
Just before this issue went to press, we received
a letter from the Toronto Pet Users Group (TPUG)
which announced the successful completion of the

project to make the OS/9 operating system available on SuperPET. Manuals are
ready for distribution to those who ordered; the OS/9 boards for both 2- and 3-
board SuperPET models should be available when you read this.

We don't know whether or not TPUG will accept new orders for OS/9, so don't try
to order until TPUG announces what it plans to do. The cost of OS/9 (for manuals
and hardware) has been held to $149 for those who made a deposit of $68.09 some
months ago. For those who came in late: OS/9 is a UNIX-like system which now
runs on the Radio Shack Color Computer, and for which a substantial amount of
software is available (see I, No. 14, p. 261; and I, No. 15, p. 291). We hope to
have a fuller report on OS/9 as implemented in SuperPET in the next issue.

OH BEDIT, CLM, GSCROLL In recent issues, we've mentioned a new and markedly
BATCH FILES and SUCH improved Editor (Joe Bostic's BEDIT), a new operat

ing system overlay by John Toebes (called CLM, or
Command Line Monitor), a much-improved GSCROLL by Terry Peterson (which patches
the ROM bug on interrupt routines in the banks and puts instant phrases on the
keypad for the hunt-and-peck typist, among other virtues), plus Loch Rose's gem,
COPY/KILL, which makes copying files from disk to disk a pleasure, and Alain
Proulx's DOS, an ML program which handles all DOS commands from menu in two ver
sions— one in English, the second in French. CLM, GSCROLL, and BEDIT all imple
ment BATCH files and let SPET execute them whilst you sip a martini or have a
nap. We hoped to announce that all this stuff was available on an ISPUG utility
disk this issue, but ran into some problems and delays:

First, we're trying to marry a program called CALC (which makes a super-calcula-
tor of SuperPET) with BEDIT, or at least an optional version of BEDIT, so all of
us can cease the nonsense of doing our math and hex/decimal/binary conversions
on a calculator (after copying from the screen— with errors) while our expensive
computer sits there stupidly unable to do what a $9-95 Sears special can do.

John Toebes (author of CLM) is ill and in the hospital; his SPET expired, smok
ing, from a software crash (!) and hasn't been fixed, so CLM is not finished.
It took longer than expected to eradicate the last bugs from BEDIT, which is
now in limited distribution for final test before release. Terry Peterson has
married CLM and GSCROLL most successfully, but the new version has not yet been
extensively tested, lie won't issue software untested; it disappoints the user
and becomes a nightmare to update and fix. Last, the new programs are not yet
properly documented. We'll do our best to release the disk by next issue; mean
while, please don't order it. We will say the disk will be worth waiting for.

DO YOU SEE RED WHEN YOUR ADDRESS LABEL IS READ?
If so, check the REMEW block on the last page and send it with your address la
bel or a copy (don't fill out the form if you send the label). Remit $15 U.S. in
North America or $25 if elsewhere. Please renew early, before our heartless pro
gram casts you from our disk files into the land of the expired.

ONCE OVER LIGHTLY We've said this before, but apparently must say it again,
Miscellany because letters of protest still arrive. Our mail labels,

bearing notices saying, "Memmbership EXPIRED" are made up
about a month before you get them on a copy of the Gazette. If, meanwhile, you

SuperPET Gazette, Vol. II, No. 3 -59- February/March 1985

have blessed us with a remittance, you still get the notice. Last issue, we
sent the labels and copy to the printer (who mailed the issue) on Dec. 26; you
probably got the issue in late January. Please don't burden ye ed and the noble
folks in the Postal Service with an indignant letter. Just ask yourself if you
paid up about the 1st of the month on which the issue arrived. If so, the labels
were printed before your check arrived. Until we own our own print shop, get the
Postal Service to deliver mail an hour after deposit, and print mail labels just
as the Gazette drops into the mail slot, concurrent we and thee ain’t.

