patch for mFORTRAN issued by Waterloo
7 "mbasic patch3:bp" SEQ Ditto for microBASIC.
9 "notes patches:e" SEQ Instructions on how to use them.

66 "memap titles:e" SEQ SPET memory map sorted by title of routine.
66 "memap address:e" SEQ Same map, but sorted by address. 7 pages each.

111 "bigcalc:be" SEQ A program in microBASIC which handles numbers
29 "bigcalc doc:e" SEQ up to 400 digits long. From TPUG.

Utility Disk II may be obtained from ISPUG, P0 Box , Hatteras, N.C. 27943,
for $10 U.S. in 8050 or $16 U.S. on two 4040s. Please state the format!

ONCE OVER LIGHTLY We thank all those who responded with Gazette articles to
Miscellany our plea for help in Issue 3, Vol. II; this issue carries

most of them. Note the diverse interests and skills of the
writers; they cover more ground than ever we can, unassisted. But— we're plumb
out! Send more or next issue will be thin, thin, thin...

SuperPET Gazette, Vol. II, No. 5 -121- June/July 1985

TO REPEAT A SEARCH... One of our gurus (we won't say which) threatened to
revolt when he heard that the command to repeat a search string in mED (which is
two slashbars //) was forbidden in BEDIT. We asked why he didn't use +/ or -/
to repeat a search forward and backward in text. He was astounded to find out
that the commands existed and worked, and promised to burn his guerilla suit.

Why was // forbidden? Well, please tell us at 11 p.m. the last search string you
entered at 11 a.m., and why // as a replace string means null, and as a search
string means something not null. Should you be tempted to make // mean null, how
do you define the difference between NOTHING (the absence of anything), ZERO
(a quantifiable absence of something), and NULL (the first and zero character in
the ASCII series)? Which does // mean? And, if you then assign any of the mean

ings above to //, please write the code for the change at left, which
c*//X asks that all nulls be changed to an X. In any line, how many nulls do

we have, and how many X's should be the result? It boggles the mind.

A QUESTION OF NOT AND OR Grab your pencil and paper; jot down the answers to
the questions at left, below, when the internal value in register2 is 204 and

the integer variable d32$=32.
variable1%=peek(register2) and not d32%
Q1 : What is the value of variable^? We convert the values of 12 and 32 to

binary below to save your time:
variable2$=204 and not d32.% Decimal 204=^1100 1100
Q2: What is the value of variable2$? Decimal 32=^0010 0000

We trust you won't peek at the answers
below until you write down your own. Then answer this question: In what order
are the AND and NOT performed in the two examples above? Remember that all inte
ger logical comparisons operate bitwise on the operands, and that non-integer
operations are logical ones which do not affect the bits.

The answer to Question 1 is 204. The PEEK is returned as an integer; the NOT is
executed first; the entire operation is performed on the bits, as at left. NOT

complements all bits in decimal 32 (reverses each one).
0204=^1100 1100 The code is actually executed as if written thus:

NOT D32=$1101 1111 variable1$=(integer 204) and (not d32$)

After AND: 1100 1100 The answer to Question 2 is 1— or TRUE. The value of 204
is not an integer value; the question is one of relations

and says, "set the value of variable2# to 1 if the following statement is true,
or to zero if it is not." And the statement asks if both 204 and NOT d32% have
value! NOT d32% is a complement of 32, or -33 (it exists); so does 204- You re
ceive, inevitably, a TRUE response. Terry Peterson wrote on this subject in Vol.
I, p. 116, Issue 9. Beware!

LET'S MAKE THINGS COMPLICATED We are continually astounded by the words
employed by computer priests to impress the laity. Nobody in the priesthood can
possibly read a manual or a handbook; it's always documentation. Gee, in the
good old days, you documented a case at international law, or the cause of a ’
war. Any day now we expect to see a washing machine sold "with full documenta
tion." This is not an isolated example; consider the phrase "communicating by a
null modem". Well, "null modem" means "no modem," or, in short, that two compu
ters talk by direct cable. In an article this issue, Associate Editor John Frost
uses "null modem" because the phrase is common; we bow to usage but don't have
to like it— any more than we like "paradigm." This supergoo means "model", a
word forbidden by the computer priesthood because any peasant can understand it.

SuperPET Gazette, Vol. II, No. 5 -122- June/July 1985

SUPERPET SYSTEM FOR SALE Frank Brewster, 1 North Vista Ave., Bradford, PA
16701, 814 368-6319 offers his SuperPET, an 8050 drive, an IDS 445G high-resol-
lution printer/plotter, a Hayes 1200 bps Smartmodem, a Unigard spike protector,
an ADA 1450 IEEE-Serial printer interface, plus all manuals, extra paper, cables
and disks, for $1500— all equipment in operating condition. He'll deliver with
in 500 miles of Bradford. Call or write.

REPORT ON 0S-9 Russ McMillan, whose SPET wouldn't operate after he instal
led 0S9 gear, reports that his machine now runs okay. TPUG sent schematic data;
Russ's dealer found a bad chip on the old board. Richard Jones of Texas, who
has an old 3-boarder, tells us "I installed the memory management unit myself,
desoldering chip U9 and soldering a 20-pin socket in its place. I have extensive
soldering experience. You must take care in soldering the 20-pin socket so that
it makes complete connections on top of the PC board as well as on the bottom.
This means raising the socket slightly on the board so the soldering iron can
get under the side of the socket and solder the top connections. The cable conn
ection fit well even with a raised socket."

Richard also reports that while 0S9 tests recommended by TPUG ran okay, his
SPET locked up when he loaded the 0S9 software and got the copyright display.
After a cold start, SPET operated normally. He suspects a bad disk, which has
been sent back to TPUG. We've had no other reports of 0S9 problems. Nick Soli-
mene of Woodhaven, N.Y. reports his 0S9 system on a two-boarder is working fine,
though he'd like two or more REL files on an 8050 disk for 0S9 files and more
details on memory access under 0S9. When you read these reports, remember that
version 0.9 of 0S9 for SPET is a test version, preliminary to release of V1.0.
Bugs are to be expected; final manuals and data should accompany V1.0.

FILES WON'T INPUT??? From guru Terry Peterson comes the following note: "I
recently figured out the origin of a mysterious problem encountered in trying to
input from "ieeeX" files. Sometimes when SPET is turned on in 6809 mode cold,
said files would refuse to input— giving instead a phony EOF error. By peeking

the FCB's (File Control Blocks), I discovered that
open #15, "disk",inout SPET maintains EOF status in bit 0 of byte $15 of a
reset FCB, and doesn1t clear it for ieeeX files! I show
open #15, "ieee5", inout (see at left. Ed.~) an easy solution from language.

You clear the FCB EOF bit with a phony open/close
(or reset) before you open the real file. You have a second option: determine
the FCB address by peeking, using mBASIC's pointer to the current file at $58.
Then, prior to each input, you 'poke FCB+20,0'. This method doesn't require one
to close and then reopen a file, but the peeky-poky is arcane. Last, you can
accomplish the same thing by a switch to 6502 and back, which fills memory with
$AA (binary 1010 1010); it clears the bit."

NEW PASCAL COMPILER? From Roger Bassaber, a French member of ISPUG who lives
on a island down in the Indian Ocean, we received a disk copy of a compiler for
Pascal and sent it out for test. A preliminary report from Russ McMillan says it
is pretty good (it runs on the 6502 side), accepting ASCII files generated in
6809 mode; Russ ran all 24 of the Waterloo mPascal examples in the manual, and
they all worked with a few minor differences in input/output behavior. But— we
found out the compiler is copyrighted (tilt!) and we don't have instructions.
We'll continue tests; if they pan out, if we can get permission from the copy
right owner and a manual, we'll make it available. Thanks for the tests, Russ.

SuperPET Gazette, Vol. II, No. 5 -123- June/July 1985

TO THE GUILLOTINE DEPT. On ISPUG Utility Disk II is program DOS, written by
Alain Proulx, which offers an option to print either to serial or ieee4 print
ers. We got a report that the options are reversed on the menu; pick "serial"
and you send to "ieee4" and vice versa. Once you know, it's easy to handle the
error. We've fixed the master disk for future releases. Anybody who can't cope
with that can send the disk back; we'll put on the corrected version.

Seems that we called the Ted Edwards compiler for APL the "Williams Compiler" in
our announcement of the disk on p. 100 last issue. Please change your copy; we
aplogize to Ted as we clamber into the tumbril alongside Alain....

EVERYTHING YOU WANTED TO KNOW DEPT. "The Complete Commodore Inner Space An
thology," is a new book available from The Transactor, 500 Steeles Ave., Milton,
Ontario, Canada L9T 3P7. The book is a compendium of all the data which has
appeared on most Commodore products plus much new stuff. Of interest to Super-
PETters are the complete memory maps for 4040 and 8050 disk drives. Maps for the
2031 are missing, though the 2031 is supposed to be similar to the 1541 except
for IEEE functions. Data are presented as tables; they include system constants,
a RAM memory map with zero page contents at power-up, RAM memory, ROM memory,
controller RAM usage and a disk controller ROM map. Included are specifications,
directory file header format and sector format, BAM formats, disk data file for
mats, and error diagnostics. Sorry, we don't know the price. We thank Reg Beck
for the information, but are saddened to announce it in the issue which reports
the end of production for the 8050 and 8250 (the 4040 died a few months ago).

THAT BUG IS ALIVE DEPT. Save with Replace (SAVE@) is proven buggy on the
4040 and 1541. It has been rumored for years, but was demonstrated recently. An
article in the July, 1985 Transactor contains a program which, if run on the
4040 or 1541* results in improperly replaced files. This didn't occur on trials
with the 8050 or 8250; the 2031 wasn't tested. The SAVE@ problem is of no con
cern to those who use the Waterloo languages, but has been in controversy so
long that Reg Beck, who sent the item in, thought you'd be interested.

WHICH FORMAT DOES WHAT The terminology used to define the number conversion
WITH WHICH TO WHOM routines in the Development manual is confusing. We

find undefined references to "integers" and "binary"
and do not know whether the terms are interchangeable or define different ranges
of value. In this article, we'll try to sort out the number formats and the con
version routines. We confine ourselves to integers; numbers containing decimal
fractions are a separate subject.

We begin by discarding the term "binary format"; all numbers, in whatever nota
tion, are stored internally in that format. Second, let us distinguish between
notation (the form in which we state a number, usually hex, decimal, or binary)
and the actual value of the number itself, which always remains the same, what
ever notation we use to express it.

