
The latest computer shows indeed revealed a few
new computers and a least 1500 more printers; we
will soon have one model of printer for every

user in the U.S. and Canada— each, of course, with its own peculiar command set.
We hope the printer makers either adopt a standard command set or that 99% of
them go bankrupt, if only to save the sanity of the poor devils who must write a
full set of printer drivers for all commercial software. Users, of course, are
in the position of the chap who, having saved the life of the Sultan, was rewar
ded with one night in the harem amongst a thousand beautiful houris. He went mad
from indecision.

Atari did reveal its MC68000-based ST-series, with a Mac-like GEM interface be
tween the operating system and the user; 512K for $599 has a nice ring to it.
Commodore showed the C-128, which contains three different microprocessors, one
to run CP/M, one to match the C-64 in all operating details, and one to handle
an 80-column screen plus the full 128K of memory. It essentially is a 6502/Z80
machine. Rumors abound about Commodore's 68000 machine (the Amiga), but nothing
much seems knovm.

We hear (happily) that IBM is reported to have abandoned the notion of 3*5-inch
drives for the new PC II, after a survey showed users didn't like the idea. We
have about as much use for cutesy wee disks as we have for measles, never hav
ing been able to cram enough files on a 5-inch disk. And we don't like the price
of the wee ones— three to four times as much as a 5-inch disk, with less capac
ity. Having lost only one 5-inch disk in three years, with moderate care and
from six to eight hours of computer operation per day, we scoff at the hype of
"more protection against dirt." It's the same old "new and improved" jazz the
hucksters employ to sell soap. The cutesy drives may be fine for portables, but
we want a 5-inch drive with 1.3 to 2 megs on it— sized for mankind, not elves.

The e: date on your address label means ENTRY, not expiration...

We got an angry note from young Bodsworth: "Why didn't you tell rne my membership
had expired!" His e:date is 9-1-84; his membership won't expire until 9-1-85.
We always tell you when time is up with a note on your address label, underlined
in red, saying: "Membership EXPIRED!". We love to see renewals come in sooner.

If thy label is redmarked this issue, check the RENEW block on the last page and
send it with your address label or a copy (don't fill out the form if you send
the label). Remit the usual fees. Send an article while you're at it.

FIRST THE SCALPEL, THEN THE OPERATION And to make a scalpel, you first find
some iron ore, charcoal, and limestone, and then you build a furnace... G u m
John Toebes started to reassemble microBASIC, using the present assembler and
linker, only to find himself without sufficient memory and in hours-long sess
ions with the huge files. So he had to back off and rewrite both assembler and
linker. Progress to date: most files assemble in one half to one-quarter of the
time previously taken; his FORTH package formerly assembled in four hours; it
now assembles (with lots of macros) in fifteen minutes. And that package is a
small one, compared to about 36K bytes of mBASIC code. Once assembler and link
er are working as they oughta, he must reassemble mBASIC in packages and then
link the same way, for there's no way to finish a 36K byte program in 32K of
user memory. And there's no way to start writing a compiler until mBASIC is re
assembled and working properly. First, the scalpel...

SuperPET Gazette, Vol. II, No. 4 ' -90- April/May 1985

ISPUG UTILITY DISK II After a prolonged pregnancy, ISPUG finally gave birth
Fewer Programs— More to Utility Disk II, holding some brilliant offspring,

Instructions thoroughly documented— most with tutorials as well as
instructions. The prize baby of the lot is BEDIT, of

which we’ve said much, and on which you'll find separate articles this issue. We
show below a partial directory of the programs; note the size of the tutorial
and instruction packages. We're convinced much good software languishes unused
because the instructions are lousy; we tried to overcome that problem; shown be-
low is a partial directory of the new disk:

20 ''dos:men" PRG See comments below
19 "dos instr:e" SEQ
24 "copy/kill:men'' PRG See comments below
22 "copy/kill:ein" SEQ Instructions for COPY/KILL (CK)
5 "clip:men" PRG Converts 6809 ASCII files to PaperClip format
8 "clip_instr:e" SEQ Instructions for "clip"

49 "beditl.0 PRG Joe Bostic's new Editor
116 "bedit instr:e" SEQ The instructions for BEDIT
96 "bedit tut:e" SEQ A tutorial on the new features of BEDIT
79 "batch tut:e" SEQ A tutorial on BATCH files in BEDIT

64 "bedcalcl.0" PRG BEDIT with CALC built-in
16 "calc" PRG Interrupt version of CALC; use with other Editors
12 "calcs" PRG Short form for use in all languages/facilities
69 "calc_instr:e" SEQ Instructions for CALC (all versions work the same)

94 "calc tut:e" SEQ A tutorial on all versions of CALC

To save space, we list above about half the programs. The material almost fills
two 4040 disks.

Two of the programs above deserve mention here: First is Alain Proulx's DOS, a
machine-language program which runs at main menu. It handles all DOS functions;
lets you read any SEQ file on the disk examined, and is menu-driven. For those
who find DOS work difficult, this is a DOS manager which lets you perform any
function you want, from COPY to FORMAT, from RENAME to SCRATCH, without having
to memorize or type in the DOS commands. Important note: Alain has produced two
versions, one in French and one in English. His instructions likewise are in
both languages. Please state which version you want: French or English! If you
do not specify, we'll send the English version.

Second is Loch Rose's COPY/KILL (CK), a machine language program which loads and
runs at main menu. As with DOS, you may read any SEQ file on disk. You may mark
any file to be copied or scratched with the touch of a key; even better, you may
move the filenames with other keys to define the order in which the files are to
be copied. CK is menu-driven, simple to use, and fast. You may change your mind
as to which files are to be copied or scratched and switch the order in which
the files will be copied with a keypress or two.

Between DOS, CK, and the BATCH files capability in BEDIT which we define in a
separate article this issue, anybody who switches to 6502 for DOS work is not
only out of his or her ever-lovin' mind but driving a Model T whilst a Porsche
lingers unused. We are now spoiled rotten, and haven't typed a list of filenames

SuperPET Gazette, Vol. II, No. 4 -91- April/May 1985

for DOS work in the past six months... Final note: you needn't know machine lan
guage from a mackerel to use any of the programs.

NOTE: As we print this issue, BEDIT does not support; "puts" to HOST; Joe Bostic
is hard at work upon the problem. Most of us do not use the HOST capability; if
you need it, wait for a later version.

Please read the article on BEDIT* s capabilities in this issue. V/e suspect that
the fully selective directories (di *.asm lists all .asm files on disk) and the
sorted directories (cat *.asm lists all .asra files in alphabetical order) will
alone be worth the cost of the disk, which, as usual for documented ISPUG disks,
costs $10 U.S. in 8050 format, or $16 for two 4040 disks. Order from ISPUG, at
P0 Box 411, Hatteras, N.C. 27943. This is the best disk we've yet issued.

ONCE OVER LIGHTLY Guru Terry Peterson reports on a way to use your printer
Miscellany off the serial port and off the IEEE bus without touching

the "linefeed with CR" switch on the printer. As most of
us know, Commodore machines don’t send a linefeed with a CR; your printer must
generate the linefeed. If you adjust the printer to produce a linefeed off the
IEEE bus, and then try it on the serial port, you’ll get two linefeeds, one from
the "p serial" routine, and one from the printer.

Terry's tip: You can kill the extra linefeed sent from the serial port by poking
byte $7E in the zero page to a 1 (it normally says 2). This location defines the
number of bytes the serial port should transmit at line-end. If you do this, on
ly the first byte ($0D) is transmitted; the second ($0A, or linefeed) is not.

SETTING MEMEND_ IN THE ASSEMBLER John Toebes sent us a report on a bug in the
Waterloo Assembler. If you're using an ML module with it, loaded up high in user
memory, be sure to set MemEnd_ for that module at least one byte lower than the
start of your program. It seems the Assembler code reads the set MemEnd_ and,
depending on whether the address is odd or even, may adjust itself to use memory
one byte past MemEnd_. Be safe. Allow for it.

NOTE ON KORDCRAFT ULTRA Frank Avenoso of 288 River Road, St. James, New York
11780 writes that he is much pleased with the performance of Wordcraft Ultra for
the CBM 8032/8096 (it costs $400). At that price, Frank says, it should and does
offer a lot: "You get the usual WordPro/PaperClip features without global search
and replace but plus true proportional spacing with left and right justification
and bold print, etc. It makes for nice in-house manuals with the type-set look.
I could ash for only one additional feature— to take advantage of the extra mem
ory in SuperPET. Any readers who want more informt.ion should drop me a line."
Cimraaron Corporation of California distributed the program until a few months
ago; now you must purchase from Dataview-Wordcraft, Colchester, U.K.

ON SUFFOCATING VERBS The computer press continues to disgorge undigested
mush written by programmers who are proud of their

tight computer code but can't write English. We discovered why— it's the current
fad to suffocate all living verbs:

V/e illustrate with a recent massacre less bloody than most, and underline the
slain verbs: "Any register capable of storing retrievable data is usable for
passing data to and from an assembly-language routine." Four verbs lie dead,
suffocated with "ble" and "ing" in the current fashion. What does the mush say?

SuperPET Ge---'t-4-̂ Vol. II, No. 4 -92- Apr.il/'" j)r 5

"In assembly language, pass data In a register you can write to and read."

How else would you pass it, in heaven's name? A platitude lurks there, hidden
by the bodies of verbs smothered to death with pillows of "ble" and "ing".

LINKING WITHOUT CRASHING We tried to link a program which took up four banks
(about 16K bytes) and crashed, memory full, when we were halfway through the
third. The command file referenced not only watlib.exp but a long usrlib.exp
file of over 90 blocks. When we cut that file down to only the exports we needed
in the program, it occupied only 9 blocks— and we were able to link a longer
program (about 18K bytes or 4*5 banks) with no further problems.

It turns out that ".exp" files occupy a large amount of memory. If you run out
of memory whilst linking, edit watlib.exp and usrlib.exp files down to only the
system routines or locations you must use. You can save even more memory by
putting such routines/locations into equates in your .asm files. The linker
is then not required to keep a table cross-referencing locations and labels.
As Terry Peterson notes, you can also save considerable memory by using short
names for labels which are XREF'd (and put in tables internally). Cut a label
name from "firstbuffer" to "buf1" and you save at least seven bytes...

There’s another way to approach tue problem: put your exports in your command
file, in the form: "export wunderbar = $0000". This won't save as much memory
as putting equates into your .asm files, but it may be more convenient than mak
ing up a special "usrlib.exp" file.