MORE ON MUMPS Seems Jerry Carroll of Woodland Hills, CA, had trouble sending
MUMPS output to printer. Dan Jeffers of Honolulu sends the tips following: In
MUMPS, device 2 is labelled printer; Dan thinks this device uses the IEEE-488
and translates everything to PET ASCII. Device 3 is for the serial port, and it
works (you must have positive voltage on pins 5> 6, and 8); if you have a para
llel printer, you're out of luck without an interface from serial or IEEE to
parallel. It's possible to drive a parallel printer from the user port, but no
software to do it is in ROM, either in 6809 or 6502. You must write your own.
Dan adds there's another option: use Device 7; it will access any device you can
reach from the Waterloo interpreters. Dan uses it for his IEEE printer, whose
address is set to device 5» In MUMPS, he connects the printer to the IEEE bus
and issues this command: OPEN 7:"W,IEEE5". This works and bypasses the unwanted
translation to PET ASCII. Dan also says that he talked to David Brown, who con
verted MUMPS to SuperPET, and understands that REL files on 8250 and 9060 hard
drives are substantially bigger than 720 sectors, so that there is more space on
the drives for MUMPS global files than on other drives.

PASCAL COMPILER Daniel Wiedman of 1541 Swallow Drive, Brentwood, MO 63144>
says he uses the Oxford Pascal compiler on his C64 in conjunction with SPET,
editing and debugging on SPET and then compiling and running on the C64. He says
the Oxford Compiler accepts ASCII files, which he transfers between computers
with an RTC Link II on the C64. For more details, write, or call 314 968 9672.
See also Bob Davis' article on a Pascal compiler which runs on SPET's 8032 side,
in 11,7.

OUR GURUS EXPLAIN THE WIZARDRY Last issue, we printed reports from Loch Rose
and Frank Brewster of weird happenings to printers on the IEEE-488 and on the
serial port. Frank complained that he sometimes crashed when he turned off his
printer on the serial port. Gurus Terry Peterson and John Toebes report that the
6551 ACIA sometimes freezes up with its IRQ asserted and that some 6551s will
issue IRQs caused by RS-232 noise, even when the 6551 is supposed to be disable-
ed. This may explain Frank's problem; it may also explain why he crashes once in
a while when he turns his modem off. Ameliorative: do not turn off printer or
modem during a session, once they’re on.

Loch Rose's printer output a DOS command When he turned it on after using his
disks and computer for a while and then sent a DOS command to disk. Terry Peter
son reports that Loch's ADA printer interface powers up "listening” and stays in
listen mode until it receives an "unlisten" command at the end of the command
sent to disk. Terry reports the same thing happens with his VE-2 interface from
AB Computers. Cure: put a blank line to printer or send a command to a non-exis-
tent IEEE device. Either action will "unlisten" the printer without printing a
character. Guru Toebes assigns the same causes and prescribes the same cures,
but blames bad code in our ROMs; the code should "unlisten" a newly-turned on
device unless a command is directed to it.

SuperPET Gazette, Vol. II, No. 3 -60- February/March 1985

Loch also complained that his printer slowed to a crawl if his disk drives were
off. Terry reports that the problem is caused by the dead weight of the disk
drives on the IEEE bus; the IEEE specs call for more than half of the connected
devices to be powered. By our count, Loch had half his devices off, hmmm?

We're not inclined to believe in magic, but only the black variety explains the
remaining puzzle. We've had two calls from the West Coast from people trying to
hook printers to the serial port. Neither could get a linefeed with a CR until
he turned on the "linefeed with CR" switch on his printer. Yet the code sent by
the "put serial" routine in ROM explicitly sends a linefeed with each CR (trace
the code starting at $C7C1, as Terry did). Most of us get a linefeed with each
CR on the serial port. Two people don't. Toadstools and gravedust....

OBSCENITT In an age which permits topless waitresses and sex on screen, we
find it strange indeed that 1) fasteners (nuts, bolts, screws) and 2) ON/OFF
switches have been declared obscene (why else are they hidden from view?). Why
must we fumble around the backside (blush) of our computer to lay our hand on
the utterly unmentionable device which turns the computer on? Back in the good
old days of chaste maidens, ON/OFF switches and fasteners were right out there
in the open where you could (blush) fondle 'em any time. If your disk drives are
on a shelf under your computer desk, you must hire an octopus to reach the power
(censored). Being tired of taking off our girdle, using mirrors, and standing on
our head to find things, we wish the makers would end their Victorian prudery on
switchery and screwery.

GAY COMPUTER NETWORK The Gays News Information and Communication Network
sent a flyer announcing itself, and said: "...the only way for new members to be
comfortable with the service...is to get hands-on experience." That's news?