You may view numbers in four forms: 1) as external strings ["7FD0" in hex nota
tion, "32720" in decimal notation, or "0111111111010000" in binary notation], as
2) internal string values ["7FD0" shows in the monitor as $37 $46 $44 $30]; dec
imal and binary strings appear in their ASCII equivalents; as 3) the binary form
in which the string values are stored in memory, and, 4) as the value of the
number itself. Decimal ten, for example, is found in the following four forms:
1) external string: 10; 2) internal ASCII: $31 $30; 3) internal binary string:

SuperPET Gazette, Vol. II, No. 5 -124— June/July 1985

0011 0001 0011 0000; and, 4) as the value it represents, stored internally in
binary notation [1010], which will show in the monitor in hex notation as: a.

Because each number has four possible forms in three different notations, it is
difficult to say anything about conversion until you define your terms. We'll
essay several, the most important of which is the "counting" or cardinal number.

The Counting Numbers These start with 0 and range thereafter to (and, if you
believe Cantor, through) infinity. By definition, they are integers; 1 and 5000
are counting numbers expressed in decimal string notation. If you use "i%" in a
a loop, the value of "i%" at any time is a counting number. Waterloo seems to
call the counting numbers "integers" when they fall in the range of -32768 to
+32767, and sometimes calls them "binary" in the range of -65536 to +65535.

When you view a counting number in memory, in the monitor, it is reported in
hexadecimal notation. The counting number 10000 (in decimal notation), for exam
ple, is reported as 2710 (in hex notation) in the monitor. Its counting number
value is independent of both notations, though we must use one to express it.
In all computers we know about, all numbers are stored internally in binary no
tation. Let us be very clear on the differences between numbers in any notation
in the form of a string and that same number in the form of a counting number:

Hex String Value: String Internal Value: Counting Number: Binary Internal:
(on screen) (viewed in monitor) (viewed in monitor) (counting number)
"9FFF" $39 $46 $46 $46 9f ff 1001 1111 1111 1111

A number in string form, in any notation (binary, hex, decimal) must be convert
ed to a counting number if you propose to manipulate it mathematically.

If, at this point, you're thoroughly confused, good! So were we; we looked for
and found a straightforward way to handle conversions. Any number, in any string
form, in any notation, may be converted to a counting number; similarly, any
counting number may be converted to any notation in string format. We define the
steps below, and show which system routine does what, with which, to whom:

The Six Basic Conversions

1_. Convert String Notation (on screen) to Counting Number (internal):

a. Decimal notation to a counting number: System routines DECIMAL_ and
ST0I_.

b. Hex notation to a counting number: System routines HST0B_ and
HEX_.

c. Binary notation to a counting number; No system routines. See below.

2. Convert Counting Number (Internal) to String Notation (on Screen):

a. Counting number to decimal notation: System routine IT0S_.
b. Counting number to hexadecimal notation: System routines IT0HS_ and

BT0HS_.
c. Counting number to binary notation: No system routines. See below.

On the following pages, we summarize data about system conversion routines.

SuperPET Gazette, Vol. II, No. 5 -125- June/July 1985

PRINTF . If you use the %d option in it (to incorporate in the string printed a
variable value in decimal notation), PRINTF_ will convert a counting number to
a decimal string. Example: If a loop has executed 15 times, the monitor will
show a hex value of OF for the variable. PRINTF_ will print the value as decimal
15. It automatically converts any counting number to decimal notation— so long
as you do not exceed 32767* Beyond this point, the routine fails.

Likewise, the %h option in PRINTF_ will print a counting number in hex notation.
It is unfortunately limited to the value of 255. PRINTF_ makes serious errors if
you give it string format (in which a zero is represented by $30, or a nine by
$39). The same comments apply to system routine FPRINTF_.

HSTGB_ requires a buffer to hold the original hex string, and a buffer for the
new counting number. You may use one buffer for both, stuffing the new counting
number produced by HST0B_ on top of the old in the same location.

BT0HS_ ends the converted hex string with a null; unlike HST0B_, it won't allow
you to use the same buffer for the counting number you convert and for the new
hex string which BT0HS_ produces.

IT0S_ ends a converted decimal string with a null. It fails to convert counting
numbers larger than 32767 to a decimal string.

IT0HS_ converts any counting number up to 65535 to its hex string equivalent.

System routine HEX_ converts any single character of a hex string into a count
ing number. The character "D", for example, appears in the monitor as $44; after
conversion, it appears in the monitor as itself: d.

Be warned that all SuperPET conversion routines which output decimal integers
will fail on any values larger than 32767; after this value is reached, you may
get a negative sign as output, but no number, or you may get a negative value.
If you receive a negative value, add it to 65536, and you should have the right
positive counting number. ’

We've annotated our Development manual to show the input expected by each system
routine (pp. 172-175) and its output, and suggest readers do the same.

We print below two routines which convert binary notation because there are none
we know of in the system library. If anybody can make 'em shorter, send 'em in!

; This routine converts a binary string of 8 digits into a counting number .
; internally. For example, "01100110" is converted to the counting number $66.

bin2cn ldx #cur_dig ; cur_dig is a buffer for the binary string.
Ida #$10000000 ; Set initial form of mask byte.
pshs a
clrb
loop
Ida ,x+ ; Get binary string character,
quif eq ; Stop on end string null,
suba #$30 ; Convert to a 1 or a 0.
lsra ; Put 0 or 1 into Carry Flag,
if cs ; If the Carry Flag is 1,

SuperPET Gazette, Vol. II, No. 5 -126- June/July 1985

orb , s ; set appropriate bit in B register,
endif
Isr ,s ; Rotate the "1" rightward one bit in the mask byte,

endloop
leas 1,s
clra
std cur_dig ; Store converted counting number in buffer,
rts

;Converts counting number to binary string. Will handle 8 or 16 bit numbers.
;Must be given a two-byte counting number, even if the high byte is clear.

cn2bin clra
pshs a
ldy #cur_dig+1
Ida #$30

again ldb #$31
ldx #0008
loop
lsr ,y
if cs
pshs b

else
pshs a

endif
leax -1,x

until eq
tst cur_dig
if ne
ldb cur_dig
stb cur_dig+1
clr cur_dig
bra again

endif
ldx #cur_dig
loop
puls b
stb ,x+

until eq
rts

JUDGE CRATER AND FPPLIB.EXP For the first six months we owned SuperPET, we
considered the case of the missing Judge to be

no deeper a mystery than the addresses shown in the file "fpplib.exp" on our
language disk. Then we got a copy of "Waterloo microSystems SuperPET Specifics"
and found out that "fpp" means "floating point", though the second "p" in the
acronym is still a mystery. The addresses in "fpplib.exp" are for the decimal
math routines in SuperPET's ROMs. We summarize the function of each such routine
below, and append data on some added routines discovered by John Toebes. We do
not list addresses for those routines whose addresses are in fpplib.exp.

OK = 0 You'll find a status byte at $0087, named FPSTATUS_. It is
Underflow = 1 never cleared by internal routines. To use it, clear it and
Overflow = 2 examine it in your program. FPSTATUS reports the conditions

; Shove null on stack to end converted string.

; Get low byte first.
; Load string format 0 and 1

; Bein' out of registers, we use X for decrement.

; Put first bit in Carry Flag.
; If it's a 1,
; Stack an ASCII 1

; Otherwise, stack ASCII 0

; Decrement the count

; Have anything in the high byte?

; Move it to low byte.
; And clear so we don't loop forever.

; Pull decimal string off stack,
; store in cur_dig.

; Null on stack ends string and loop, sets stack
; for RTS.

SuperPET Gazette, Vol. II, No. 5 -127- June/July 1985

Divide by 0 = 3 shown at the left for all FP system routines.
Bad Argument = 4

FAC1 (at $80) and FAC2 ($90) are two Floating Point Accumulators (working regis
ters) Waterloo set aside for computing floating point results. Most of the FP
(floating point) routines use one or both. We now define what the routines do:

Decimal Arithmetic and General Routines

FL0AD_ loads FAC1 with the FP number pointed to by P1 (an address placed in the
D register). The FP number must be in 5-byte FP representation.

FL0AD2_ loads FAC2 with the FP number pointed to by P1 .

FST0RE_ stores the contents of FAC1, starting at the address given in P1.

FZER0_ sets FAC1 to zero.

TRF1F2_ transfers the contents of FAC1 to FAC2.

CNVIF_ converts an integer passed as P1 to FP and stores the result in FAC1.

CNVFI_ converts FP number in FAC1 to an integer returned in the D register.

EXP0NENT_ returns the exponent of the number in FAC1 in base 2 without excess
128 notation; the result returns as an integer in D register.

FRACTI0N_ a number in FAC1 is converted (in'FACl) to the fractional part of the
number. D register holds 0 if no fractional part exists, or the expo
nent of the number if a fraction remains in FAC1.

FADD_ adds the numbers in FAC1 and FAC2 and stores result in FAC1 . The number
in FAC2 is destroyed. FADD_ will add negative numbers (in effect, sub
tracting them from any positive total), as will EADD2:_, following.

FADD2_ loads FAC2 with a number -pointed to by P1 , adds the numbers in FAC1 and
FAC2, and stores the result in FAC1. The number in FAC2 is destroyed.

FSUB_ subtracts FAC2 from FAC-1 and stores the result in FAC1 , destroying the
number in FAC2. Do not subtract negative numbers simply because they are
negative (the effect of FSUB_ is to add them).

FSUB2_ loads FAC2 with the number pointed to by P1 , subtracts FAC2 from FAC1 ,
and stores the result in FAC1, destroying the number in FAC2.

FCMP_ compares FAC1 with FAC2 and returns the result in D Register: -1 ($FFFF)
shows FAC1 < FAC2; 0 shows FAC1=FAC2, +1 shows FAC1 > FAC2. Numbers in
FAC1 and FAC2 are not changed.

FTEST_ tests the number in FAC1 and returns results in D register: -1 ($FFFF)
shows FAC1 <0; 0 shows FAC1=0; +1 that FAC1 > 0.

FMUL_ multiplies FAC1 by FAC2, stores the result in FAC1; destroys the number
number in FAC2.

SuperPET Gazette, Vol. II, No. 5 -128- June/July 1985

FMULBY_ loads FAC2 with a number pointed to by P1 , multiplies FAC1 by FAC2,-and
stores the result in FAC1. Destroys the number in FAC2.

FMUL10_ multiplies FAC1 by 10, stores result in FAC1, destroys FAC2 number.

FDIV_ divides FAC1 by FAC2, stores result in FAC1, destroys FAC2 number.

FDIVBY_ loads FAC2 with a number pointed to by P1 , divides FAC1 by FAC2, stores
result in FAC1, destroys number in FAC2.

FDIV10_ divides FAC1 by 10, stores result in FAC1, destroys number in FAC2.

FNEG_ negates the number in FAC1 (converts from positive to negative form, and
vice-versa).