KEYSENSING BUG Please hold down both SHIFT keys on SuperPET, and with your
third hand, press these keys: _, !, ", TAB, ESC, A, OFF, and

Z. Hmram. The keys listed either do not print at all or print the wrong charac
ter. Now, depress SHIFT LOCK and hold the right-hand SHIFT key down. The same
thing happens. What's wrong? The keyboard-sensing routine in ROM can cope with
a shifted keyboard only when one SHIFT key is down, but not with both down. The
SHIFT LOCK key acts only to enforce the left SHIFT key, not the right— and the
two SHIFT keys return different codes at the PIA, which senses keypresses.

SuperPET does not know what to do with the leftmost keys on the board when SHIFT
LOCK and right SHIFT are down, or when both SHIFT keys are depressed. No, there
is nothing wrong with your particular machine. The problem afflicts us all. If
you’re curious, transfer to 6502 and do the same thing; try SHIFT 2...

USED SUPERPET AVAILABLE? John E. Stump of P0 Box 1112, Wiley Hall, West La
fayette, Indiana 47906, has a disk drive and a B-123 but wants wants wants a
SuperPET. If you'd care to sell one, write him!

LOADING BIG CHUNKS of PIC In language, that is. Guru Terry Peterson reports
no luck trying to load programs of more than 512 bytes into Fortran or Pascal
(See Vol. II, No. 2): "mFortran seems to suffer from the bug V1.1 mBasic used to
have; it defaults to a maximum record size of 80 when no size is given. Worse
yet, it cannot be circumvented by POKEing, the way my mBASIC patch program did
(II, 29), because the file doesn't actually get opened until the first READ.
Time for another mFortran patch? The situation in Pascal is even bleaker; its
READ procedure won't accept string variables as arguments, so you have to fetch
the bytes one.. .at.. .a.. .time. Slow. When I tried it, I got only 130 bytes of
the 1000 in the file. Dunno why."

SuperPET Gazette, Vol. II, No. 4 -93- April/May 1985

OS-9 DISTRIBUTED Just as we were finishing copy for this issue, UPS deliver
ed a fat package of manuals, instruction sheets, and a small adapter board for
our 2-board SPET. Super OS-9 for SuperPET, version 0.9, has been shipped. We've
not had time to solder in the kit, but we did manage to get halfway through the
manuals; we have concluded that OS-9 is the poor man's version of UNIX. TPUG
promises a screen editor called SCRED soon; we're pleased, for the editor which
comes with OS-9 is a line editor only, and (if you follow the horses) seems to
be out of Terminal by Teletype. Bill Dutfield of TPUG reports that BASIC 09 is
really a superset of mBASIC and very efficient; it ran a test program in one-
third the time of BASIC 4*0 and one-fifth the time of mBASIC. Well, we'd expect
the 6809 to do a good, fast job on a language tailored for the chip— which none
of the SuperPET languages are, all having been ported to the 6809 from a high-
level language (WSL, we suspect) and not optimized for the 6809. Take note of
those speed differences, Hal; it confirms what you've been preaching.

We hear that 83 0S-9 kits have been shipped to those who ordered early, in the
hope that these early users will find and report whatever bugs may exist before
version 1 .0 is issued. We have a report from Russ McMillan of Madison, WI that
a computer dealer installed his 0S9 board and that SuperPET failed to work; when
the 0S9 gear was removed, Russ's SPET still wouldn't work. Board damage? We dun-
no. On the other hand, Associate Editor Stan Brockman installed the 0S-9 gear
himself, and it's up and running. We hate to carp at TPUG after the tremendous
effort to get 0S-9 on SPET, but the first diagram and instructions on how to in
stall the kit on two-board models aren't clear or easy to follow.

We reported both problems to Gerry Gold of TPUG, who said he'd have Russ McMil
lan's board fixed at no charge if Russ will ship it; he reports a photo is being
made to replace the unclear diagram in the instructions. Obviously, TPUG is sup
porting OS-9* If you have problems, call or write TPUG, 1912A Avenue Road, Suite
1, Toronto, Ontario, Canada M5M 4A1, (416) 782-8900. 0S-9 is available from the
same address for $195 (Canadian) to TPUG members or U.S. Associates. Note: the
0S-9 kit for three-board SuperPETs requires no soldering; it plugs in.

CHECK THAT ESCAPE SEQUENCE Associate Editor John Frost had a simple problem
which almost cost him $600. He was printing hard copy from WordPro when his
DIABLO simply quit printing visible characters— though it continued to make all
the suitable noises. Hramm. The ribbon was positioned too low for the daisy wheel
to strike it. The local service center said that a replacement printhead mechan
ism would cost $600. John balked and instead taped the ribbon cartridge in the
proper position. A friend suggested that John try the ESC sequence which resets
the ribbon to not print red (DIABLO lets you shift the printhead so the wheel
types a second color from the top of a wide ribbon). John did; farewell tape;
hello $600. Gee, howcum the service center never mentioned a software problem?

HOPE SPRINGS ETERNAL Commodore owners still write letters to Commodore and
expect an answer. Lessee, now. We reckon there are 5.5 million owners of VICs
and C64s, and a minimum half a million more who own the other Commodore models;
say six million total. Suppose each owner writes one letter per year to Commo
dore and that a good letter-answerer can reply at the rate of 48 answers per
day (one reply every ten minutes). Commodore would need a staff of 569 letter-
answerers. If salary and overhead were a modest $30,000 each, letter-answering
would cost over $17 million per year. If Commodore nets $20 for every C64 sold,
it would have to sell 850,000 of 'em to recover the cost of writing letters— and
then answer 850,000 more letters... A Ponzi scheme in reverse, no less.

SuperPET Gazette, Vol. II, No. 4 -94- April/May 1985

LONG FILES, SHORT EDITOR Readers keep asking how in the world to edit files
too long to fit in the mED. A typographer asked what to do; a teacher couldn't
load more than the first section of huge files of processed census data. The so-
ution is simple, once you think about it— copy a fixed packet of lines to a new

one, for whatever reason, it is simple to write an "append” program which joins
them again, or to concatenate them with DOS commands. We've dissected a number
of biggies this way, and have put 'em back together again without scars.

many powerful new ones, is free of the bugs which inhabit Waterloo's, and is

the last name of the author, Joe Bostic of Las Vegas, to whom we all are deeply
indebted for this jewel).

1. SELECTIVE Directories: Want to see the titles of just the .asm files on
your disk? Try: di *.asm. Yes, the asterisk prefix is legal. How about all the
files named "whatsit.xxx"? Try: di whatsit.* . Or, if you want a list of files
with "sit" in them, use: di *sit*. Yup. Also legal. You may, of course, employ
the ???? wild cards also.

2. STOP does! Ever send seven pages or so to printer, and then accidentally
kick off the print command for the second time? In old m£D, you either turned
SPET off or (sob) reprinted seven pages.... We love Joe for arranging BEDIT so
the STOP key STOPs all "puts" and "gets" and all searches or changes.

3. STOP Scrolling: So you have a file in BEDIT, and want to read one which
is on disk. The TYPE command not only prints the file to screen but stops or
starts its scrolling at a touch of the spacebar.

4. IMMORTAL Filenames: Neither disk number nor file title change when you
"put" or "get" a file, whatever the destination, unless you yourself change
that name or you clear the editor with "*d" and then get a new file. "Puts" to
printer, in particular, do not throw away the name of the file in SPET memory.

5. IMMORTAL Drives: You control the default drive with the DEFAULT command.
No matter where you get or put files, the default device is not changed— until
you change it. Yes, the default device may be either drive on device 8, 9, 10...

on eof ignore

open #30,"oldfile", input
open #4 0,"newfile", output

loop
linput #30, line$
if io_status then quit
print #4 0, line$
linecount=linecount+1
if linecount=300

! Get a line

! Read the long file
! And make a new one

disk file, then close it and
open a second, then a third,
etc. If the new filename is
"newfile", you get a series
of numbered files on disk,
such as the list below:

! Print it to new file
! Count the lines
! End the 300-line packet

newfile
newfile.1
newfile.2

packet=packet+1 : clo
open #4 0, "newfile" +

close #40
If , II II + value$(packet), output newfile.n

linecount=0
endif

endloop
And, of course, you can get any single one
of the new files into the mED to edit. If
you should want the files back in one big

THE C0MPLEAT EDITOR We've announced in recent issues a new Editor for Super
PET which uses the same commands os the old mED but adds

fast. Find a summary below of the major improvements in BEDIT (the "B" is for

SuperPET Gazette, Vol. II, No. 4 -95- April/May 1985

With this arrangraent, you never retype the title of your working file. If
the default drive is 0, you simply "p" it; to drive 1 you "p disk/1".

6. SORTED or Unsorted Directories: The DI command gives you an unsorted list
of files; CAtalog sortes them alphabetically— in both cases in two columns to
the screen. DI sends single-column lists to printer and disk; CA sends sorted
lists there in two columns.

7. DIRECTORIES stay on screen while you read them and write DOS commands!

8. MOVE Text, ECHO Text: Any text mry be duplicated (ECHO) or moved else
where (MOVE). With MOVE, the original text is deleted; with ECHO, it's simply
copied. What a time-saver!

9. WORD-WRAP: When you're in INSERT mode, any word which won't fit at the
end of a line is wrapped to the next (except-for words of more than 40 charac
ters— such as a continuous line of dashes " ").

10. COPY is Fast: Wherever possible, Joe used the built-in 3.0 DOS commands,
so that the turtle-like pace of mED's COPY command is no longer a burden. You
also no longer must remember to add PRG, USR, or REL to filenames when you COPY
files; they're copied in the format shown on directory.

11. FAREWELL "g ieee8-15": We now have @ (for Disk Command), so that any 3.0
DOS command may be entered directly at command cursor, as in: @ d1=0. For device
9, you say: @9 c1=0 or whatever. Yes, lower case commands are welcome.

12. CONTROLS in BEDIT Files: Old mED can't print any ASCII Control Code. In
BEDIT, you may embed in files any control character, either in hex, its ASCII
code letters (esc for ASCII 27, for example), or in decimal. If you want a car
riage return in a file, you enter either <cr>, <$0d> or <13>* When you send the
files to disk, you PRINT them so SPET knows what's to be done with the values.
Yes, you can control any printer or plotter directly from BEDIT.

13. EXEC files: If you put an EXE file to disk, and then EXECUTE it, it will
execute any command you can issue from the Editor just as though you typed it
in yourself from the keyboard. See the article on BATCH files, this issue.

14* THE NOT Search: Gee, big list of files on screen and you can't find the
.asm files you've been working on. Use *\.asm\d (which deletes all files from
the list which do NOT have ".asm" in them). Well, there's your list...

15. UNIVERSAL Search/Replace. The metacharacter in BEDIT lets you replace
every occurrence of a phrase, whether at start of line, end of line, or embedded
in code. With the meta, you can change "place" to "prizes" without affecting
"placeit", "emplace", or "place$".