SOME 4040 DOS PROBLEMS Paul Matzke of Madison, WI, has run into problems us
ing REL files with his 4040 drive: 1) He says his 4040 forgets how to scratch a
file in mBASIC after access to a REL file until he reads a SEQ file or lists the
directory of the other drive. A command to scratch file "foo" fails immediately
after access to "foo,rel". Guru Terry Peterson says that mBASIC seems to remem
ber that "foo" is a relative file even though it has been closed. A command to
scratch "foo" keeps mBASIC from searching for it as a SEQ file (scratch commands
don't take DOS format designations) and mBASIC knows it is a REL file. Next, 2)
Paul must get a directory from the drive not containing a relative file to avoid
closing the file. Terry reports that this is an old 4040 bug; calling up a di
rectory on either drive closes any open files on that drive. Neither 8x50 nor
1541 drives with DOS 2.7 close files at a directory call; status of the 2031 is
unknown, as is that of pre-DOS 2.7 8050 drives.

ADDRESSES, NOT STRINGS, ARE SWITCHED In Issue 15, Vol. I, p. 270, we noted
that, for some strange reason, a shell sort ran faster when we switched strings
in microBASIC than when we switched subscripts. In Microsoft BASIC, subscript
switching is always faster. Now, John Toebes tells us why: Waterloo designed
mBASIC so that when you transfer strings the language merely switches their ad
dresses, not the strings themselves. It's a splendid arrangement. Too bad that
archaic, unstructured Microsoft BASIC still comes with most new computers. The
vendors argue it makes their machines compatible with the old software base.
Gee, why don't new cars arrive complete with whip, harness, and horse— to be
compatible with the old, free, green fodder base all around us? Take note, GM.

SuperPET Gazette, Vol. II, No. 3 -61- February/March 1985

HOW TO BECOME ATI AUTHOR A iot of folks write but lew become authors; in our
lexicon, a writer turns author when published. Now, to accompany instant orange
juice, you may become an instant author. We got a blurb from a software house on
an "authoring" language for school courseware. Golly, think of the wide-open op
portunity! Be first to market with a "doctoring" language. Instant M.D.! Then
try mayoring, detectiving, teachering and even thiefing. Or should people who
use "authoring" examine the legitimacy of their fathering and mothering?

STARVATION DIET, THIN GAZETTE I come out from behind the editorial "we" and
an Editorial speak plainly: I'm damn tired of writing most

of every Gazette for free. The number of con
tributed articles has dropped off to practically nothing in the past few months.
Were it not for the work of our Associate Editors— likewise unpaid— I'd have
given up this job long ago. Starting next issue, I've set a quota on what I'll
write. If you start getting thin Gazettes, you'll know why— you've failed to
meet the ultimate test of a user group; you're reading but not writing, taking
but not giving. The purpose of ISPUG is the interchange of useful information
between its members.

Of late, the interchange has become a one-way street. I have no motive to con
tinue editing and publishing the Gazette under such circumstances. The Gazette
needs articles, notes, and intelligent comments— not programs, of which we have
a bushel; most are much too long to publish and useless without explanation.

In sum, start giving or you're not going to get. — Dick Barnes

A REPAIR TRIP TO THE This past December, I brought my SuperPET system in for
COMMODORE MAIN PLANT maintenance at Commodore's plant in West Chester, Penn-

by Tony Klinkert sylvania, and turned the event into an opportunity to
Box 110996 investigate and report to the SPET community about Com-

Carrollton, TX 75011 modore's service network in general and repair support
at this plant site in particular. I've subscribed to

Gazette since its inception, and hope this article helps other readers, in
return for the assistance other contributors have provided to me.

My system problems began when my Micropolis 8050 drive acted strangely; drive 0
would "run" even without a diskette, although when I put a disk in it, it worked
as usual. Then my 8300P printer went awry. The ready light would not come on;
whenever the printer was on the IEEE-488 bus the system would not operate; when
the printer was disconnected, the rest of the system was fine. It was time to
take the system in for repair.

I purchased my SPET in May, 1982. Since I was taking in ray printer and drive,
I thought I'd have whoever did the work look at SPET as well, clean the keyboard
and install the PaperClip ROM I had just purchased. But where would I go for re
pairs? The failures occurred while I was training in the West Chester area for
my next assignment in West Germany. Before coming here, I obtained service at
Eclectic Systems in Dallas, where I purchased my system. Rather than look for a
dealer here, I decided to go straight to the Commodore plant.

My first call to the plant was to Mr. Akbar Teymourzddeh ("Teymour" for short),
Senior Service Technician for the CBM Customer Service Department. He is a like
able fellow who will spend a few minutes (though he seems very busy) talking to
customers about their repair problems. After going over mine, he invited me to

SuperPET Gazette, Vol. II, No. 3 -62- February/March 1985

bring in my system. Teymour told me this this plant makes and repairs all compu
ters in Commodore's line-up. His department is responsible for a large volume of
repair work coming mostly from dealers and from individuals— via UPS, the mail,
and on a "walk-in” basis (walk-ins are permitted from 10 a.m. to 12m, Monday
through Friday).