FADDHALF_ adds 0.5 to FAC1 and destroys the number in FAC2.

FFL00R_ calculates the FP representation of the largest integer not greater
than the number in FAC1, stores result in FAC1; FAC2 not affected.

CNVF2S_ converts number in FAC1 to string format, and places the string in a
buffer whose address is stated as P1 . Stores a null byte at endstring
in the buffer. D register returns the address of this null byte.

CNVS2F__ converts a number in string format to FP; the address of the string is
P1. Waterloo says P2 is the address where

ldd #0005
pshs d
ldd #string
jsr cnvs2f

P2 a dummy scanning of the number is to stop, but we
are equally successful in stuffing in a
dummy value (see left). John Toebes says

P1 address the routine stops either at the endstring
null or at a real address (P2), so the

trick at left is valid. We didn't push 0000 because you can foul up CC
register flags when the stack value is used in the routine. The result
of CNVS2F_ is stored in FAC1. Warning: FAC2 condition unpredictable. The
address of char following the last one converted returns in D register.
Note: the address for STOP (P2) must point one byte beyond the entry.

To demonstrate some of the routines above, we show below a simple way to sum
(add positive numbers or subtract negatives) for a cumulative total. A user buf
fer named BUFFP holds the previously accumulated total:

ldd #0005 Load the dummy (the real stopping address may be used)
pshs d Stack it
ldd #new num P1 is starting address of number in string format
jsr cnvs2f Convert it to FP format, store in FAC1
ldd #buffp P1 is address of buffer for cumulative total in FP format
pshs d We'll need it again.
jsr fadd2 Load buffer total into FAC2; add it to FAC1.
puls d P1 address of cumulative buffer.
jsr fstore Move new total from FAC1 into cumulative buffer
leas 2, s Recover on stack

buffp rmb 5 40 bits (5 bytes) needed for external FP representation.

SuperPET Gazette, Vol. II, No. 5 -129- June/July 1985

With his usual ingenuity, John Toebes has discovered additional FP routines in
ROM, which he defines below. The first five routines are identical to similarly
named routines above, except that P1 is placed in X register, not in D:

FLOADX $A2BE. Same as FL0AD_. FADDX_ $A43Cc Same as FADD_.
FL0AD2X_ $A2DD. Same as FL0AD2_. FMULBYX_ $A4C5 Same as FMULBY_.
FSTOREX_ $A2FC. Same as FST0RE_.

QKTRF1F2 $A389. Same as TRF1F2 , except the guard byte is not thrown away.

KILGUARD $A3CD. Removes any guard bits that may be set in FAC1. Essentially
rounds FAC1 up and normalizes it, which FROUNDUP_ does not do.

FROUNDUP_ $A3D5. Rounds FAC1 to 4 bytes of precision (external format). The CC
register is set to reflect any overflow.

CHKGUARD_ $A4A8. Remove any guard bits from FAC1 in preparation for saving it in
external format.

C0MPFAC1_ $A3BC. Complements the value in FAC1. '

FMULBYTE_ $A4FB. Useful for fancy work. Multiplies FAC2 by a byte in B register;
adds result at location pointed to by X register (normally, FAC1).

The following two routines perform similarly, adding/subtracting FAC1 and FAC2
without touching the exponents:

FADDAC_ $A613 FSUBAC_ $A644

ADDECAC1_ $A147. Add a 4 byte double-precision integer to the current contents
of FAC1 without changing the exponent. Pass address of integer as P1
in D register.

FLOADMAX_. $A2B9. Loads MAXREAL into FAC1. MAXREAL is the largest FP value which
can be handled in SuperPET.

CHKDIVAC_ $A5C5. Compares FAC1 and FAC2; sets carry bit if FAC1>FAC2, without
affecting the exponents.

Transcendental Routines and Such

In the next three routines, the argument must be in FAC1 before the routine is
called. Angles must be expressed in RADIANS (in FAC1). Results return in FAC1;
FAC2 is destroyed. ATN_ returns results in radians in FAC1.

COS_ Returns cosine SIN_ Returns sine ATN_ Returns arctangent

The remaining routines return the results shown below:

SQR returns in FAC1 the square root of a number placed in FAC1. FPSTATUS is set
to BAD ARG if the argument is negative.

LOG returns in FAC1 the natural log (base e) of the argument in FAC1. FPSTATUS
is set to BAD ARG if the argument is equal to or less than zero.

SuperPET Gazette, Vol. II, No. 5 -130- June/July 1985

EXP_ returns in FAC1 the value of e raised to the power of the number in FAC1.

POWER_ returns in FAC1 the value of X (in FAC1) raised to the power Y (in FAC2),
FP STATUS is set to BAD ARG if X is negative or Y is not an integer.

FLOATING POINT ROUTINES When we look at how floating point was implemented
IN SUPERPET on the SuperPET, we can only wonder why it was done

by John Toebes, VIII the way it was. The routines are very similar to
the 6502 floating point routines written for the

Apple II. The similarity shows up in the absence of code to use SuperPET1 s Y
register as well as in no code using the A:B register pair as a true 16-bit reg
ister. This, coupled with the absence of many of the powerful addressing modes
of the 6809, boils down to one simple fact: the floating point routines in SPET
are both slow and inefficient.

As does the Apple II, the SuperPET uses two Floating Point Accumulators, called
FAC1 and FAC2, at $0080 and $0090, respectively. Floating point numbers that
have been loaded into an accumulator have a different format from those not in
an accumulator. The majority of the routines require that you first load FAC1
or FAC2. However, due to the design of the code, it is possible to store a num-
in internal (accumulator) format outside an accumulator and then to transfer or
process it later, passing the address of your number in the X register.

Numbers in external format (for loading into an accumulator) take up five bytes
of memory. The first bit of the first byte is the sign bit for the number. The
next eight bits (7 from the first byte and the first one from the second byte)
specify the exponent in excess 128 notation; a value of zero indicates that the
value of the floating point number is zero. The remaining 31 bits form the man
tissa, which is treated as a 32-bit binary fraction, where the first bit always
is one. Note that this is contrary to the documentation in Appendix A (Page
65) of the System Overview Manual.

To illustrate, looking at the number in memory as a series of bits, we have the
following typical representation, where S is the sign, E the Exponent, and M the
Mantissa:

SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

A value of 1 in the sign bit indicates a negative number, while a value
of 0 indicates a positive number.

EEEEEEE is the exponent in excess 128 notation, obtained by adding 128 to
the exponent; an exponent of 0 is thus converted to 10000000 in binary. The sign
bit strips the 1; the exponent is 0. The exponent is expressed in powers of 2,
not 10, and indicates the power of 2 by which the mantissa must be multiplied to
express the value of the number. The largest exponent thus possible is 2**127 or
1.7E+38 (represented as $FF or 128+127) while the smallest exponent is 2**(-127)
or 5-9E-39 (represented as $01 or 128-127).

MMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM is the mantissa, represented as a bin
ary fraction with a 1 as the first bit. Because the first bit is always 1 in
this binary fraction, the largest possible mantissa is .FFFFFFFF (in hex), or
.9999999999999995343387 (1-2**(~31)) and the smallest is .8000000 (hex) or 1/2.

SuperPET Gazette, Vol. II, No. 5 -131- June/July 1985

Since the first bit is assumed to be a 1 , 1/2 would be stored as all zeros in
the mantissa. With the requirement that the mantissa be a fraction with the
first bit always 1, we have what is commonly referred to as a normalized number.
Since normalization is done after any mathematical operation, any number that
has been stored in memory can be assumed to be normalized; we thus do not need
to store that first bit.

Combining the three parts to produce a number is a bit tricky because everything
is represented as a power of 2. Mathematically, the number can be expressed as

-1 * SIGN * MANTISSA * (2 ** (EXPONENT - 128))

taking into account the representation of the mantissa. When you want to take
apart a number, you must first go through the tedious task of converting the
mantissa to its equivalent decimal fraction, and then multiplying it by 2 raised
to the exponent. With a good calculator, you can do it quickly, but doing it by
hand except in the simplest cases is a time-consuming task. Follow are a few ex
amples of numbers stored in this format:

1 = .5 * 2**1 = 40 80 00 00 00
.5 = .5 * 2**0 = 40 00 00 00 00
.25 = .5 * 2**-1 = 3F 80 00 00 00
PI = .785398163 * 2**-2 = 41 49 OF DA A2

To convert any standard floating point number to this notation, first set the
sign bit to 1 if the number is negative. Then take the absolute value of the
number and go through the process of normalizing it to a power of 2. The easiest
way to do this is to continually divide (or multiply) the number by 2 until the
resulting value is representable by the mantissa (between .5 and 1), counting
the number of divisions that it takes. Use the count of the number of divisions
or multiplications to form the exponent. Tf you divided, add 128 to the total
number of divisions; otherwise, subtract the number of multiplications from 128
and use this for the exponent. Convert the result from your divisions/multiplic
ations to a binary fraction, throw away the first bit (which must be a 1 if all
went well) and use the leftmost 31 bits (padding with 0's on the right) as the
mantissa.

For example, we convert 123.25 to its representation. First, note that it is
positive, so the sign bit will be 0. It takes 7 divisions by 2 to get down to
.962890625, so the mantissa will be 128+7=135 or $87. Converting the decimal
.962890625 to binary produces: .111101101 binary; when you drop the first bit
and pad to make 31 bits, you are left with the mantissa found on the next line:
1110110100000000000000000000000. When we put sign, exponent, and mantissa to
gether, we get the following binary entry:

S EEE EEEE Mantissa------------------------------
0 100 0010 1 111 0110 1000 0000 0000 0000 0000 0000 (hex 42 F6 80 00 00)

Hex: 4 2 F 6 8 0 0 0 0 0 -

Internal numbers (usually in an accumulator) take up 7 bytes of memory. The en
tire first byte indicates the sign of the number. The next byte specifies the
exponent in the same excess 128 notation as the external format, with a value of
zero indicating that the value of the entire floating point number is zero. The
remaining 5 bytes form the mantissa, treated as a 40-bit binary fraction.

SuperPET Gazette, Vol. II, No. 5 -132- June/July 1985

If you look at a normalized number loaded in an accumulator, you will see:

0000000S EEEEEEEE MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM

where S is the sign bit. A 1 indicates a negative number.

EEEEEEEE is the exponent in the same representation as an external format
number. Note that 0 indicates that the entire number is zero.

MMM...M is the mantissa of the number represented as a NORMALIZED bin
ary fraction (the first bit is always 1). The last byte is the 'guard' byte to
allow for greater precision in performing calculations. It is used if the number
should be rounded when an internal format number is converted to an external
format number.