16. MORE Goodies: These include "f" for "free"; give it at command cursor,
and you read free memory. You can change text from upper to lower case or vice
versa with the LOWER and UPPER commands. Last, if you ever wiped out a precious
line of text with PF2, and wept because you could never get it back, be of good
cheer: press SHIFT/RUN, and, as with Lazarus, your line is restored. And more.

SuperPET Gazette, Vol. II, No. 4 -96- April/May 1985

WOOPS AND WHOA! A DOSBUG! Whilst we were smugly finishing an article on how
to use BATCH files, we got a note from Joe Bostic

about a bad bug in the 3.0 DOS command "c1 :*=0:filename". Joe reported that if
"filename" exists on the copy-to drive, the command above will crash SPET. We
tried it. It did. We tried it again in Waterloo's mED, and crashed; in Toebes
V1.3 mED, and crashed— and in 6502, and crashed. The bug in the 3.0 DOS is viru
lent! You always crash if a file with the same name exists on the drive you copy
to. The DOS never gives a FILE EXISTS error message.

Joe reported the problem does not exist if the copy command is given in the for
mat at the left, where a name replaces the asterisk on the left

C1:name=0:name side of the "=" sign. So, if you are going to COPY, either copy
to a NEWed disk, scratch files with the same name on the copy-

to drive, or repeat the filename, as above. The last solution won't avoid a FILE
EXISTS error message, but it will prevent a crash.

HOW TO TAKE THE TEDIUM OUT OF TYPING • Sooner or later, all of us confront the
or, BATCH FILES ILLUSTRATED fact that our disk files are a mess. We

know we ought to reorganize them, but
flinch when we think of the time we'll spend copying files, one by one. Let all
the lazy amongst us now rejoice. We have a swift, simple way to let SuperPET do
all the monotonous work. Let's see how we do it in BEDIT.

First, we get a list of files to be copied by editing a directory put to disk
with: di disk .index <RETURN>, which forms a disk file named "index" on drive 0.
In BEDIT, we may move any entry up or down a list with the MOVE command, so that
we copy files in the sequence wanted. After editing, we store the list on disk
as file "list:bed" (the suffix :bed identifies a BEDIT batch file).

Next, we must understand two new commands in BEDIT. EXECUTE executes every line
in a disk file as if you entered that line from the keyboard. A second new com
mand, shows that you want to use 3.0 DOS commands, as in: @ s1:filename,
which'11 scratch "filename" on drive 1. The replaces "g ieee8-15."

We now create on disk a permanent command file which we'll use forever after for
all batch copying jobs. This file never changes; we saved ours to our language
disk. We show the command file below; remember that it executes as if you typed
in each line yourself. You may EXECUTE this file to copy any "list:bed" on disk
simply by saying: ex scrcopy:exe <RETURN>. And it's fast.

Note we avoid the DOSbug reported elsewhere this issue by scratching all files
of the same name on the copy-to disk as our first step. We named the routine
below SCRC0PY:EXE for obvious reasons. It always copies from drive 0 to drive 1.

*d Step 1 is to get our list of files and convert it into
g list:bed a SCRATCH list for all files of the same name on drive
$ 1. This works even if the files don't exist on drive 1.

s1:/
c/"%.%/ The list "scrat:bed" remains in mED memory,
p scrat:bed
ex scrat:bed We execute the scratch.
$! Step 2, starting here, is to convert the SCRATCH com-
c/s1:/c1:=0:/ mands to COPY commands. The list is then filed as a

SuperPET Gazette, Vol. II, No. 4 -97- April/May 1985

p copy; bed CUL‘1! list.
*d

ex copy:bed All files are automatically copied; then all working
scrat serat:bed files are scratched,
scrat copy:bed

Is what goes on a bit obscure, up in the CHANGE section of the file? Let’s take
a look at what happens when we: s1:/, using the example at the left.

%, stands for any character; %* for zero or more
27 "sura.asm" SEQ repetitions. Vie replace everything from the start
@ s1:sum.asra" SEQ of the line through the first quote. The second
@ s1:sum.asm line at left shows the result; the DOS command now
@ c1:*=0:sura.asm prefixes the line. In the next CHANGE line, we get

rid of the last quote, the spaces, and SEQ. We now
have the third line at left, above. After we’ve scratched files on the copy-to
disk, we change the scratch command to a copy command— shown as the last line at
left, above. Don’t wince at the change process; you only type it in once.

SCRCOPY:EXE works with any list in which the filename to be copied lies between
a pair of quotation marks— and ignores comments, filetypes, or anything else
outside those quotation marks. But— there may be no other quotes on the line.
Any of the entries below will be copied:

12 "any_filenan!e" PRG These comments will be deleted.
"is_indented" Copies okay.

Will copy? "a_file" Yes, if on disk is a file named: a_file

In sura, copy the permament file SCRCOPY:EXE to your language disk. After that is
done, you may forever after copy any list of files saved to disk as: "list:bed"
by 1) copying SCRCOPY:EXE to drive 0, and 2) saying: ex scrcopy:exe <RETURN>.
That's all there is to it— except for finding the dang fish if you go fishing
whilst SuperPET does all the work. Quite obviously, you may create any number of
EXE files to perform other jobs, even to copying full disks between devices.

Last, we received a most clever routine from Joe Bostic which compares the di
rectory of the copy-to drive with the original list of files and prints to the
screen a list of the fil<?s which were not copied to drive 1. If your files are
split between separate disks, you can file the "missing" list and then copy the
files from another source disk. C0MFIRM:EXE is too long to print here, but is in
the batch file tutorial found on ISPUG Utility Disk II.

CALC AND BEDCALC It always distressed us that we never could find, our
or A5CLC table when we wanted the code for "Z", that our

A Calculator in That calculator battery was dead when we had to convert dec-
Kilobuck Computer imal to hex, and that we always copied a long series of

numbers from the screen, when summing, with a minimum
of one error— after which, not having a tape, we had to re-copy the whole series
again. Somewhere in the piles of papers around the computer is a table showing
the graphics characters and their codes; somewhere a list of the control charac
ters from @ to _, somewhere the table which converts hsx to binary...somewhere
lost, that is. In final frustration, we sat down and wrote CALC, which does all
these things in SuperPET itself, which is a lot harder to misplace.

SuperPET Gazette, Vol. II, No. 4 -98- April/May 1985

We made three versions of CALC so it can be used anywhere. We write this article
in BEDCALC, Joe Bostic's editor with CALC in bank 10. The Editor doesn't know it
is there until you need it. The results automatically enter Editor text.

CALC will: 1) Sum columns of digits, 2) Convert binary, decimal, or hex into any
other notation, 3) convert ASCII code to a character (including our graphics
set), or a character to ASCII code, 4) do integer arithmetic on hex, decimal, or
binary alone or intermixed, and 4) do all floating point arithmetic. All you do
is type your question and press PF4 .

You must know, of course, that $ mean hex notation, D means decimal, % means
binary, # stands for "number," and that @ stands for ASCII. If this doesn't blow
your mind,
learned in

the rest is easy,
the fourth grade.

You enter numbers in the left-to-
First, let's convert:

-right order we all

Questions: D45671=$ $3210=# £0110 110 0=$

Answers: D45671=$b267 $3210=^0011 0010 0001 0000 %0110 1100=$006c

Or do integer arithmetic:

Questions: D87*$84= $3456+D32756= %0111 1101/D4=

Answers: D87*$84=$2cdc $3456+D32756=D 46154 $0111 1101/D4=D 31

If you prefer floating point:

Questions: 123.22*87= 78900/.122= 15-7+459.0=

Answers: 123.22*87= 10720.1^00 78900/.122= 646721.312 15.7+459.0= 5474-70

We shift to ASCII conversions (# means number, @ means ASCII)

Questions: D49=@ $5c=@ K=#@ ?=#@

Answers: D49=@ 1 $5c=@ \ K=#@ $4b D75 ?=#@ $3f D63

Want to know the graphics characters generated by PF and control keys?

D1=@ J S0H:~A (Home)
D2=@ — STX:*B (Run)
D3=@-i ETX:*C (Stop)

m =#@ $81 D129 pfi
Q =#@ $82 D130 PF2
gj =j}@ $83 D131 PF3

How do you print those graphics characters? You don't; CALC does. You simply
press the key to be defined.

34-433 34*56
45-1234 12 2 .4 0
...up to 255....
1-2 28.10
Take Cash (50.00)

Total: 135.06

We often need to sum (add or subtract) columns of numbers,
and sometimes the lists get long, whether we're adding
hours on a job, a deposit slip for a bunch of checks, or
the costs of materials on a project. CALC will column sum
up to 255 entries in any stand-alone version of the Edit
or, as shown at left. It reads mED memory, not the screen.
Yes, you may sum integers or use up to nine decimal places.

SuperPET Gazette, Vol. II, No. 4 -99- April/Hay 1985

If you make a mistake, you may correct the error, sura again and then save the
tape to disk or printer. CALC also reports the number of entries summed. If you
count 41 checks, and CALC says it summed 4 2, somebody blew it, hmmm?

We thank Joe Bostic for a strong helping hand when we married CALC to BEDIT. If
you want to use CALC with other editors, you may. We wrote an interrupt-driven
version which works with the Waterloo mED, John Toebes1 V1.3, or the Development
editor. There's a third version, CALCShort, without column sum, which runs in
the monitor or in the languages. All versions are on the ISPUG disk we announce
this issue, with full instructions and a tutorial.

A COMPILER FOR APL Last issue, Reg Beck discussed a direct definition APL
WITH A TUTORIAL DISK compiler written by Ted Edwards of Capilano College.

In his column, The APL Express, Reg printed a number
of examples showing what the compiler does. We'd sum up the advantages of the
compiler this way: 1) You spend your time defining what you want done; 2) the
compiler labors at the nitty-gritty of writing the code to do it. It's a classic
example of how to free people for creative work and let the computer concentrate
on the trivia.

Because all of us are impressed with the approach, Reg has issued a disk which
holds the Ted Edwards compiler (it's in the public domain) and a tutorial on how
to use it. The disk holds a series of screens or lessons. You can page forward
and back through them and practice on each lesson. The tutorial is fully inter
active. If you blow it the first time, you can go back and try again; if you
want to repeat an operation, you may.

Once you get the hang of how to enter definitions, the compiler writes actual
APL code for you to implement the definition. If you know what you want to do,
and don't like composing APL sonatas in Greek, the compiler is for you. The
disk is available from ISPUG, PO Box 411 » Hatteras, N.C. 27943 in either 4040
or 8050 format for $10 U.S. Title: APL: Williams Compiler/Tutorial. It's for
Version 1.1 APL only.

T f f l E A P L E X P 1 E S S toy BECK

Box 16, Glen Drive, Fox Mountain, RR#2, Williams Lake, B.C., Canada V2G 2P2

We will begin this column by looking at an old, familiar friend of mathematics
teachers— the Venn diagram. Such diagrams and the functions used to generate
them in APL provide the basis for exploring several APL primitives. Venn dia
grams are used in set theory. The universal set is shown as a region of a plane;
within this region, sets are shown as areas. In the simple diagram at left, the

universal set is represented by dots; a subset, by asterisks.
Such diagrams make sets easier to grasp.

Operations performed on arrays are converted into Venn diagrams
using the function VENN. The necessary functions and arrays are
defined below. VENN and WITH are given in direct definition, but
are easily written in del form if you don't have a direct defi
nition compiler working. A is an 8 by 30 boolean array in a use
ful pattern for Venn diagrams.

U, (an array of ones), represents the universal set. The array B is obtained by
a single rotation of A. A and B overlap somewhat so that we can find intersec

#* * * * #

* * * * * *

. * * * * .

SuperPET Gazette, Vol. II, No. 4 -100- April/May 1985

tions and unions using A and B. We can easily generate the empty set from NOT U
(an array of zeros).

UTO*-1 «WORKING IN INDEX ORIGIN 1
lh-8 30pl fiAN 8 BY 30 ARRAY OF ONES
/ M O 1 2 3 3 2 1 0-9)4>(5 7 9 11 11 9 7 5)°.£i30
B ^ A
VENN:* .**[1+1 =6)3
WITH:ct,(8 10p' •)

VENN uses indexing to replace zeros with dots and ones with stars. WITH lets us
display two Venn diagrams across the screen or printed page. The result of logi
cal operations performed on the boolean arrays are transformed to Venn diagrams
and displayed. The logical operations are analogous to set operations.

(VENN U) WITH VENN ~U
******************************
* *

* .

*

* .

* .

******************************
*

(VENN A) WITH VENN B
....................* * * * *
. * * * * * * *

...................................... * * * * * * * * *

. * * * * * * * * * * * . . .

. * * * * * * * * * * * . . .

. * * * * * * * * *

. * * * * * * *

. * * * * * . . . • • •

In the following two diagrams, we display the operations of union and intersec
tion. The first shows the union of A with B. The corresponding logical operation
is A OR B, which selects elements lying in A or in B or in both. The second, the
intersection of A with B, corresponds to the logical operation A AND B. Elements
which are in A and also in B are selected. Try the examples following the dia
grams :

(VENN AvB) WITH VENN A*B
......... *****..*****...
................. * * * * * * * * * * * * * * . .
. , * * * * * * * * * * * * * * * * .
. * * * * * * * * * * * * * * * * * *

. * * * * * * * * * * * * * * * * * *

....... ****************.

. * * * * * * * * * * * * * * . .
• •••••..******..*****...

(VENN ~A) WITH VENN ~B
(VENN AvU) WITH VENN Aa U
VENN A*~A

.**,

.**.

...*****...

..**★****..

.*********.

.*********.
..*******..
... *****...

SuperPET Gazette, Vol. II, No. 4 -101- April/May 1985

NOT A is analogous to the complement of A, all elements not in A. When these
diagrams are on screen, dump them to an APL printer using SDUMP (a dump on the
first ISPUG utility disk). Pin the diagrams on your wall or bulletin board.

The definition of A is a bit obscure. Examine the following code and the array
generated by it:

130

1 2 3 4 5 6 7 8 9 10 11 12 13 m 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30

(5 7 9 11 11 9 7 5)°.*i30
1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 0

The rows of the array are determined by a successive comparison of each element
of the left argument with iota 30. Whenever the element is greater than or equal
to each integer of iota 30, a 1 is generated, otherwise a zero is produced. All
that remains to be done is to rotate or shift the rows so that the pattern in A
is formed. We accomplish this with the dyadic rotate function. Examine the foll
owing examples:

X-*-H 4pi 2 3 4
X 14>X ~2<t>X (1 2 3 4)(fey (1 ~1 0 0)4*
1 2 3 4 2 3 4 1 3 4 1 2 2 3 4 1 2 3 4 1
1 2 3 4 2 3 4 1 3 4 1 2 3 4 1 2 4 1 2 3
1 2 3 4 2 3 4 1 3 4 1 2 4 1 2 3 1 2 3 4
1 2 3 4 2 3 4 1 3 4 1 2 1 2 3 4 1 2 3 4

If the vector left argument has a single element, the right argument is shifted
left by the indicated amount if the element is positive and right if the element
is negative. To shift each row of the matrix, the left argument must have the
same number of elements as there are rows in the right argument with the form of
dyadic rotate used.

We can easily work out the vector by which each row of the array, Z, generated
above, can be shifted to obtain a truncated diamond pattern. We can obtain the
array, A, by shifting this pattern 9 places to the right.

(0 1 2 3 3 2 1 0)<t>(5 7 9 11 11 9 7 5)°.£i30
0 0

1 0 1

1 1 0 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 0 1 1

1 0 1

0 0

SuperPET Gazette, Vol. II, No. 4 -102- April/May 1985

For those without a direct definition compiler the functions VENN and WITH in
del form are:

VZ+VENN R VZ+- L WITH R
[1] [1] Z+-LA 8 10p* 1) ,/?7

Unconditional functions convert rather easily.
* * *

Paul Matzke of Madison, Wise, pointed out an error in the function LEON in II,
p. 37. Line 2 truncates instead of rounds; a .5+ was omitted. The correct ver
sion follows:

O(L(.5+(£+.x2T)x100))t100 aCORRECTION TO ORIGINAL
0.01x|_.5+(E+.x2T)x100 fiAN IMPROVED VERSION

Thanks for the letter, Paul; I wish a few of the rest of the readers out there
would write. Don't wait until you find an error in the column; write about any
thing which interests you in APL or on any new developments you may hear about.
If want to see material which interests you, tell me what it is. WRITE!

* * *

Here in British Columbia, teachers who use APL are definitely in a minority.
It is a hard, uphill battle to promote APL in the schools. I believe this is
generally the case across North America. I continually see material in BYTE and
other computer magazines written by scientists and engineers who extol the vir
tues of APL for their uses as superior by far to other languages.

Few of my computing science students say they will choose computing as a career;
many will enter engineering or other technical areas. These students should be
exposed to APL as well as to other languages. They should leave school at least
with the knowledge that APL exists and could be of advantage in their careers.
Perhaps the best place to promote APL is in the mathematics or science classroom
since computing science is so Pascal-oriented.

I recently received the proposed curriculum guide for our newly-developed Compu
ting Science 12 curriculum here in BC, which is to be totally in Pascal, to the
exclusion of all other languages. Few secondary school computing teachers here
in BC know Pascal. Most of them now teach BASIC and must learn Pascal. A recent
resource manual, published by the Ministry of Education, is mostly in Pascal.
I think the approach detrimental to the growth of computing in education, for if
teachers can only use Pascal in the classroom, there will be no incentive for
them to learn and pass on other languages and the evolving techniques which go
go with them.

* * *

In my first column (ll,#1, p. 21,22) a program was given for entry, sort and
printout of a list of names. I took another look at the entry program and
then thought of the recursive function MAT (p. 83,11,3) written in direct defi-
ition by T. Traberman and presented in the last column. ENTER and SORT may be
rewritten quickly in direct definition. I/O functions such as PRINT cannot be
directly defined since they do not return a result. The rewritten functions
follow. Compare them to the previous set.

ENTER: M V) R E N T E R a>:0=pM!]: (0,w) p”
SORT:u)[iio;]

SuperPET Gazette, Vol. II, No. 4 -103- April/May 1985

VPRINTlD]V
[0] PRINT A
[1] ' IE E E * ' W RE ATE 1
[2] A □PUT 1
[3] W N T IE 1

To use the program, return PRINT SORT ENTER 20 or replace '20' with the length
of the longest name in your list. Type each name and <RETURN> after each entry.
When the list has been typed in, <RETURN> an empty line and the program will do
the rest.

* * *

If you're working in APL and want to print some ordinary u/l case text with the
APL program listings, the procedure is quite simple. I have a workspace which
contains FDUMP (see I, #15, p. 273), SDUMP (I, #3, p. 109), DTODISK and FETCH
(II, #2, p. 37), the APL character sot and two functions, TXT and APL. These
functions convert the character set displayed on the screen to text or to APL.
Either can be entered and returned, which permits switching between the fonts
at will. The other functions let me do function dumps, screen dumps and send
text to disk as screens. The text is screen dumped with the FX80 set up to print
normal characters. To print APL characters, I download the APL set first. The
dump functions and the APL character set will vary from printer to printer, but
TXT and APL are universal.

V O T I D V
[0] TXT

[1] Q47CDTG+13] UP0KE 59'+68
VAPLLU1V

[0] APL
[1] O4FCDT0+11] QPOKE 59^68

At Dick's request I have put Ted Edward's direct function definition compiler
on a disk along with tutorial lessons. The disk is available from ISPUG. [Ed.
See separate announcement this issue. Reg did a fine job.]

EVALUATION OF WATC0M 6502 We asked Terry Peterson and Delton B. Richardson,
DEVELOPMENT SYSTEM who have used the 6502 Development System exten

sively, to report what they think of it. Those who
are familiar with the 6809 Development Package (Editor, Assembler, and Linker)
will find the 6502 package very similar. It is available from WATC0M Systems,
415 Phillip St., Waterloo, Ontario, Candada N2L 3X2, for $250 U.S. in the U.S.
or Canadian in Canada. Delton reports first:

"This product at $250 is more expensive than other assemblers I considered, but
it is an excellent choice for SuperPET owners. In operation, it is almost iden
tical to the 6809 assembler that comes with the SuperPET. It runs in 6809 mode
and uses the familiar raicroEditor, with minor additions such as a 'dos1 command
which works like our 'g ieee8-15-'

"It is first a very good and reliable assembler, supporting macros, structured
programming statements, and bank-switching when you load and run 6502 programs
in bank-switched RAM. It comes with a program disk, tutorial, and reference man
ual, and a software 'key' (or dongle) which must be inserted in cassette port 2
to run the assembler. The reference manual is adequate, but you will need other
references if you aren't familiar with the 6502 processor. I'd suggest 'Program-

F-'iperPET Gazette, Vol. II, No. 4 -104- April/May 1985

raing the PET/CBM' by Raeto Collins West as the best overall. WATCOM's tutorial
is quite good; its examples of how to use the PET screen, keyboard, disk files,
and printer are very helpful. The System can also be used to develop programs
for the 8032, 4032, VIC 20 and Commodore 6 4.

"I used the assembler extensively over a period of two months to develop about
4K bytes of assembly code. When finished, I linked 14 separate object modules,
representing a total of about 2600 source lines, didn!t find even one bug in the
operation of the system, and never reached any limits to its internal tables or
memory structures. Overall, it is a superb product, easy, productive and relia
ble to use; I would recommend it to anyone."