Converting an internal format number to and from Decimal is the same as for an
external format number except that there are more bits in the mantissa, and,
most importantly, the first bit of the mantissa is stored as a 1 instead of be
ing assumed. In this case, 1/2 is stored as $80 00 00 00 00 in the mantissa,
instead of the zeros that the external format uses.

CC REGISTER FLAGS AFTER MATH When the 6809 performs arithmetic, either dire
Reference Data ctly or with Waterloo routines, you have only

one way to learn if the results are right or
wrong— and that's to check the condition of four CC (Condition Code Register)
flags. We summarize the condition of each pertinent flag below for all of the
integer arithmetic operations for a reasonable set of values:

CC REGISTER CONDITIONS AFTER ADDITION

If total, after addition, is that
below, then flags will be as shown: SIGN ZERO OVERFLOW CARRY

1. At or below 32767 ($7fff) 0 0 0 0
2. Above 32767 (from $8000 to $FFFF) 1 0 1 0
3. At 65536 ($10000) 0 1 0 1
4. Above 65536 (above $10000) 0

(Patterns well above 65536 not checked)
0 0 1

CC REGISTER CONDITIONS AFTER SUBTRACTION

If total, after subtraction, is that
below, then flags will be as shown: SIGN ZERO OVERFLOW CARRY

From 65535 to 32768 ($FFFF to $8000) 1 0 0 0
From 32767 to 1 ($7fff to 1) 0 0 0 0
At zero 0 1 0 0
From -1 to -32767 (to -$8001) 1 0 0 1
From -32768 to -65534 (-$8000 to -$FFFE) 1 0 1 1
At -65535 (-$FFFF) 0 0 0 1

STATUS OF CC REGISTERS IN RETURN

If total, after multiplication, is that

FROM SYSTEM ROUTINE MUL

SuperPET Gazette, Vol. II, No. 5 -133- June/July 1985

below, then flags will be as shown: SIGN ZERO OVERFLOW CARRY

From 1 to 32767 0 0 0 0
From 32768 to 65534 1 0 0 1
At 65535 1 0 0 0
At 65536 0 1 0 0
From 65538 to 98302 0 0 0 1
At 98304. Cycle begins to repeat. 1 0 0 1

STATUS OF CC REGISTERS IN RETURN FROM SYSTEM ROUTINE DIV

In division, for values or results
shown, the flags will be as shown:

Division: $FFFF/1. Result=FFFF
Division: $FFFF/2. Result=0000
Division: $FFFE/2. Result=FFFF
From 32767 to 1 (e.g., $7FFF/$80)
At zero ($0002/$7FFF or similar no:

SIGN ZERO OVERFLOW CARRY

1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 0
0 1 0 0

HOW ONE FAMILY USES SUPERPET Even though I have worked for some years dev„el-
Background and Outlook oping software for telephone systems, I hadn't
by Delton B. Richardson really used or known much about microcomputers
4299 Old Bridge Lane until three years ago. I had often wished for
Norcross, GA 30092 the power of a computer at home, although the

only actual needs I could identify were for a
simple word processor and a way to account for my personal finances.

A little over three years ago I agreed to help a good friend look for a computer
system for a small wholesale business he'd started. He wanted one that didn't
cost too much, would have power enough for his present needs, and would allow
for future growth. At that time, the 8050 disk drive with one megabyte, and the
8032 with a built-in~80-column monitor provided the two most important features,
and the price was right.

We found a general-purpose software package for inventory, invoices, accounts
receivable and payable, and general ledger. It had many deficiencies, but was
very unusual, for it was written in BASIC 4*0 and so could be enhanced or modi
fied quite easily. I decided to help my friend and learn about microcomputers
by enhancing the software myself.

Over the next year, his business grew quickly; we changed the software often;
I rewrote the sales invoice program for larger and better invoices. We stored
the invoice data on disk so we could postpone until the end of the business day
the processing of that data to general ledger, the accounts, and to inventory
files. Computer hardware prices meanwhile fell dramatically; my friend bought
additional systems. He then ran three computers to accomodate his peak loads and
to protect himself against hardware failures. We also enhanced much of the soft
ware; we expanded files for more accounts and increased the inventory list to
6000 items. Last, we modified the programs to use the 8250 disk drive.

After all this, I had a pretty good idea about the capabilities of micromputers
on the market at that time. The second system we bought was a SuperPET, since
the price difference was small and it was fully compatible with the 8032 soft

SuperPET Gazette, Vol. II, No. 5 -134- June/July 1985

ware we already used: WordPro 4+ for word-processing and The Manager as a simple
but rather powerful data base manager. SuperPET gave us an improved BASIC; pro
grams were easier to develop. We also wanted to use APL for quick and simple
programs, though at first we had no way to print APL to our 8023 printers [Ed.
If you came in late, Delton wrote the programs on the ISPUG APL-to-printer disk
for the Commodore 8023 printer.] Our only major disappointment was the slowness
of the Waterloo languages compared with BASIC 4*0.

About this time, I decided that SuperPET had all the power I needed for use at
home for the foreseeable future and purchased one. I now did word-processing at
home; my wife was doing accounting for our friend's business and she could now
bring disks and do much of the work at home. I then completed a microBASIC pro
ject to handle home accounting. We were then able to use the computer for all
its intended purposes. Except for a bit of trouble while in warranty, SuperPET
has worked well.

While I was developing programs, the computer was in heavy use. Lately, I have
used it just to run applications; one or twice a week to process words; once a
month to update our home accounting books (a job it does neatly, replacing a
tedious, fragmented, error-prone, time-consuming and hated task). We have some
other uses; a decision-making program in APL, and Manager database files for my
investments and stocks.

For a while I used Manager files at home to keep track of development work at
the office and to print monthly reports; it was far easier to use SuperPET than
the mainframe at work. Several months ago, the office got an IBM PC, so I'll
move this work to that computer, where it'll be more convenient.

The office is now adding a dial-up facility for our mainframe, so my latest use
for SuperPET is as a terminal at home. I'm going to use COM-MASTER at 1200 bps
to get and send the files. I know that in time newer, cheaper, and more power
ful computers and new, attractive software will become available. SuperPET is
slower than newer machines and without color; it'll never handle the large, new
programs now on the market. Yet, to me, SuperPET will not be obsolete until it
will not perform the tasks I want done or it fails beyond repair. For now, I am
happy with it; it meets all my computing needs, and I have no intention of re
placing it. I'm satisfied with the software now at hand. Sometimes, though, we
are surprised by new ideas. I hope ISPUG remains healthy and that members will
continue to develop new approaches and new applications.

FILE TRANSFER USING A NULL MODEM Have you ever wanted to transfer SuperPET
by John Frost files to or from another computer, but been

Associate Editor frustrated by incompatible disk formats?
How about trying a direct cable connection

through a null modem? This simple device connects the SuperPET's RS-232 port to
a similar port on the other and lets you transfer ASCII files between the two as
if they were connected in a normal telephone/modem hookup. The null modem file
transfer requires each computer to have modem software. I found the SPET telecom
package NEWTERM ideal for the Commodore side and used the popular PC-TALK III
(public domain freeware) for my COMPAQ portable. Note: If you do not have the
NEWTERM software, you may transfer a file in SuperPET's microEditor with the PUT
SERIAL command. [Ed. NEWTERM and other SuperPET telecommunication programs with
instructions are available from ISPUG. See address, last page; cost is $15 U.S.
for 6809 capability, either in 4040 or 8050 format.]

SuperPET Gazette, Vol. II, No. 5 -135- June/July 1985

A null modem is basically an interconnecting cable that directs the output of
SPET to the input of the other computer, and the output of the other computer to
the SuperPET input. In addition, all necessary hardware handshake functions for
the two computers, normally provided by the modems, are satisfied by a series of
wiring jumpers within the cable.

The null modem can take a variety of forms and usually reflects what materials
are at hand. I use back-to-back solder type connectors held together with spacer
hardware (stand-offs) making the wiring interconnects very short. The completed
device is only about 2 1/2 inches long. The null modem is connected to each of
the machines with standard ribbon cable and connectors. You may use either pin
or socket connectors according to your particular requirements.

A diagram of null modem wiring that has worked well for me is shown left, below.
In my case, the other computer is a
COMPAQ with the RS-232 port provided
by an AST "Mega-Plus" plug-in board.
The jumpering at the "other" compu
ter connector is representative of
that required by most RS-232 ports,
but check your manuals for your spe
cific application.

Jumper the pins marked A together;
do the same for B and C pins. Keep
all A's separate from B's, etc. The
wiring jumpers allow SPET and the

other computer to provide their own RS-232 enabling signals. SPET's "Request to
Send" (Pin 4) provides the required "Clear to Send" (Pin 5); similarly the "Data
Terminal-Ready" (Pin 20) provides both the "Data Set Ready" (Pin 6) and the
"Carrier-Detect" (Pin 8). My early, three-board SPET is very sensitive to these
jumpers and I use them for all my RS-232 connections. You might get away with
fewer jumpers on later models, however I recommend the full complement as a
start. [Ed. According to Waterloo manuals, you need the jumpers on any model.]

With the null modem in place, properly connected to the SPET and to your commu
nication partner, we can begin a file transfer. First check the baud rate with
the SETUP function; make sure both machines are configured for the same speed.

Load and execute the modem software on both machines and try some simple key
board exchanges. The SPET Editor TALK command is sufficient for these keyboard
exchanges if the NEWTERM package is not available. It is possible that the ma
chines will not display their own keyboard entries; you may have to toggle the
echo or echo-plex command. NEWTERM toggles the local echo with the PF7 key. Make
sure that both machines are configured for the same parity and word length; any
differences usually show up as garbled messages.

A file transfer from SPET (with NEWTERM) is begun with the PF9 key; you receive
a file with PF8. With appropriate software and coordinated keystrokes on the
"other machine", file transfers should be a breeze.

This article was prepared on a COMPAQ using a popular word processing package.
The file was converted to ASCII and transferred to SPET through the null modem.
A diskette containing the file, now in Commodore 8050 format, was submitted to
the Gazette.

SPET Other Computer

Pin 1 ------- Chassis Ground----- Pin 1
 2 ------- Data from SPET-------- 3
 3------- Data to SPET-------- 2
4 — > A C <— 6
5 — > A C <— 8
6 — > B C <- 20
8 — > B
20 -> B
 7 ----- SIGNAL GND--------- 7

SuperPET Gazette, Vol. II, No. 5 -136- June/July 1985

If you wish to transfer binary (PRG) files to and from the SPET, you must have
telecom software that supports an "eight bit no parity protocol." COM-MASTER or
PETCOM, previously reviewed in the Gazette, are suitable. I haven't attempted
such a transfer and leave it as an exercise for the reader.