/

Terry Peterson reports that an early version of the System had a few bugs; he
now has the latest version, and reports these old bugs have been squashed. One
minor problem remains, however: "The FCB pseduo-op fails to indicate 'L0' in
the .b02 file for label references which do not specify 'HI1 or 'L0'— causing
the linker to add the label's high byte into the suceeding argument! Technic
ally, I suppose, it should reject external label references that don't specify
which byte to use; but I would prefer it to default to 'L0'."

Terry also reports that the latest 6502 System package incorporates the V2.0
microEditor, with a number of new features: line split, line join, a fill rou
tine which pulls a line together after words or phrases are deleted, etc. One
unhappy feature is that the commands on the shifted keypad (PF keys) have been
changed; PF0, for example, now toggles between screen and command modes.

MicroEDITOR MANUAL FROM WATC0M Since Howard Sams ceased printing the Systems
Overview manual, students and new users have

no reference manual for SuperPET's microEditor. WATC0M has therefore published
one, "Waterloo microEditor V1.1 - User's Guide for the Commodore SuperPET." The
cost of the manual ($20 U.S. or Canadian in Canada) is higher than most other
WATC0M publications because of the small quantities WATC0M printed. We received
a copy of the 59-page manual, which is indexed and most complete. Order copies
from WATC0M Systems, 415 Phillip St., Waterloo, Ontario, Canada N2L 3X2.

The manual is far better than the terse section on the mED in the Systems Over
view manual. After three years of using mED, we learned a few things which were
previously obscure. With the Systems Overview manual no longer available, this
is a prime reference on how to use SuperPET's powerful microEDITOR, employed in
all languages but APL to create and to edit programs. We recommend it.

SEARCH AND REPLACE IN THE MICROEDITOR Last issue, we tried to define this
Part II process; we concluded with some rather

simple search/replace commands. We now
continue with more complex commands, some useful, some dangerous. You'll find
three major types of what Joe Bostic calls "search/do" commands; one for Insert,
one for Change, and one for Delete. All have a global search preface in the form
of: */search-phrase/do, as shown below:

*/;/i Automatically finds the first line in text containing a semicolon
and puts the mED into "insert" or "input" mode, opening up a new

line immediately below the semicolon. You may then enter one or more text lines,
go to the next semicolon by entering: . <RETURN> or with any function key; and
there open new lines. The process continues to end of text. You get out of it
only by standing on the STOP key until the screen flickers.

SuperPET Gazette, Vol. II, No. 4 -105- April/May 1985

!%%%!d Automatically finds all blank lines in text and deletes them. The
null is implied between (start of line) and %$ (end of line),

but cannot be directly stated in a search string.

*/%./c/%./\%&. On any line which contains a character, change the first char
acter to an exclamation point followed by the first character.

The meta "%&" repeats the search phrase (here, the first character found).

The Change command (last above) may be confusing until you parse out the prelim
inary "search/do" phrase: */$?./c — which is then followed with a normal search/
change sequence.

Unfortunately, the command form above will not accept specific line ranges, as
in: 1,40/;/d. Our new Editor, BEDIT, will accept such ranges.

Next, we come to a combination form, in which operations are performed on or
between search strings. Suppose we have a file with numbered lines, as shown at

left. These are not relative line numbers as mED counts them, but lit-
120 ... erally numbered lines in a file. We may delete these boundary lines
....... and all between them with: /120/,/240/d. Similarly, we may go into
240 ... insert mode at line 120 with: /120/i; we are given a blank line immed

iately after line 120. You might expect to use the change command with
this form also. Suppose we have the code at left and we want to indent text be

tween "loop" and "endloop". We try the next command, and it
indents only line 510:

/510/./600/ c/ / /

So, we get tricky, and say: /510/,+2 c/ / /
It works. All code in the range is indented two more spaces.
If you receive or write structured code which isn't clearly

indented, this is a neat, fast way to solve the problem.

Next, we find some commands which are tricky or dangerous. Search with either
of the commands at left, which simply say to find the start or end of a line.

Then put the cursor anywhere, and say: //d . A //, of course, stands for
/%"/ the last search string given; you'd think the command would delete the
/%$/ current line. Instead, it deletes the first line of your file. If you try

//i, it inserts a line after the first line in the file. Hmmm??

/%/& You might think a null is implied in both commands at left, as it
/$$/d is in a previous example [/$jA$$/d, above, deletes all null lines

in a file]. Alas, both commands at left delete an entire file.

*//d If you have specified a previous search string (such as "DDD"),
you delete every line holding that string. No, the // does not

specify a null unless you've been able to trick mED into making a null search
string. We've succeeded a couple of times, but never did remember how we did it.

*//i Suppose your search string is a space; the command at left says
to insert a blank line after all lines which hold a space. Sorry,

Charley, but this command forms tiger stripes; it inserts a blank line alterna
tely between single lines, between double lines...ad infinitum. Quick and dirty
double spacing of text lines we don't get. Hinin. Try again:

500 loop
510 if search$
• • « • • •
600 endif
610 endloop

ne r P ^ Gazette, Vol. II, No. 4 -106' April/May 1985

*/%./i Will this give us a blank line after every line of text? Nope. We
get tiger stripes again... Try it on a long text, with paragraphs

of more than one line. No, */ /i doesn't work any better.

*/%./<! This one says to delete any line containing a character, and that
is exactly what it does— but it leaves all blank lines in the

file. Suppose you want an accurate count of non-blank lines.... Hmmm.

*/$./c/a/b This command will indeed change the first "a" to a "b" on every
line with characters on it— but it reports "Not Found". If you be

lieve that message, you're in for trouble. Try it with a dense, long text file.

/ Enter this and <RETURN> it at command cursor. Does the search string become
a null? If not, why not? Then enter a search string for a space, which is

simply: / /, RETURN it, and try the next command:

*//c// / You expect any line containing a space will have its first null
replaced by a space? Or does the second // search string also mean

a space, and not a null? Try it. This is the hardest-working command alive; it
grinds away and does absolutely nothing— except define what // means.

We've concluded that we'll never, ever see a complex set of search/do or search
replace commands which are predictaole and bug-free; the combinations are infin
ite; full testing and debugging aren't possible.

You are well advised to file whatever you're working on before using untested
search/replace or search/do commands. As we've shown, they often do not work as
expected. The result can be a disaster unless you're cautious.

UNDOCUMENTED SYSTEM ROUTINES This is the third in a series by John on the
Part III system routines in SuperPET's ROMs. The Jump

by John A. Toebes, VIII Table address is the actual starting address of
the routine. If John CALLs a system routine, he

assumes the use of CALL MACRO (1,158) for passing parms and clearing the stack.
Don't assume that the abbreviation FCB means "form constant byte" in the text
below; John deals with I/O routines; there, FCB stands for File Control Block.

SGETCHR__ : Read a character from the serial port : at $B099; JT $D5BB.

P1 - Address of FCB (File Control Block) opened to the serial port.
Returns - character input from serial port; unpredictable in case of error.

This routine is used to input a character from the serial port. It performs
status checking on the serial port in addition to time-out checking to ensure
that it is safe to get a character. It also verifies status flags in the FCB to
ensure that no previous errors have occurred. In case of a time-out on the ser
ial port, the system error message is updated and the appropriate flags in the
FCB are set.

Example - CALL OPENF_,#SERIAL,#READ Routine is used by the host
STD SIOFCB communications routines to
CALL SGETCHR_,SIOFCB ;get the next char transfer files. It also de-

... depends upon the address of
SERIAL FCS 'SERIAL' the serial port being filled

SuperPET Gazette, Vol. II, No. 4 -107- April/May 1985

READ FCS ’R'
SIOFCB RI'IB 2

in the FCB.

SYSIOINI_ : System-dependent initialization for I/O : at $B0A8; JT $C1F5

Pass no parameters; returns nothing useful.

This routine is a very low-level system initialization routine. It empties the
FCB area ($0580 to $0600) and configures the serial port at $EFF0 for 300 baud.
It then sets up the host configuration which reconfigures the same serial port
to 2400 baud. It also calls TI0INIT_ to set up the terminal, sets up the IEEE
port, and finally initializes internal system variables. It seems of limited use
in a program but may have application when you want to ensure that SuperPET com
munications are in a completely safe state. Calling this routine destroys all
File Control Blocks. If you fail to reinitialize the FCBs with a call to routine
INITSTD_, SuperPET will crash when it attempts I/O.

From the workings of this routine, it appears that an early version of SuperPET
had more than one port to perform its serial and host communications. This rou
tine attempts to pass a baud rate of 9600 to TI0INIT_, which completely ignores

it. This routine is used by the main initializa-
Example - CALL SYSI0INI_ tion code for SuperPET.

CALL INITSTD_

REQUEST_ : Perform a specified process function : At $B0F0; JT $C1E1.

P1 - function requested.
P2, P3 - parameters (as appropriate) to the function requested.
Returns whatever function requested returns.

This routine is an attempt to provide a machine-independent implementation of
exactly what the SWI instruction on the 6809 is designed for. When you call RE
QUEST^ the routine (or service) that you want performed is at a memory location
unknown to the program that needs the service. By using REQUEST_, the code in
the microEDITOR may be identical for all languages while the internal represen
tation in each of the languages is different.

To use this routine, first stack the parameters for the function you call. Then
load the number of the function (see below) requested and call REQUEST_. It will

in turn invoke the routine
whose address is stored at
PR0CESS_ ($002A) to process
the request. The microEDITOR
uses only four different re
quests although Waterloo de
fines nine different request
functions, as shown at left.

QUIT = 0 ;Return to Command Processor/Menu.
IN IT = 1 ;Initialize the Language/editor
EDIT = 2 ;Invoke the editor
EXEC = 3 ;Execute the Command Processor
ENCODE = 4 ;Encode a source line
DECODE = 5 ;Decode a source line
ALLOC = 6 ;Add a source line
DEALL0C = 7 ;Delete a source line
IDENT = 8 ;Identify yourself

These functions, although predefined, are available only to a program which is
set up to support them. If you call REQUEST_ from a program that has not set up
a procedure to handle it, then you will most likely end up in never-never land.
When you load a program from the main menu, the SuperPET sets PR0CESS__ to point

SuperPET Gazette, Vol. II, No. 4 -108- April/May 1985

to the start of the code. It is for this reason that simply jumping to a routine
already loaded in the banks will not work.

An interesting note about Waterloo's use of REQUEST_: although they take great
care to preserve the parameters through several levels of calling after the in
itial request, the final routines ignore the parameters and use some defaults

which happen to be the same as
Example - CALL REQUEST_,#3 ;run the program the parameters. One of these

;now decode the current line to $0400 is DECODE, which always decod-
CALL REQUEST_,#5,#CURRLINE_.#LINBUF_ es the current line into the
CALL REQUEST ,#1 ;reinitialize buffer at $0400.

TIMEOUT Set device-specific time-out interval. At $B105; JT $B5BD.

P1 - FCB of file to set time-out for.
P2 - Time-out interval in seconds (approximate).
Returns time-interval set.

This routine sets the timeout interval for a device, indicating the maximum
amount of time that SuperPET will wait before generating a TIME-OUT error mess
age. All devices may have a time-out value associated with them although it is
meaningless for devices TERMINAL and KEYBOARD.

EXAMPLE - CALL 0PENF_,#SERIAL,#READ
STD SIOFCB
;make the serial port time out
;after ten seconds
CALL TIME0UT_, SIOFCB,#10

• • •

SERIAL FCS 'SERIAL'
READ FCS 'R*
SIOFCB RMB 2

The timeout value is checked in all
of the major routines which perform
1/0. Since the loops are hand-coded
with internal constants to fix the
repetitions of the loop to make a
second, the timeout value is in fact
approximate.

SYSREAD_ : Perform a system-dependent read. At $B108; JT $C2D8.

P1 - address of FCB for file to read from.
P2 - address of buffer to hold characters read in.
P3 - maximum number of characters to read.
Returns number of characters actually read in; unpredictable in case of error.

This is the main routine which figures out what type of 1/0 is to be performed
on a file. It verifies that the file is readable, determines what type of devi
ce is being read from, and calls the appropriate routine to perform the actual
1/0. It also maintains the File Control Block information, which shows error
status, record position, and other miscellaneous file information appropriate
to the type of file being read from.

Example - CALL 0PENF_, #FILE,#READ
STD FILEFCB
;read 80 characters from the file
CALL SYSREAD_, FILEFCB,#BUFFER,#80
STD NUMREAD
CALL ERROR ,FILEFCB

This routine is called by all of
other 1/0 routines which perform
file input. It is very similar
to the standard UNIV V7 "read"
function, which takes similar
parameters. Internally, it does
a lot of checking to verify that

SuperPET Gazette, Vol. II, No. 4 -109- April/May 1985

FILE FCS 'DISK.MYFILE' the operation
READ FCS • R' correctly.
FILEFCB RMB 2
BUFFER RMB 80
NUMREAD RMB 2

SYSWRITE_ : Perform a system-dependent write. At $B10B; JT $C52C.

P1 - Address of FCB of file to write to.
P2 - Address of buffer of characters to write out.
P3 - Number of characters to write.
Does not return anything useful.

This is the main routine which performs output on a file. It verifies that the
file is writeable by checking both the access mode and the status flags in the
FCB. It maintains the information about the file status in the FCB, including
the current record position and any errors encountered. It is the main routine
which determines which of the lower-level routines should be called to perform
actual I/O. If in the course of output, an attempt is made to write a record
longer than a record length specified in the file name passed to 0PENF_, this
routine sets the error code to 3 with the message, "Truncated".

Example - CALL OPENF_,#FILE,#WRITE
STD FILEFCB
;write 80 characters to the file
CALL SYSWRITE_,FILEFCB,#BUFFER,#80
CALL ERROR .FILEFCB

Internally, this routine is very
similar to the UNIX V7 procedure
WRITE. It may be called directly
from a user procedure without any
problems.

FILE
WRITE
FILEFCB
BUFFER

FCS
FCS
RMB
RMB

'DISK.MYFILE'
'W1
2
80

SYSNL_ : Perform a system-dependent newline. At $B10E; JT $C6C6.

P1 - Address of FCB to send a new line to
P2 - Flag indicates whether or not to reset the error status flag
Returns new file status - 1 = successful completion, 3 = error

This routine is used to perform a new line function on a file. It is called by
all the system routines. It maintains the FCB information and resets any pend
ing error flags if P2 is non-zero. In performing the new-line operation, lines
in FIXED format files are padded to the appropriate length with spaces. It also
sets the EOR flag in the FCB. Before operating, the routine checks to see if the
file is indeed writeable.

This routine calls other routines specific to the device being written to which
perform all the dirty work. When

Example - CALL 0PENF_,#FILE,#WRITE SYSNL_ is called after 80 char-
STD FILEFCB acters have been written to the
;output a new-line to the file file TERMINAL, it does not create
;remember to reset any error flags a new line, since the cursor is
CALL SYSNL_,FILEFCB,#-1 already on the next line.
CALL ERROR ,FILEFCB

SuperPET Gazette, Vol. II, No. 4 -110- April/May 1985

FILE FCS 'DISK.MYFILE1
WRITE FCS 'W1
FILEFCB RMB 2

SOME BUGS IN WATERLOO COBOL Let's begin with a bug in the COBOL "THRU"
statement; to understand it we must sketch
in some COBOL background. In that language,

(and Some Random Nonsense)
by Fred Foldvary

1920 Cedar St., Berkeley CA 94709 programs are divided into four divisions;
the DATA division describes the data used by

the program and also provides names by which to refer to it. Within DATA, the
"88 Level Data Items" (see par. 5-4*6 of the manual) allow you to assign a name
to a given value of a variable.

For example, if you have a variable named TRANSACTION-CODE, you may assign the
name ADD-RECORD to a value of zero, DELETE-RECORD to a value of 1, and CHANGE-
RECORD to a value of 2. Thus, instead of writing "if TRANSACTION-CODE = 0", you
can say "if ADD-RECORD" and have a more readable program, besides being able to
change the values at the DATA division level while leaving the rest of the pro
gram alone.

The 88 Level also lets you give a name to a range of values, such as 8 through
90, which is equivalent to testing TRANSACTION-CODE for values of 8 through 90,
inclusive. An example is shown below. The problem is, it doesn't work! The upper

of 5 in the above example and you test ADD-RECORD, the result is "true"— as if
the value were 8 through 90! Values within the range defined test "true" as
they should. For values less than the lower range, the THRU statement gives a
wrong result in Waterloo microCOBOL.

Channel Problems Using Relative Files in COBOLj In the Waterloo system, one
should be able to run a program using three relative files. A COBOL program us
ing three relative files will run OK— if you only use three files. If you close
one of the files and then open a new relative file, the program crashes. COBOL
dies. The screen freezes. All data in memory is kaput.

Other circumstances can lead to similar effects. Using three sequential files
and one relative file will lead to a crash if a file is closed and another open
ed. It seems that there is some kind of channel problem, where channels are not
getting cleared when a file is closed. The problem does not occur at the opening
of the new file, but in any I/O after the open.

I haven't tried other languages to see if the problem is system-wide or confined
only to COBOL.

COBOL Program-ID Names: Our naming conventions call for COBOL program names
to be appended with :c. That's fine for disk files, but the suffix must not be
in the program name of the program-id statement, which the Waterloo manual says
is for "documentation purposes only." Ha! The interpreter interprets the name
you use; if you include a colon (:), the interpreter tells you that's an error.
Any name must conform to the COBOL data name rules, which don't permit a colon.

01 TRANSACTION-CODE pic
88 ADD-RECORD

99-
value 8 thru 90

range works OK; values above the
upper range test properly. But
the lower range value does not.
If TRANSACTION-CODE has a value

SuperPET Gazette, Vol. II, No. 4 -111- April/May 1985

I use the same name on my program-id as the file name, but stripped of the :c
suffix. [Ed. mFORTRAN and mBASIC have the same problem; it's easily evaded by
hiding the full filename as a comment. How often, 0 Lord, have we gone to refile
an amended program, had the mED says the filename is "ieee4" after we made hard
copy, and then had to figure out what the old filename is. We strongly recom
mend that full filenames be included in all programs— somehow— even if the name
within the language must be truncated as Fred does it.]

* * *

Random Text, or "You Too Can Train Your Computer to Write Nonsense!" When I
offered to share ray random text program in the Gazette, our editor said there
were articles about it in Scientific American and BYTE. Well, I have not been
reading those magazines, but re-invented the wheel and wrote my own. Program
"random_text" creates random words, with extra vowels to simulate their usage
in English. So the text is semi-random, giving the flavor of English. Also gen
erated are random-length sentences and serai-random punctuation, using periods,
commas, and other punctuation based on random number ranges. You can vary the
frequency of vowels, commas, question marks, and so on. The program, in micro-
BASIC, also lets you input the output file names and the number and width of
lines.

[We put Fred’s short program on the ISPUG disk we announce this issue, and give
you a flavor of results below. A recent book, "The Policeman's Beard is Half-

Constructed," was written by a
Gs we xai. N. Racerta o jgs. Bicn meu. computer program named RACTER;

Vaai. Ifugo j wa eaf ji? Wi ata na! Wago. some of the lines are haunting:
Uto ia le ia selo, mixo coejo eoge? Vsquaki. "Reflections are images of tar

nished aspirations"; some are
a parody of intellectual chatter: "I myself am inflamed by Palestrina. Other
countries besides Italy produced enrapturing composers in the 17th century;
Seawell was an enraged, important Renaissance master. America was his nation. I
take loving pleasure in his music." And sometimes the stuff is dull. Those
interested should read "Computer Recreations" in the January '85 Scientific
American, wherein the techniques involved are explained. For even more, read
"A Travesty Generator for Micros", BYTE, p. 129, November 1984* If wordplay is
your game, you'll enjoy both. Ed.]

B I T S B Y T E S & ® ® < £ $ toy (Sary JEatitliffff „ S ir .
215 Pemberton Drive, Pearl, Mississippi 39208

So far in our use of the Development System in SuperPET we've paid atten
tion to the built-in Waterloo routines in the disk file: watlib.exp. We've also
shown how to create a file of routines Waterloo did not document; we place such
routines in a file called "usrlib.exp". As we see elsewhere this issue, there
is yet another set of routines which we have until now ignored— those for doing
floating point (or decimal) arithmetic. Though these routines are mentioned in
the Development manual, the details of how to use them are not presented.

I'll attempt in this column to rectify the shortcoming with some examples.
Before you proceed, please look at the article in this issue "JUDGE CRATER AND
FPPLIB.EXP," which defines the purpose of all known floating point ROM routines.

As with all routines in watlib.exp and our own usrlib.exp, any routine in
fpplib.exp is referenced in your program with an XREF in assembler files; in
command files, the routines are made known to the linker with the line: 'include

SuperPET Gazette, Vol. II, No. 4 -112- April/May 1985

disk/1."fpplib.exp’" . You use fpplib.exp exactly as you'd use any other of the
export files.

The distinguishing feature of the FP math routines is that they use either
one or two floating point accumulators (called FAC1 and FAC2) for almost all
operations. If you deal with one value, you most probably will load the argu
ment in FAC1 and then call a routine which expects a value in that accumulator.
If you deal with two values, then one is usually loaded in FAC1 and the second
in FAC2 before you process them. Some FP routines will load the accumulators for
you.