T H BE A P IL f f l X P E E S S l by I f f i CK
Box 16, Glen Drive, Fox Mountain, RR#2, Williams Lake, B.C., Canada V2G 2P2

When SuperPET arrived on the scene, Waterloo's was one of few APLs available;
APL users of all varieties quickly bought SuperPETs. Now that faster and more
powerful APLs are available, the professionals are moving on to other machines.
The original purpose of SuperPET APL as a teaching and learning tool, somewhat
obscured by the initial flurry of activity, has re-emerged. This is not meant
to detract from the many and excellent applications we have seen during the past
two or three years. The machine will continue to run these programs and more!
THE APL EXPRESS strives to present a varied offering to readers, but the main
thrust of the column is to help beginners, students and teachers to use the
SuperPET APL operating system and to learn to program in APL.

Programs for accurately calculating sunrise and sunset times are available from
various sources. These are of interest to navigators, astronomers and amateur
radio operators, among others. Although complex programs are beyond the scope
of this column, much may be learned from the development of simplified versions.
Here are a fairly simple pair of equations which permit calculation of sunrise
and sunset times anywhere in the world to an accuracy of plus or minus a few
minutes:

long W arccos (tan in . tan lat N)
sunrise ------- + --------------------------- in decimal Coordinated

15 15 Universal Time
(or Greenwich Mean Time)

long W arccos (tan in . tan lat N)
sunset = ------ ---------------------------

15 15

where: long W is the longitude of the location in decimal degrees West.
lat N is the latitude of the location in decimal degrees North,
in is the inclination of the Earth's axis with respect to the

Earth-sun axis in decimal degrees North.

If the coordinates are East longitude, South latitude or South inclination,
enter the angles with negative signs.

The inclinations may be obtained from The American Ephemeris and Nautical Alman
ac and vary for each day from a maximum of 23 degrees to a minimum of zero. For
best accuracy the values should be those for the current year. Unfortunately,
the table I have dates from 1977, which introduces some error. The following APL
functions are useful in calculating the times:

DTR: O w n 80 flDEGREES TO RADIANS
RTD: ojx 180*01 nRAD IA N S TO DEGREES
ROUND: ,01x L.5+gj*100
TANPART: (3 0 DTR a) x 3 0 DTR u
SRT: ROUND (wCl ~]+RTD _ 2 o r) * 1 5 : (r > l) v (2 v a j [2] TANPART <d[3])< 1 : ' A '

SuperPET Gazette, Vol. II, No. 5 -137- June/July 1985

SST: ROUND (w[l 1-RTD ~20T)H5: (T>l)v (!'<-0)l2] TANPART w[3])< 1:'A'
UT:R+ ((/?<0)x2400) -((#<-((Lcj) xlOO) + L .5 + (<j-Loj) *60) >2400) x2400 ’ A' : 'UNDEFINED'
SUNRISE: UT SRT u
SUNSET: UT SST u

ftSST AND SRT ARE CONDITIONAL BECAUSE FOR LATITUDES GREATER THAN
A67 DEGREES THE SUN MAY NOT RISE OR SET ON A PARTICULAR DAY. IN
ftTHAT CASE TANPART MAY BE GREATER THAN 1 OR LESS THAN -1 FOR
ftWHICH VALUES ARCCOS IS NOT DEFINED.
nUT CALCULATES THE 2400 HOUR COORDINATED UNIVERSAL TIME. SINCE
ftTHE RESULT MAY BE NEGATIVE OR GREATER THAN 2400 HOURS, 2400 IS
nADDED OR SUBTRACTED DEPENDING ON THE VALUE OF R.
ftTO RUN THE PROGRAM ENTER SUNRISE FOLLOWED BY THE WEST LONGITUDE,
ftNORTH INCLINATION AND THE NORTH LATITUDE. SAME FOR SUNSET,
nEXAMPLE— SUNRISE 122 18 52.3 FOR MY LOCATION ON AUG 1ST.

The values of the inclination for late July, Aug. (1977, unfortunately) are:

July 18 21 N Aug 1 18 N Aug 12 15 N Aug 22 12 N Aug 30 9 N
July 24 20 N Aug 5 17 N Aug 15 14 N Aug 25 11 N
July 28 19 N Aug 9 16 N Aug 19 13 N Aug 27 10 N

If you have a current set, use them in the calculation. I will leave it as an
exercise to convert the functions in direct definition to the del form. Try the
program and compare with your sunset and sunrise times (available from the near
est airport).

* * . *

APL separates assignment and equality. This is obvious to an APL programmer,
but the beginner in APL, especially one who knows BASIC, may not see the reason
for this at once. As I teach both BASIC and APL but only use APL these days I

have to consciously separate the two and the different
100 READ A(1=1+1) methods used in each when teaching. Some time ago, when
110 IF 1=10 THEN 130 discussing looping and subscripted variables in BASIC,
120 GOTO 100 I wrote the program segment at lfeft on the blackboard...

When the students tried this (with appropriate DATA statements) they were unable
to print out the list, A(l). After staring at the screen for a minute, I saw
the error and made the appropriate correction. In BASIC, A(1=1+1) is the vari
able A(0) only, since 1=1+1 asks "is 1=1+1 ?" in this context. The answer always
is a resounding NO. There is quite a difference in BASIC between the two state
ments 1=1+1 and A(l=l+1). In APL we have:

1=1+1 EQUALITY WHICH RESULTS IN AN ANSWER OF NO (A ZERO IS RETURNED)
AlI+I+1] ASSIGNMENT WHICH INCREMENTS THE COUNTER, I

You can see that the ambiguity has been eliminated in APL by separating these
two fundamentally different operations.

Now that we are on the topic of differences between APL and other languages, let
us look at how APL treats data. Typically, APL attempts to handle data in natu
ral-sized pieces. These pieces are scalars, vectors (one dimensional arrays) of
numbers or characters, and matrices (multi-dimensional arrays) of characters or
numbers. These are also used in BASIC and Pascal. The difference is in the way
the data is manipulated. In APL, the whole vector or array is typically raanipu-

SuperPET Gazette, Vol. II, No. 5 -138- June/July 1985

lated, while in the linear languages you must manipulate the individual elements
of the array as scalars (the linear languages are also called scalar languages) .
This accounts for part of the 10 to one reduction in code achieved, on the aver
age, when APL is used vs. a linear language. It also accounts for much of the
appeal of APL to engineers and other technical people who want to get something
working quickly. It also appeals to those with matrix math backgrounds. Keep
BASIC and standard Pascal in mind as you work through the following examples,
which demonstrates APL's efficiency in dealing with vector data. [Ed. We could
not print Reg's example from his APL file without throwing our printer into an
infinite loop, in which it repeated, ad nauseum, the last three lines. We modif
ied the file to no avail. So we copied the file to "ieee4" until the printer
began its infinite loop, shut it off, trimmed the copy, and pasted it in the
final copy. APL somehow managed to send either an ESC or CONTROL sequence our
printer could not handle. The language is never easy to print from a text for
matting program; sometimes it is impossible. Innovation has its perils.]

V+Q
□ :

2 5

6 1

2 5 8 7 .4
V

8 7 > '5 1 6
<w_

~5 4-7 8 5 2

8 7 6 5 2 1 4 *5
v z m

”5 “4 1 2 5 6 7 8
pV

8
p(V<0)/V

2
+/V

20
leV

1
3eV

0

GENTRY OF THE VECTOR

"5 16 t\UP TO ONE SCREEN LINE
r\PRINTS OUT ALL THE DATA AT ONCE

(REVERSES THE ORDER OF THE DATA

nSORTS THE DATA IN DESCENDING ORDER

f\S0RTS IN ASCENDING ORDER

r\C0UNTS THE NUMBER OF ELEMENTS IN V

ftCOUNTS THE NUMBER OF NEGATIVE ELEMENTS

kFINDS THE SUM OF THE DATA IN V

ftlS 1 AN ELEMENT OF V?

t\IS 3 AN ELEMENT OF V?

A favourite slogan of certain professional APL programmers is "Linear languages
cause brain damage."

When teaching APL an effective mechanism for promoting "APL style" is to force
the use of one-liners. A "one-liner" is a non-recursive function with no occur
ences of right arrow. Direct function definition is ideal for this purpose. Most
students taking APL probably have learned a scalar language and tend to "write
BASIC" in APL. This can be overcome by forcing one-liners. This and other ideas
on teaching APL are discussed in a paper, "The Use of APL in Teaching Computer
Science," by Lawrence Snyder. It may still be available from the Department of
Computer Science, Yale University, New Haven, Conn. Although the first language
I learned was APL, I was forced to abandon it for several years for want of a
machine. An old 8K PET, bought in 1978, offered BASIC. Upon my return to APL
with the purchase of SuperPET, the problem of "writing BASIC" in APL restricted
my progress. I still suffer from it from time to time, as you may note in some
of the examples in this column. One-liners help; the following example is from

SuperPET Gazette, Vol. II, No. 5 -139- June/July 1985

Gilman and Rose, "APL: An Interactive Approach," 2nd Edition revised, 1976; it
is followed by the result of applying the program, TABULATE, to a sentence:

TABULATE : (p - 4) p(,A+ A° .> i [7 0 , A H A * 0) /A * -A - l+ 0 " . l+ A + A /1 p/1) \ (~A+-Te ' . , ; : ')/T*-ai , ’ '

TABULATE •FIRST LESSON: NAMES, EXPRESSIONS AND SOME PRIMITIVE FUNCTIONS.'
FIRST
LESSON
NAMES
EXPRESSIONS
AND
SOME
PRIMITIVE
FUNCTIONS

It's instructive to dissect TABULATE to see how it works. After you have done
this, think about writing it in BASIC with a loop and an IF-THEN statement to
check for ASC values. It's not difficult in BASIC and the great temptation is
to duplicate that in APL; i.e, to "write BASIC". TABULATE creates a logical
vector of the same length as the sentence. It has ones where the spaces and the
punctuation are and zeros elsewhere. The complement of this vector is used' to
compress spaces and punctuation out of the sentence. The vector is then used to
find the lengths of the words in the sentence. A logical array is then genera
ted and used to insert spaces between the words so that each word with spaces is
equal in length to the longest word. The expanded sentence is then formed into
an array using dyadic rho.

TABULATE is an example of an APL "idiom," the term for a construction in a pro
gramming language of a logical operation for which the language possesses no
primitive. TABULATE is a tabular structure which uses an array as a vector; the
rows are the elements. Some other idioms are:

{U*V)/V nREMOVE OCCURANCES OF U IN VECTOR V
{{V\V)=\pV)/V ^REMOVE DUPLICATES FROM V .

r\A QUOTE FROM SNYDER: THE ACQUISITION OF THE 'APL STYLE' IS PRIMARILY
rA MATTER OF LEARNING IDIOMS FOR COMMON OPERATIONS.

A teacher can improve learning of APL by using interactive methods, a large
video display and through the teaching of idioms. The "Finn APL Idiom Library"
is available from APL Press, Suite 201, 220 California Ave., Palo Alto, Califor
nia 94306.

SOMEWHERE IN THE TWILIGHT ZONE DEPT. For the past few years we've read a lot
on the virtues of transportable code.

You write this great program in 'C' or Pascal or some other high-level language
and sell a jillion copies to folks who use an XXXXX microprocessor. Then a YYYYY
micro comes on the market. Do you rewrite your program? Nah, you port it over to
the YYYYY with a new compiler or code generator which converts the program to
machine language on YYYYY. You never rewrite the program itself; all you need to
generate object code is a new compiler/code generator and a bit of hard-writ
assembly stuff to handle I/O and such. At least that's the theory. Somehow or
other, it doesn't seem to work out quite that way in practice. First, you never
sell a jillion copies— because the original code is too slow to compete against

SuperPET Gazette, Vol. II, No. 5 -140- June/July 1985

hand-written assembly which does the same thing; second, the transported code on
YYYYY is often slower than it was on XXXXX.

We note some examples: the operating system for Lisa I (now dead) was written in
Pascal; BYTE and InfoWorld told us that just about any benchmark on Lisa I was
slower than an Apple II. The original BASIC for Macintosh was, we're told, writ
ten in 'C*— and it ran more slowly than Applesoft. A spreadsheet named MBA was
written in Pascal; it was similar to Lotus 1-2-3 (written in assembly); anybody
heard of MBA recently? We know a couple of gurus who write everything in 'C' and
claim that the code generated by their 'C' compiler is faster than the best code
which could be writ by hand. When we snorted that no dumb machine and program
could beat a good programmer, they demonstrated with an optimizing compiler on
some short routines, which did write some pretty good code. A Fortran programm
er showed us the same thing on an optimizing Fortran compiler with some of his
demonstration routines. But— note the words "short" and "demonstration."

What happens when routines are complex or when the high-level language cannot
cope conceptually with a problem? (write an operating system in Fortran, hmmm?),

when the compiler/code generator isn't as optimum
somewher ldd 4«s at writing or comparing code as it might be, or

it doesn't take full advantage of the instruction
set on the microprocessor for which it generates
code? In short, what happens when the language is
not suitable or the code generator isn't smart?

bank79772

ldd -4,s
pshs d
ldd 8 ,s
addd codebuff
call bank79772
leas 2 , s

pshs d
leas -2 , s
ldd 6 , s
pshs
clra

d

ldx 4,s
ldb ,x
tfr
clrb

b ,a

addb 1 ,x
adca #0
addd »s
puls X
std 6 ,s
tfr
clra

a ,b

ldx 2 , s
stb *x
ldd 6 ,s
stb 1 ,x
leas
rts

4,s

You may determine the answer yourself. Load Water
loo's V1.0 or V1.1 microEditor; scroll from top to
bottom of a file; try some universal changes. Note
that the mED was written in WSL, a high-level lan
guage. Then perform the same functions in either
John Toebes' V1.3 mED (on the ISPUG Utility Disk)
or in Joe Bostic's BEDIT (ISPUG Utility Disk II),
both of which were hand-written in assembly langu
age. You behold the tortoise and the hare.

For a more specific example, see the code at left,
disassembled from SPET's linker by John Toebes. As
John says, "For those that doze off in the middle,
let me replay this just a tad bit faster. Here is
the inline code which does the same work; it needs
no subroutine; 6 lines of code replace 28:"

somewher ldd 8,s
addd codebuff
tfr d,x
ldd ,x
addd 4,s
std .x

you hear that
decided to write its code in 'C' or Pascal or some other HLL so as to reduce the
cost of writing code and to make the code transportable, be cautious enough to
give the programs from that house a trial for speed; benchmark before you buy.
Hal Hardenbergh of Digital Acoustics recently noted that a new kilobuck AT&T

SuperPET Gazette, Vol. II, No. 5 —141 — June/July 1985

machine was slower at floating point calculations than a VIC 20. The FP routines
most probably were written in AT&T's own language, 'C'...

REPAIR THAT COMPUTER An increasing number of computer systems are being sold
A Book Review to both homes and businesses. The fact that you receive

by Gary L. Ratliff this newsletter reveals that you have invested a large
amount of money in your system. With each computer come

enough manuals to make you think you'll have to pursue a career in computer pro
gramming, but nary a word do they say about maintenance. Then something goes bad
in the computer. At this point, you learn that having the system serviced by a
pro can cost an arm and a leg. Yet much of what the pros does is routine main
tenance, which the owner could learn to do for himself— if he only knew how.

While there is no shortage of computer programming texts on the market, books
which address simple computer repair are rare. Those you can find usually assume
such a degree of technical expertise that few readers can comprehend them. This
sad state of affairs has come to an end with the appearance of the book, "The
Plain English Repair and Maintenance Guide for Home Computers," by Henry F.
Bechhold, published by the Computer Book Division of Simon & Schuster, available
in bookstores for a mere $14*95. The book is well-written; the author does not
assume the reader has prior knowledge of electronics. Of particular interest to
us: the author owns a Commodore 8032, a very close cousin of SuperPET. Many of
the examples presented are for the 8032 portion of the very machine we own.

The book begins at the beginning, with guidelines to repair. The reader is next
instructed on the tools he should have if he expects to repair electronic gear.
The third chapter covers what type of parts are needed and where you get them.
The next portion of the text takes the reader into the guts of his computer; it
shows how the various parts are used to make a working system, and how to read
schemantic diagrams. Then follow instructions on routine cleaning and mainten-
anice of computer, cassette system, disk drives and printers. You are also told
how to use a logic probe to trace out problems.

The final portion of the book shows some useful additio.ns and modifications to
a computer; these include a null modem and a simple breakout-box for the RS232
port/connection, among other easily-constructed items. Those who don't possess
a logic probe are told how to build one. The appendices contain much useful in
formation; one is a trouble-shooting guide to repairs you may easily undertake
and those you had better leave to a professional. A bonus is a free consultation
card which you may send to the author for one problem on which you need help.

In summary, you'll find this book easy to read and a help in both maintaining
and repairing your computer system.

A major problem encountered with Waterloo soft
ware is that all variables except those used as
formal parameters are global. This makes diffi
cult the writing of procedures and functions for
a program library. Any variables used in a pro
cedure or function are global to a program— i.e.,

may be referenced by any line of code, anywhere. Thus the user of a library pro
cedure must first check any variables used in it to make certain they are not
used elsewhere in the program.

GLOBAL and LOCAL VARIABLES
in Waterloo Languages

by John Seitz
Champlain Regional College
Lennoxville, Quebec

SuperPET Gazette, Vol. II, No. 5 —1 42— June/July 1985

Formal parameters passed to a procedure or function are, of course, kept local.
I illustrate such a formal parameter at left, below, where we pass a formal par

ameter to a procedure; the procedure accepts what-
...main program ever value is passed under the procudure's local
call pass(parm) name of "accept_parm". The value of "accept_parm"
... will, however, remain local only if the variable

name is not used in the main program. Its value
proc pass(accept_parm) is globally accessible— and not confined to either
(accept_parm = parm) a procedure or function. In addition, the proced

ure or function itself may need internal variables
which are not passed as parms. In ordinary usage, these are global, but in many
cases, if not most, it would be desirable for them to be kept local.

I have found a simple technique which permits this. All variables used in a pro
cedure or function must be declared as formal parameters in the header (i.e., in
parentheses following the function or procedure name); the calling program must
pass constants as "dummy" parameters to those which are local, while still pass
ing actual parameters to the true formal parameters.

For example, assume a procedure named "pass" requires one formal parameter named
"A" and that it uses internally another variable named "B". Assume we call this

procedure normally with a formal parameter Z, as at the
... left. The problem is that if variable "B" is used else-
call pass(Z) where in the program, such use can affect operations in
... the procedure (and vice-versa). We may avoid this by the

coding shown below. Here, the local variable "B" is set
proc pass(A) ... to zero by the dummy formal parm
...holds local var B call pass(Z,0) we have passed. The only require

... ment is that the dummy parms be of
proc pass(A,B) the same data type as those in the

procedure or function header. Nor
mally, we pass 0 as a dummy numeric parm or a null ("") as a dummy string parm.

Steps for coding such procedures or functions follow: 1) Code the procedure or
function; 2) list all variables, either as formal parms, local variables, or
global variables; 3) create the header, specifying as formal parms first the
true formal parms and then the local variables. Do not include any global vari
ables; 4) instruct the user to call the procedure or function using formal parms
for the true formal parms and constants as dummy parms for the local variables.

The demonstration below illustrates the effects you may obtain using the dummy-
variable technique; while done in mBASIC, the technique applies equally to other
languages. In summary, you may employ both truly local variables and global var
iables. Now, if someone can come up with a technique to pass a formal parm value
back out of a procedure....

a = formal parameter variable with the same name in main program and procedure
b = formal parameter variable in main program, named "c" in procedure
c = formal parameter in procedure, named "b" in main program
d = global variable, common to both main program and procedure
e = local variable in both main program and procedure

100 print ,," a b c d e" A printout of the values of all
110 print "begin exec"; variables is shown below:

SuperPET Gazette, Vol. II, No. 5 —143— June/July 1985

120 a=1 : b=1 : c=1 : d=1 : e=1
130 print ,, a; b; c; d; e a b c d e
140 call pass(a,b,0,0) begin exec 1 1 1 1 1
150 print ,, a; b; c; d; e enter proc 1 0 1 1 0
160 print "add to all, mainII • * proc: add to all 3 2 3 3 2
170 a=a+2 : b=b+2 ; c=c+2 : d=d+2 : e=e+2 leave proc 1 1 1 3 1
180 print , a; b; c; d; e add to all, main 3 3 3 5 3
200 call pass(a,b,0,0) enter proc 3 0 3 5 0
210 print ,, a; b; c; d; e proc: add to all 5 2 5 7 2
220 print "end exec" leave proc 3 3 3 7 3
230 stop
240

proc pass(a,c,b,e)250 [Ed. We have noted a few other
260 print "enter proc"; approaches to this problem by
270
280
290
300
310

print ,, a; b; c; d; e
print "proc: add to. all";____

b=b+2 : c=c+2 : d=d+2
b; c; d; e

a=a+2
print , a;
print "leave proc";

320 endproc

programmers. One of the best and
simplest places all local varia-

e=e+2 - bles in capital letters, which
are not used in a main program.
Such local variables are made
specific to one library function
or procedure by numbering the

library modules themselves and by using that number in the variable name, as in
a library module named "proc printt", where the formal parms appear as shown at

the left in library module 14* The combina-
proc printt(MAT SEND14$> LINES14) tion of capitals and numbers indeed creates

well-isolated local variables.]