The only catch is that the arguments in FAC1 and FAC2 must be in floating
point format to be used by the FP routines. You must convert from string format
(1234*56, as you enter it on the screen) to FP representation, using the program
CNVS2F_. It converts a string with starting address P1 and an end address P2
into floating point, which is placed in FAC1. Be warned: the contents of FAC2
may be modified by CNVS2F_. Note also that the stop address (P2) of the string
must be that of the character following the last digit in the decimal string to
be converted. If, on the other hand, your decimal string is ended by a null byte
you may use a dummy P2 (I suggest 0005)* CNVS2F_ will stop converting when it
finds a null marking the end of a string of decimal entries.

Once you have converted to FP format, you may need to convert another number
from string to E'P. If so, use the FST0RE_ routine, which moves the value in FAC1
to a safe location. You may now convert the second argument to FP in FAC1. You
may avoid further movement of values by loading the first argument into FAC2
using function FL0AD2_; you’re then ready to call whatever routine you wish to
have SPET process the two numbers.

Now, unfortunately, the answer is found in a FP format (of which there are
two; see John Toebes article on FP in this issue). You may want to decipher the
number in FP format, but it is far easier to convert it to a decimal string by
using CNVF2S_ [which is shorthand for Convert Floating Point To (2) String].

By now you probably wonder if you couldn't save time using an abacus or a
calculator; you might wonder why the computer, designed as a number cruncher,
must be so difficult to use for number crunching. An example, however, will re
veal that what we have said above sounds much more difficult than it is.

It may seem a bit mad to you for me to now add 2 and 3 to illustrate the use
of the FP routines (why didn't I use 2.22 and 3*33?), but as you'll later see,
I must use integers here to later illustrate some of the other FP routines with
this same program. Bear with me.

Let's address the problem of adding 2 to 3 [as the routine is written it’ll
work just as well to sum (get the total of) 2 + -3] Remember that the ADD rou
tine has a sign (+), so that when we call it, we ADD any numbers we feed it,
whether they are positive or negative. Here are the steps in the program below:
1) convert 2 to floating point format and store it; 2) convert 3 to FP format,
3) recall 2 in FP and add the two numbers, and 4) convert the result from FP to
string format so we can read it.

xref cnvs2f_, fstore_, fload2_, cnvf2s , fadd ; All are FP routines

SuperPET Gazette, Vol. II, No. 4 -113- April/May 1985

; FIRST, convert 2 into floating point format in FAC1 and store it in a buffer.

ldd # end2
pshs d
ldd # srt2
jsr cnvs2f_
leas 2,s
ldd #buf1
jsr fstore

; This is P2 for CNVS2F_, the end of the string + one byte.

This is P1 for CNVS2F_, the starting address of the string.
Convert from string value to floating point format in FAC1.
Remove P2
This is the address where we store the converted 2.
We now have floating point form of 2 in our buffer 1.

; SECOND, convert 3 into floating point in FAC1.

; This is P2, the end of the string for 3-ldd # end3
pshs d
ldd # srt3
jsr cnvs2f_
leas 2,s

This is start address of 3
Convert it from string to FP format and store it in FAC1
Remove parm

; THIRD, get 2 into FAC2 and sum the two numbers.

ldd #buf1
jsr fload2_
jsr fadd

P1 the address of FP representation of 2
Load FAC2 with the FP form of 2
Add the two numbers; result returns in FAC1; FAC2 destroyed,

; FOURTH, convert the result from floating point to string format.

ldd #buf2
jsr cnvf2s
swi

; We P1 the address of our buffer for the answer in string format.
; Convert the answer to string format; end it with a null.

srt2 fee ,,00002"
end2 equ *
srt3 fee "00003"
end3 equ *
buf1 rmb 12
buf2 rmb 12
buf3 rmb 12
end

Since all string answers come back with a sign (or space), nine
digits, a decimal point, and an endstring null, 12 bytes are
normally needed to store a string answer.

"math"
org $1000
include "disk/0.fpplib.exp"
"math.b09"

If you care to, assemble and link the program,
using the command file at left. Then test it. Use
the .1st file; BUF2 is located at $1044* After
the program runs, enter the monitor and dump the
location with: >d 1044* You should see a 5*00000.

It is easy to revise the numbers added without reassembling and relinking
the program above. After you "go" the program and get the first answer, leave
the monitor. Get the file "math. 1st" into mED, and find out the address of the
numbers 2 and 3 (srt2 and srt3). So long as you confine yourself to no more
than five digits, you can change the numbers in the monitor and "go" the program
again (be sure to either leave the monitor between each "go", or to reset all
6809 registers to their normal starting values before you "go" again!).

The numbers will appear in the form of hex ASCII code, where 30 is zero, 39
is 9, 35 is 5» etc. To change our 2 to a 15*5 in "srt2", overtype the location

SuperPET Gazette, Vol. II, No. 4 -114- April/May 1985

of "srt2" in the monitor like this (2e is 00 31 35 2e 35 and then hit
RETURN. If you now "go” the routine, you will add 15.5 to 3. You might change
the 3 to a negative decimal fraction and add it. The hex ASCII value for a minus
sign is 2d....

I'm sure none of us is startled by learning that 2+3=5, but perhaps we have
learned something about how to use the Waterloo floating point routines. We'll
continue to explore the workings of these routines in the next installment. In
the meantime, congratulate yourself on not having to know how to form numbers in
floating point format. But, if you Ire curious, see John Toebes' article in the
next issue on how it’s done. Until next time...

SPM0N1 : A POWERFUL MONITOR The original version of SPMON was issued on the
first ISPUG Utility Disk; since that time, Terry

Peterson has substantially improved it and has added a small assembler and some
other features. SPM0N1 is much more powerful than SPET's built-in monitor. The
following comparison of disassembled ROM code is worth ten thousand words:

Disassembly, Waterloo Monitor: Disassembly from SPM0N1:

>t b21f .10 d b21 f .10
b21 f ROR $f9,Y ,B21F 66 39 ROR -$07,Y
b221 PULS $10 ,B221 35 10 PULS X
b223 PSHS $06 ,B223 34 06 PSHS B, A
b225 PSHS $10 ,B225 34 10 PSHS X
b227 TFR $41 ,B227 1F 41 TFR S,X

Would you have known that the ROR offset was a negative number? Could you have
figured out that PULS $10 really means PULS X? That PSHS $06 translates to PSHS
B,A— or that TFR $41 really says TFR S,X? If the answer is yes, do you enjoy
parsing the bits and translating the nitty-gritty to mnemonics?

Terry Peterson wrote the zero version of SPMON (SuperPET Super Monitor) in 1983;
he has since modified and expanded it to the final version 1.1 now in hand. We
issued V 0.9 on the first ISPUG utility disk with a terse set of instructions
which probably confused those who attempted to use the program. Terry finished
V1.1 SPMON in March of this year; we subsequently sat down and put on disk a
full set of instructions in the form of a tutorial which required two solid
weeks of work.

Within SPMON, you can execute any DOS command, including those for directories,
do all integer math except division in binary, hex, or decimal or mixtures of
those notations; AND, OR, or Exclusive OR any values; and load any ML module,
(language, facility, or your own program) from disk, either at its normal loca
tion or anywhere else in memory you may choose. Having it there, you may:

TRANSFER it to another location, HUNT through it for a specific chunk of
code [SPMON returns the address(es) if found], DISASSEMBLE it, COMPARE it with
another piece of code [SPMON returns the addresses of all differences]; or re-
ASSEMBLE all or any part of it.

Built into SPM0N1 are two means to record results: 1) You may divert any output
either to disk or to printer, which is splendid for long disassemblies or for
comparisons of two programs in which SPMON finds many differences; 2) You may

SuperPET Gazette, Vol. II, No. 4 -115- April/May 1985

dump any screen from line 1 to the cursor either to printer or to disk, under
any filename you care to assign.

One feature we find priceless: You may set breakpoints to stop execution of code
at the nth pass through a loop; n is under your control. In the example at left,

we set a breakpoint to stop execution the sixth time we encounter
b $5405 6 the instruction at $5405* You may have up to four such breakpoints

active at one time.

In addition to the GO instruction which runs code, you have instructions which
let you step through the code, instruction by instruction, at your own pace,
watching the registers as you go. QUICKSTEP runs the code to specified break
points, and then proceeds instruction by instruction at a keypress. WALK moves
instruction by instruction, displays the results of the last step, and shows
you the next step, which it won't execute until you press a key. At every step,
you see the registers. For debugging, these two modes cannot be improved upon.

The little touches impress us. Example: The Condition Code register may return
in Waterloo's monitor as C4 . Tell us quickly: which CC flags are set and which

are clear? At left is a regis-
r ter dump from SPMON; it tells

PC A B XR YR UP SP DP CC:bits set you which CC flags are set; you
;6039 0000 0000 0000 0000 0220 00 C4:efz needn't parse the bits.

No program is of much use without good instructions, though; we pride ourselves
that we wrote a pretty good set, in detail, and with plenty of examples, this
time around. You can read the instructions in any stand-alone Editor, go immed
iately into SPMON, try the examples, and instantly return to the text in the
Editor. SPMON may be used alone at main menu, in Development, with any stand
alone version of the Editor, or with microBASIC.

Old assembly language hands will find V1.1 of SPMON a delight; those learning
assembly language will find it a much more powerful aid than the Waterloo moni
tor. SPMON comes in two versions, one which loads high and one which loads low
in user memory; they work the same way. Both versions plus the full instructions
are on a separate SPMON disk issued by ISPUG. It is available in either 4040 or
8050 format from ISPUG, PO Box 411, Hatteras, N.C. 27943, for $30 U.S. ISPUG re
ceives its normal $10 for disk, postage, and Gazette subsidy; Terry Peterson
we reward with the rest (gee, that works out to $6.67 a year for skilled pro
gramming; on this income, Terry can retire to Zambia as a peon).

We suspect that if a program of this quality were sold for the IBM PC, you'd pay
one hundred bucks or more for it and consider it a bargain.

A PRINT-USING PROCEDURE TO FORMAT We've often wished mBASIC incorporated the
DECIMAL ENTRIES IN MICROBASIC PRINTUSING statement to let us format dec

imal entries with decimal points aligned.
When we got desperate for one, we dropped a note to Frank Brewster, who lives up
in Penn's Woods; he sent us the basic routine, as improved by Associate Editor
Loch Rose. We changed it so you may optionally incorporate commas.

1. Procedure print_using. This sets the field size (number of digits plus
one for the decimal point, plus one for the sign), and decides whether or not
you want commas in numbers. Once the field size is set, you cannot enter any

SuperPET Gazette, Vol. II, No. 4 -116- April/May 1985

numbers which are longer. You may call the procedure at any time you want to set
or reset the field size or the print-using format.