RABBIT VS. TORTOISE A few years ago, someone (Dykstra?) said any that any
or programmer who learned BASIC was ruined for life. At

WAS DYSKTRA RIGHT? the time, we thought he was bonkers. Now we are not so
sure. In the past few years, we've received a lot of

programs written in microBASIC which, despite the structure available, are full
of GOSUBs and GOTOs. At first, we thought folks just hadn't had time to learn
how to use structure; of late, however, we've decided that a lot of them don't
even try. We've received some monumentally large microBASIC programs written as
if structure didn't exist— and complaints from the writers thereof that micro-
Basic is slow. If you persist in writing programs G0SUB and GOTO, it is slow.
But— we conclusively prove below that microBASIC will run three times as fast if
written to use structure and other built-in features. We demonstrate with a fam
ous benchmark, the Sieve of Eratosthenes.

In the May, 1985 BYTE, Michael

1 ! BYTE's GOTO Benchmark.
5 ! Executes in 505 seconds.
10 t = time : size = 7000
20 dim flagsS6(700l)
30 print "Start one iteration"
40 count = 0
50 for i = 0 to size
60 flags%(i) = 1
70 next i
80 for i = 0 to size
90 if flagsJJ(i) = 0 then 170

Vose benchmarked a new form of BASIC, True Basic,
with BYTE's old GOTO benchmark, shown at left.
He might as well have benchmarked a Porsche
with a Model T ignition system. Why would any
one GOTO or G0SUB in a language which does not
use line numbers unless you insist on them and
in which structure is available? We dunno. Any
way, we ran the program in SPET in 505 seconds.

Then we rewrote the benchmark, maintaining the
spirit and purpose, and used only the simplest
form of structure — IF...ENDIF. We also used
the MAT statement to set the 7001 flags to 1 at

SuperPET Gazette, Vol. II, No. 5 -144- June/July 1985

100 prime = i + i + 3
110 k = i + prime
120 if k > size then 160
130 flags%(k) = 0
140 k = k + prime
150 goto 120
160 count=count + 1

the beginning of the program.

Using MAT cut execution time by 15 per cent;
the insertion of one piece of structure cut it
37 per cent more. With a few simple changes,
the structured code ran in 48 per cent of the
time of the GOTO original— over twice as fast.

170 next i
180 print "Time"; time-t;"seconds."; " Primes found"; count

90 !The sieve with MAT and structure
100 t = time : size = 7000
105 dim flags%(700l)
110 print "Start one iteration"
130 county = 0
140 mat flags% = (1)
170 for i = 0 to size

if flags^(i)
i + i

180
190
195
200
210
220
230
240
250
260

prime =
k = i + prime
if k <= size
for j

+ 3

= k to size step prime
flags^(j) = 0

next j
endif
count = count + 1

endif
270 next i
290 print "Time"; time-t; "seconds."; '

Here is the structured version, without
integers, for direct comparison. It
runs in 243 seconds, less than half the
time of the original, yet makes exactly
as many calculations as the original̂ .
When we changed^all -the—variables from
êeti— or- decimal numbers to integers,
run time dropped to 168 seconds, or to
one-third the time required for the or
iginal. A reduction from 505 seconds to
168 seconds doesn't surprise us a bit.
It demonstrates two things:

Structure speeds up execution!
G0T0/G0SUB programmers are locked
into a terribly slow habit.

Primes found";count

We summarize all tests in the table below, which demonstrates conclusively that
GOTO programming is for turtles. All runs were in microBASIC V1.1.

Time
to
Run

Seconds

Relative

BYTE GOTO
Benchmark
as written:

505

1 .0

GOTO Bench
mark with
Integers

391

0.77

GOTO Bench
mark with MAT
and Integers

343

0.68

Structured Benchmark
Using MAT

With Reals With Integers

243

0.48

168

0.33

The original benchmark runs in BASIC 4*0 in 292 seconds. If in 4*0 you take ad
vantage of the inner FOR...NEXT loop which zeros the flags, the time drops to
193 seconds— which is slower than the structured mBASIC program. We sent a draft
of this article to grand sachem Terry Peterson and bet him $25 he couldn't beat
the microBASIC time in 4*0 if 1) he performed all calculations-of the original,
including the initial flag-set, and 2) he was limited to one statement per line
in the working program (but not on the DIM and constant-definition line). He
failed to beat the 168 seconds under the terms— but protested the terms were
totally artificial, and sent back a BASIC 4«0 program optimized for speed which
ran in 124 seconds, along with a HALG0L program, run with the MC 68000 micro
processor on the Digital Acoustics Grande board. HALGOL's time: 2.1 seconds!

Enough on (invidious) comparisons. We undertook to see if structure speeds up

SuperPET Gazette, Vol. II, No. 5 -145- June/July 1985

programs; it does. Those who use microBASIC and want speed should employ struc
ture. Don't believe the long-standing myth that structure is slow.

[See p 4, No. 1, Vol. II for more on HALGOL. Hal Hardenbergh, its creator, says
it is the fastest interactive language in the world; we hope he and Terry send
us a summary of how Hal's Grande board, power supply, and hookup to SuperPET are
configured, the memory capacity options available, and the prices. We'd like to
give readers a clear view of what is or soon will be available. Nick Solimene,
one of our members, has both 0S9 and the Grande plus HALGOL working in his SPET
and reports no compatibility problems to date. HALGOL isn't finished yet.]

B I T S f f i T T E S & f f i U C S Bey (Eaxry ffiaitliffff,, Sr.
215 Pemberton Drive, Pearl, Mississippi 39208

In our last treatment of the floating point routines in the Waterloo library we
created a dyadic fuction which adds 2+3 to yield 5. It becomes the basis of our
further exploration of SuperPET's math routines. When we stopped, last issue,
FAC1 contained 3 and FAC2 contains 2. Clearly, by replacing the line reading
JSR FADD_ with another dyadic function we'll be able to determine what the other
routines do for us. So, let's begin.

If we replace the line JSR FADD__ with JSR FSUB_ then the answer will change from
5.000 to 1.000, for we'll have performed 3-2 = 1. There is no need to reassemble
the program in the last issue to create a number of one-line changes; instead,
we'll use the monitor. Enter it and ">1 math.mod"; then ">t 1000-1030". You'll
translate (disassemble) the program. When you see "JSR $a030", you have found
the JSR to FADD_. Change the address of the JSR to that of FSUB_ by using the
table printed last issue; we find FSUB_ at $a036. Simply modify memory with the
"m" command: >m 1027 a036 (yes, the address is one byte beyond the JSR). Check
for error by again "translating" 1026; you should see: JSR a036. If it is okay,
"go" the code; a dump of the answer with: >d 1044 should show 1.000.

By similar change to the subroutines we call, we can explore in short order the
functions performed by other library routines. •

If we replace JSR $a030 with JSR $a003 we will call, not FADD_ but P0WER_; the
result of the calculation will not be 2+3 but 2*3, for an answer of 8.000. In
a similar manner a change to FMUL_ will display the product, while FDIV_ will
produce the result of 3/2. Try these and the other functions listed in the file
fpplib.exp.

Unless you study material on the floating point routines printed elsewhere in
this issue, the results may strange; in some of the functions the operations are
performed on the numbers in FAC1 and FAC2, and in some the results return in
the D register. We can use FCMP_ as an example; it compares the number in FAC1
to that in FAC2. The result of the comparison returns in D as -1 ($ffff) if FAC1
is < FAC2; 0 if the two are equal; or 0001 if FAC1 > FAC2. Modify the code in
the "monitor and try FCMP_. With 3 in FAC1 and 2 in FAC2, you should receive a 1.

This exercise can demonstrate the value of breakpoints (if you have not used
them). If all we do is modify the JSR instruction at 1026 so that it performs
a JSR CMP_ instead of JSR FADD_, the program continues to its end; we never do
see the contents of the D register at the time FCMP_ does its work. We can stop
the program by setting a breakpoint at $1029, with the command: >s 1029* at

SuperPET Gazette, Vol. II, No. 5 -146- June/July 1985

which point the program will stop and give-us a register dump.

Because the act of loading a parameter into FAC2 and calling a system routine
is performed quite frequently, there is in the floating point library a series
of routines which combine the loading of the parameter and the task of calling
the right math routine. The result is a shorter program. In such routines, P1
(the parameter in the D register) points to the address of the argument we want.

Let us revise our math program to illustrate this technique. A program to take
advantage of this shortcut is presented below: Compare this program with that
presented last issue before you assemble and link.

XREF cnvs2f , fstore , cnvf2s , fadd2

LDD #end2
PSHS d
LDD #srt2

JSR cnvs2f_
LEAS 2,s
LDD #buf1
JSR fstore_

LDD #end3
PSHS d
LDD #srt3
JSR cnvs2f_
LEAS 2,s

LDD #buf1
JSR fadd2_

LDD #buf2
JSR cnvf2s_
SWI

; This is P2 for CNVS2F_, the end of the string.

; This is P1 for CNVS2F_, the starting address of the string.

; Convert to floating point format in FAC1.

; This is the location we use to store the converted number.
; We now have floating point form of 2 in buf1

; This is P2, the end of the "00003" string.

; The starting address of 3
; Again, we convert to fp format in FAC1.

; P1 for FADD2_, the address of the number to be loaded in FAC2,
; Loads FAC2 with number 2, adds FAC1 and FAC2; result in FAC1.

; Answer buffer.
; We convert the sum of 5 back to string format.

srt2 FCC "00002" The .cmd file for this routine is the same as
end2 EQU * in the last issue, except for the filenames:
srt3 FCC "00003"
end3 EQU * "math2"
buf1 RMB 12 org $1000
buf2 RMB 12 include "disk/1.fpplib.exp"
buf3 RMB 12 "math2.b09"
END

Because this program is shorter than the previous one, our answers will appear
in the answer buffer at $1041. You will find a number of combined function in
the library: FADD2_: FSUB2_, FMULBY_, FDIVBY_; their addresses are listed in
the last issue. All combine the operation of loading FAC2 and peforming a math
operation; the results are identical to FADD_, FSUB_, FMUL__, and FDIV_.

Thus ends this second column on math routines of the Waterloo floating point
package. The column is short because of the number of additional articles on
the subject in this issue. I hope the material is useful and that those of you

SuperPET Gazette, Vol. II, No. 5 -147- June/July 1985

who didn't know how to modify code in the monitor without reassembling .are
pleased with this time-saving trick.