2. Function fnf$. This formats the numbers and prints 'em out, all decimals
aligned, with the number of decimal places you specify and commas (1,000,000.00
for example) if you want them. Trailing blanks are filled out with zeros (.7 be
comes .70, and nnnn. becomes nnnn.00 at two decimal places). Our ThinkJet print
er, which claims 150 cps and really does 110, can't keep up with the program.

110 ! format_dec:bd, a demo on formatting numbers with print-using.
120 D$=chr$(l0) : print chr$(l2); : open #14, "ieee4", output
130
140 ! INSTRUCTION SECTION
150 print "Enter format wanted: in '###,###,###.###'; each '#' stands for a"
160 print "digit; commas are included, and 3 decimal places are specified."
170 print "If you don't want commas or decimals, leave 'em out."
180 print "The maximum value handled in decimal is 999,999,998.99.";D$
190 call print_using

210 proc print_using ! Call this to set or reset format
220 linput "Enter # format; no quotes needed: ", format!
230 if idx(format$,",") then commas/^l
240 dot#=idx(format$,".")
250 decimals^=len(format$(dot?o:len(format$)))-1
260 field#=len(format$)+1 ! Allow for sign
270 endproc

420 loop
430 input
440
450
460
470
480 endloop
490 stop

! Practice input routine for demonstration
'Enter a decimal number: ',nbr

while nbr>=999999999
input "Error. Number too large. Reenter: ", nbr

endloop
whatsit$=fnf$(nbr) : print whatsit$: print #1 4 , whatsit$

! You must assign the function to a variable if you print
! to printer AND screen, or you call fnf$ twice.

510 def fnf$(fquan) ! The beast which does the work
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680

! If used without DECIMAL point, converts to CLOSEST integer value,
! not to the next lowest integer; i.e., -.512 becomes -1
j unk=int (abs (f quan) *10 * decima 1 sj£+0.5)/10 ~ dec imals%
if fquan<0 then junk=-junk

! Zero "flead", or a NEG followed by a
! P0S will print NEG!
! flead$=prefix wanted in final result

flead$='MI
if junk<=-1

flead$=’-'
elseif junk>-1 and junk<0

flead$='-0'
elseif junk=0

junk=0 : flead$=''
elseif junk>=0 and junk<1

flead$='0’
endif
junk$=value$(abs(junk))
if decimals#

flen#=len(junk$) : dot%=idx(junk$,

! Essential if somebody enters "000.00"

! Change to '+0T if + sign wanted

! Don’t add flead$ yet! More work to do.

)

SuperPET Gazette, Vol. II, No. 4 -117- April/May 1985

if dot>--0 i Puts on required trailing
700 junk$=junk$+'.' +-rpt$('O',decimals%) ! decimals if some are entered,
710 elseif flen%~dot>o\il‘'>ci.inalc;S ! or if none are entered.
720 junk$=junL$+rpt$(10 ‘ ,decimals^-f len^+dotjs)
730 endif
740 endif
750 if commas#
760 dot$=idx(jun!c$,,f. ")
770 guess
760 if junk$(dot#-4 :dot#~/])="" then quit
790 junk$(dot£-3:dotg-4) = " ,"
800 if junk$(dot;S-7:dot^-7) = IMI then quit
810 jun k$ (d otJc-5: d o tjS-7)=V
820 endguess
830 endif
840 j un k$=flead$+j unk$
850 fnf$-rpi:$(” " , 1‘ield>>-l en(,junl:$)) i junk$
860 fnend

! Adds commas if wanted.

! Gee, we can squeeze in
! commas without overwriting
! numbers— if we use reverse
! English on n:n. Great!

! Now add flead$!

If there's room on your paper, we suggest you use a larger field than you think
you'll need. It's terribly embarrassing to be nine-tenths done and find the last
value entered is too large for the field!

GRAPHING WITH MICROSPACES Last issue, we explored graphs created by micro-
Part II spacing a printer in one dimension; this time we

look at the problems you encounter when you plot
at fine increments in two dimensions.

If you want a method which can bo adapted to any printer, you must form a matrix
of graph values, so that no negative linefeeds are required. Many printers have

no platen or rollers to grasp the paper firmly, but
instead use pinfeeds. While seme of these will do a
negative linefeed, even the best can't bring the paper
back to a previous line with enough precision to plot

x a point accurately. You must therefore print each line
of the graph, from the top down, including scale and

scale values, before you print the next line. A matrix is the obvious way to go.

Unfortunately, a direct matrix approach won't work. The matrix becomes huge.
Each row must be transformed Into as many rows as there are vertical microspaces
on that row. If there are six such microspaced rows for each line of a 50-line
graph, the row dimension of che matrix becomes 300. If we intend to graph over
the entire width of the page, the "column" dimension of the matrix may exceed
800. If we could confine the values in the matrix to one byte each, we'd still
need 240,000 bytes to hold the matrix...

We can sneak around the problem if we recognize that the rows are the critical
problem— and may compute the horizontal microspaces for each Microrow if the
value to be plotted is stored in the matrix. We have now cut the matrix down to
a tolerable size of 300 by 2.

Quite obviously we've ignored the possibility of graphing the values with bit-
graphics because no daisy-wheeler can employ the method.

Row 1
Row 2
Row 3
Row 4

x
x

x

SuperPET Gazette, Vol. II, No. 4 -118 April/May 1985

A STRAICHT-LIUE PLOT TO DEMONSTRATE LEVEL OF PRECISION

I

I:
!
t
i
1
■ i-

1iI !

!

!

/

I
I
I
I
I
li1 +
I
i /
+i
! +++
! /
1+

Line Plotted at .1 Increment.'} on Ordirmts
and Increments of 1.0 on Abrsc isr.n

++

10 20 .50 /|0 50 60 70 80 90 100

-11 8 A -

Before anyone tries two-dimensional graphs, we strongly suggest he or she try a
straight-line plot. It is easily done by forming a matrix which holds the coor
dinates of a straight line and by sending the matrix to printer with the printer
set for the smallest possible vertical and horizontal microspacing. If the re
sulting plot is indeed a straight line or reasonably close to one, the work can
proceed to more intricate shapes. If the printer mechanism is incapable of plot
ting a straight line, cease work. You'll never plot accurate curves.

The actual printing of two-dimensional graphs is simple. Two aspects of the job
are more complex: 1) assigning data values to the proper row of the matrix, and
2) printing the scale borders and values. The third problem is a matter of book
keeping. If you have microspaced over 722 microspaces in Microrow 1 to print a
point, it makes little sense to do a CR and space over 725 microspaces in Micro
row 2. Instead, keep account of the last position, and space right or left only
the difference in values.

We show on a facing page an approximation of a straight line, done in the manner
outlined above. It shows that.our printer is capable of fairly good accurancy up
to increments of .1 on the scale shown. The line degrades quickly at smaller in
crements. Knowing the printer limits, we can now assign the proper scales and
plot values with knowledge of what the printer can and cannot do.

In sum, if your printer will microspace with reasonable accuracy, you may gener
ate good one- and two-dimensional graphs in a relatively simple and painless way
without leaving text mode and without bit-graphics, even on daisy-wheelers.

Prices, back copies, Vol. I (Postpaid), $ U.S. : Vol. I, No. 1 not available.

No. 2: $1.25 No. 5: $1.25 No. 8: $2.50 No. 11: $3.50 No. 14: $3.75
No. 3: $1.25 No. 6: $3.75 No. 9: $2.75 No. 12: $3.50 No. 15: $3.75
No. 4: $1.25 No. 7: $2.50 No. 10:$2.50 No. 13: $3.75 Set: $36.00

-------------------------------- Volume II---

No. 1: $3.75 No. 2: $3.75 No. 3: $3.75 No. 4: $3.75

Send check to the Editor, P0 Box 411, Hatteras, N.C. 27943. Add 30% to prices
above for additional postage if outside North America. Make checks to ISPUG.

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$
APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP

(A non-profit organization of SuperPET Users)

Name: Disk Drive: Printer:

Address:___ _________ _________________________
Street, P0 Box City or Town State/Province/Country Postal ID#

[] Check if you're renewing; clip and mail this form with address label, please.
If you send the address label or a copy, you needn’t fill in the form above.

For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check payable
to ISPUG in U.S. Dollars. DUES ELSEWHERE: $25 U.S. Mail to: ISPUG, P0 Box 411,
Hatteras, N.C. 27943, USA. SCHOOLS!: send check with Purchase Order. We do not
voucher or send bills.

SuperPET Gazette, Vol. II, No. 4 -119- April/May 1985

This journal is published by the International SuperPET Users Group (ISPUG), a
non-profit association; purpose, interchange of useful data. Offices at PO Box
411 » Hatteras, N.C. 27943. Please mail all inquiries, manuscripts, and applica
tions for membership to Dick Barnes, Editor, PO Box 411, Hatteras, N.C. 27943.
SuperPET is a trademark of Commodore Business Machines, Inc.; WordPro, that of
Professional Software, Inc. Contents of this issue copyrighted by ISPUG, 1985,
except as otherwise shown; excerpts may be reprinted for review or information
if the source is quoted. TPUG and members of ISPUG may copy any material. Send
appropriate postpaid reply envelopes with inquiries and submissions. Canadians:
enclose Canadian dimes or quarters for postage. The Gazette comes with member
ship in ISPUG.

ASSOCIATE EDITORS
Terry Peterson, 8628 Edgehill Court, El Cerrito, California 94530
Gary L. Ratliff, Sr., 21^ Pemberton Drive, Pearl, Mississippi 39208
Stanley Brockman, 11715 West 33rd Place, Wheat Ridge, Colorado 80033
Loch H. Rose, 102 Fresh Pond Parkway, Cambridge,, Massachusetts 02138
Reginald Beck, Box 16, Glen Drive, Fox Mountain, RR#2, B.C., Canada V2G 2P2
John D. Frost, 7722 Fauntleroy Way, S.W., Seattle, Washington 98136

Table of Contents , Issue 4» Volume II
Progress on mBASIC Compiler. 90 Release, ISPUG Utility Disk II___
Printer Interchange, IEEE-Serial.22 ..92

.... 93 ..93

.... 94 ..94
Long Files in a Short Editor 95
DOSbug in COPY.............. 97 BATCH Files Illustrated...........
CALC and BEDCALC............ 98
The APL Express............. Evaluation, 6502 Develop. System.. .104

Undocumented Routines, Part III 107
Bits on Floating Point...... A Print-Using Proc. in mBASIC....

SPM0N1 Offered.....................

SuperPET Gazette
P0 Box 411
Hatteras, N.C. 27943
U.S.A.

First-Class Mail
in U.S. and Canada