THINGS I'D LIKE TO SEE IN THE NEXT VERSION OF mFORTRAN Do you use your SPET
or (with apologies to Lerner and Lowe) in one powerful way

Why Can't Our mFORTRAN be Like F0RTRAN77? for which it made— as
by Stan Brockman, Associate Editor a machine on which to

write and debug code
which you then upload to a bigger machine for production runs? Do you find that
you can't easily do that with WATCOM's mFOR because of the extensive post-upload
editing necessary before you can run it? I answer 'YES' to both these questions.

There are a number of differences between mFOR and F0RTRAN77 as implemented on
our VAX 780. What follows is correct to the best of my knowledge, but because
my experience with the bigger computers is limited to the VAX, I may not be en
tirely consistent with F0RTRAN77 as implemented on other machines.

My pet peeve is related to how character strings are implemented in mFOR. The
mFOR character declaration statement simply defines a variable that may be
assigned character data; F0R77 requires that the maximum length of a string also
be defined. So what, you say? Well, the difference is not in itself a grave one,
but the consequences of it are fairly far-reaching.

For starters, a SPET character variable is dynamic— it can be any length, up to
available memory. Further, the length of the SPET variable can change each time
a new string is assigned to it. The F0R77 variable can be only as long as its
declared length— no more, no less. A character string shorter than the declared
variable length will be be padded on the right with blanks before being stored;
it will be truncated if it is too long. On output, the blank padding is retained
(unless a substring of non-blank characters is extracted), which may not be what
you intended.

This difference in storage mode carries through to the intrinsic function, LEN.
mFOR will return the true length of a string assigned to a variable, while F0R77
will report the length of the variable as defined by the declaration statement.
Aside from using a loop to count backward to the first non-blank character or
using a VAX-dependent system function, there is no way to determine the true
length of a string with F0R77— a real limitation, at times.

Well, let's look at the differences in getting character data assigned to the
variables in the first place. mFOR permits list-directed input of character data
(for instance, 1 read *, ASTRING') which will then assign the characters between
the beginning of the input line and the first delimiter (comma or end-line) to
ASTRING. The same statement will crash a F0R77 program.

On the other hand, 'read 10, ASTRING', where the format statement is '10 format
(a)', executed with F0R77, will read an entire input line (up to the maximum de
clared variable length), commas and all, and will assign the string to ASTRING.
With mFOR, one of three things can occur: (1) if ASTRING has not previously been
assigned a value, the first character only will be assigned to ASTRING, (2) if
ASTRING has a previously-assigned value and the new string is at least as long
as the old one, then that many characters from the new string will be assigned
to the variable; the remaining characters will be truncated on the right, and,
(3) if ASTRING has been previously assigned a value but the new string is less

SuperPET Gazette, Vol. II, No. 5 -148- June/July 1985

than the previous length, a 'specified field width too big' error will occur.

As mentioned above, mFOR considers commas and end-of-line (or RETURN) to be de
limiters for list-directed input. F0R77 also accepts blanks as delimiters for
numeric input. In an earlier Gazette, it was observed that it would be nice if
mFOR did not require commas between numeric input data fields. It surely would
facilitate outputting data from the SPET to disk files if the commas didn't have
to be explicitly included in order to delimit fields for subsequent list-direct
ed reads.

Well, did I mention any of your pet peeves? Do you have others? Write them
up, send them to our hard-working editor or to me. Better yet, write your own
impassioned article. Maybe somebody out there will listen to us... [Ed. Stan's
address is found on the very last page of this issue.]

WHY GUESS ABOUT GUESS...ENDGUESS? We continue to get questions on how to use
the GUESS...ADMIT...ENDGUESS construct in

SuperPET. It's found in most languages, including assembly, and is handiest when
IF...ELSE...ENDIF won't cope well with multiple options. The basic concept:

Jump r
on QUIT |
to ADMIT |

Jump r
on QUIT |
to ADMIT !

GUESS
Test for a condition

-< Quit if condition is NOT met
Code if condition IS met. Optional >-

ADMIT
-> Test for another condition
-< Quit if condition is NOT met

Code if condition IS met. Optional >-
ADMIT
-> Default code to run if neither

previous condition is met. Optional
ENDGUESS
Next statement <-----------------------

Jump to
statement
following
ENDGUESS
when any
guess is
true.

We leave the construct whenever we do not QUIT a GUESS or an ADMIT. In short,
whenever one of our guesses is right, we jump to the end of the structure. There
is another way to employ GUESS...ENDGUESS, without an ADMIT, which is particu
larly useful in assembly language, though by no means limited to it. In the
example below, we stuff commas into number strings which need them; "123.00" is
not changed; "123456789.00" becomes "123,456,789.00".

dot$=idx(number$,".")
guess
if number$(dot%-4:dot^-4)='"
number$(dot#-3:dot%-4)="»"
if number$(dot%-7:dot$-7)='"
number$(dot%-6:dot$-7)=","

endguess '

! Where's the decimal point?

then quit ! Are there four digits left of
! Stuff in a comma,

then quit ! Are there seven digits?
! Stuff in another comma.

The simple construct above takes care of numbers to 999,999>998.999+. [Those who
program in microBASIC will note that you can insert characters in a string with
out overwriting any character if you use reverse value notation (string$(7:6)).]

ldb
GUESS

.x+ We find another way to employ GUESS...ENDGUESS in assembly
language. Suppose we have a character in B register and

SuperPET Gazette, Vol. II, No. 5 -149- June/July 1985

cmpb #' .
quif eq
cmpb #$20
quif le
jsr process

ADMIT
call printerror,#badentry
bra fini

ENDGUESS

will accept ariy entry but a decimal point, a space, a null
or CONTROL, all of which are errors and all of which must
end the program; other characters we process. The code at
the left handles the problem.

There is, of course, an inverse form of GUESS...
ENDGUESS, in which we simply invert the QUITs,
and process only characters which are not a null,
space, CONTROL, or period, as at left, below:

GUESS
cmpb #$20
quif hi

ADMIT
cmpb #'.
quif ne

ADMIT
jsr process

ENDGUESS

if

GUESS

ENDGUESS
else
GUESS

ENDGUESS

endif

So long as we remember that each QUIT trapdoors the code
into the next ADMIT, the GUESS...ENDGUESS structure is
easy to write and often much shorter and clearer than a
series of nested IF...ELSE...ENDIFS, particularly when we
write assembly language, in which the ELSEIF structure is
missing.

; Process only characters other than period, space, control, or
; null.

* * *
Not long ago, we ran into a trap in GUESS.. .ENDGUESS which did
not crash us but certainly produced some unusual results.

As you'll see at left, we nested two GUESS...ENDGUESS structures
within an IF...ELSE...ENDIF, in the position shown, in assembly
language. Note there is no actual 6809 code for the "else" line.
As a result, when the first GUESS...ENDGUESS was executed, the
code ran us directly to the second, ignoring the "else".

We've not run into this problem in any of the other languages.

Prices, back copies, Vol. I (Postpaid), $ U.S. : Vol. I, No. 1 not available.
No. 2: $1.25 No. 5: $1.25 No. 8: $2.50 No. 11: $3-50 No. 14: $3.75
No. 3: $1.25 No. 6: $3.75 No. 9: $2.75 No. 12: $3-50 No. 15: $3.75
No. 4: $1.25 No. 7: $2.50 No. 10:$2.50 No. 13: $3.75 Set: $36.00
-- — -- ------- ------- ----- ---Volume II-- -— --------------------------------
No. 1: $3.75 No. 2: $3-75 No. 3: $3-75 No. 4: $3-75 No. 5: $3.75
Send check to the Editor, P0 Box \'\J\ , Hatteras, N.C. 27943. Add 30# to prices
above for additional postage if outside North America. Make checks to ISPUG.

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$
APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP

(A non-profit organization of SuperPET Users)

Name: Disk Drive: Printer:

Address:__
Street, P0 Box City or Town State/Province/Country Postal ID#

[] Check if you're renewing; clip and mail this form wi-th address label, please.
If you send the address label or a copy, you needn't fill in the form above.

For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check payable
to ISPUG in U.S. Dollars. DUES ELSEWHERE: $25 IKS. Mail to: ISPUG, P0 Box 411,
Hatteras, N.C. 27943, USA. SCHOOLS!: send check with Purchase Order. We do not
voucher or send bills.

SuperPET Gazette, Vol. II, No. 5 -150- June/July 1985

This journal is published by the International SuperPET Users Group (ISPUG), a
non-profit association; purpose, interchange of useful data. Offices at PO' Box
411, Hatteras, N.C. 27943. Please mail all inquiries, manuscripts, and applica
tions for membership to Dick Barnes, Editor, PO Box 411* Hatteras, N.C. 27943.
SuperPET is a trademark of Commodore Business Machines, Inc.; WordPro, that of
Professional Software, Inc. Contents of this issue copyrighted by ISPUG, 19S5,
except as otherwise shown; excerpts may be reprinted for review or information
if the source is quoted. TPUG and members of ISPUG may copy any material. Send
appropriate postpaid reply envelopes with inquiries and submissions. Canadians:
enclose Canadian dimes or quarters for postage. The Gazette comes with member
ship in ISPUG.

ASSOCIATE EDITORS
Terry Peterson, 8628 Edgehill Court, El Cerrito, California 94530
Gary L. Ratliff, Sr., 215 Pemberton Drive, Pearl, Mississippi 39208
Stanley Brockman, 11715 West 33rd Place, Wheat Ridge, Colorado 80033
Loch H. Rose, 102 Fresh Pond Parkway, Cambridge, Massachusetts 02138
Reginald Beck, Box 16, Glen Drive, Fox Mountain, RR#2, B.C., Canada V2G 2P2
John D. Frost, 7722 Fauntleroy Way, S.W., Seattle, Washington 98136
Fred Foldvary, 1920 Cedar Street, Berkeley, California 94709

Table of Contents, Issue 5f Volume II
New Computers.............. ___120 BEDIT gets HOST capability....... ...121
AND,OR, NOT integer variables ___122 ...123
New Pascal Compiler?........123 Commodore Reference Book........ ...124
Converion of Numbers........ ___124 Floating Point Library.......... ...127
Floating Point Ops, Toebes— ___131 CC Flags During Math........... ...133
One Family .Uses SuperPET.... ---134 File Transfer with Null Modem.... ...135
APL Express................ ---137 In The Twilight Zone........... . . H Q
Book on Computer Repair..... 1 4 2 Handling Local and Global Variables.142
Structure and Speed........144 Bits, Bytes and Bugs............ .. .146
Fortran 77 and mFortran..... ___148 Fundamentals of GUESS...ENDGUESS. ...149

SuperPET Gazette
P0 Box 411
Hatteras, N.C. 27943
U.S.A.

Bulk Rata
U.S. POSTAGE

PAID
Perm it No. 41

E lizabeth C ity , N.C.