From Teymour, I also learned that Commodore is negotiating with RCA, Honeywell,
and Western Union for a national repair network for its consumer products line
(C-64, Vic, etc.). Commodore's business machines— and SPET— are serviced only by
dealers and at this plant. Though he has not heard of SPET going out of produc
tion, he believes that Commodore will continue to support it at this site, in
production or not.

So, with a Chester County map in hand I set out for the plant. From Philadelphia
I drove about 20 miles West on Highway 76, turned south onto Highway 202 at the
King of Prussia exit, and proceeded 17 miles to the Paoli Pike exit; there I
turned left (East), proceeded one mile, and turned left again onto Ellis Road,
(between the Church and the Amoco station). One mile up, I turned left onto Wil
son Drive and into the Brandywine Industrial Park. The plant lies at the end of
this road.

There, Teymour met me and told me that repair costs would be $50 per hour, guar
anteed for thirty days. He gave me a direct number for the shop in case I had
any questions while my system was there (the normal service number is 215-431-
9106). He took the system and told me to call back in one week, which I did—
and discovered what my problems were. The disk drive had a bad IC ($50 labor and
$2.50 parts); my printer had a bad microprocessor ($50); it cost $50 more for
the work to install my ROM and to give SPET a complete checkout. As a freebie,
Teymour threw in a spare print wheel, a disk drive reference manual, and factory
boxes suitable for shipping the system to West Germany. Then I bought the SPET
and 8300P technical service manuals. My total bill was $202.50. Considering the
work done and the assistance, I feel it was worth it, and so wrote this article
so others would know about the services Commodore makes available.

On my way home, I stopped by n Federal Express office to weigh the boxes and
have them quote a price for shipment from anywhere in the domestic US to West
Chester. UPS later gave me their prices. The figures appear below. Data for
the 8300P is missing because the volume exceeds the maximum for both Federal
and UPS. (Ed. Xerox will service the 8300 at any service location. The figures
below are high for short distances. We shipped SPET 300 miles by UPS, insured,
for $10.51, with delivery on the next day. It came back in fine shape.]

Box Contents Weight Dimensions FedEx FedEx UPS 2nd Next
(inches) Next Day Overnight Regular Day Day

8050 drive 33 lbs. 20x20x11 $44-50 $72 $15-05 $34-00 $46.00

SPET 46 lbs. 24x21x19 $56.50 $85 $20.46 $46.50 $60.00

ON MICROSPACING PRINTERS If you'd like to draw highly accurate graphs with
your printer, or to write a printer formatter to

proportional-space justify text (put the same number of spaces between words and
produce a flush-right margin), you can do it if your printer will microspace.

SuperPET Gazette, Vol. II, No. 3 -63- February/March 1985

Gee, what's a "microspace?" On our printer, ic* a a carri^e movement of 1/l<dUth
of an inch horizontally, which seems to be fairly common. Vertically, it is
l/48th of an inch’ (the paper moves up or down that distance)*/ On all printers
which can microspace, you usually find ESCAPE sequences which will 1) change the
default settings for both horizontal carriage motion (the Horizontal Motion In
dex, or HMl) and 2) the Vertical Motion Index, or VMI. Printers usually default
to one or another of the following HMI values:

HMI for 10-pitch (10 characters/inch, horizontally): 12/120ths or 1/lOth of
an inch per character space.

HMI for 12-pitch (12 characters/inch, horizontally,), which you now read:
10/120ths or 1/12 th of an inch per character.

HMI for 15-pitch (15 characters/inch): 8/l20ths, or 1/I5th of an inch.

Well, if we can change from a printhead movement, per character, of 1/lOth of
an inch to a movement of 1/I5th of an inch, our printer must move in an incre
ment which is common to all values, which very obviously is l/60th of an inch.
If your printer will output 10 through 15 pitch, .it should microspace at a mini
mum increment of no more than l/60th of an inch, and periiaps at 1/I20th.

Somewhere, your printer manual should tell you how to change the HMI for the
various sizes of type, and, if you're lucky, how to set the HMI so you can get
a minimum spacing of 1/60th of an inch or less, horizontally.

Similarly, most printers will let you change the number of lines you print per
vertical inch. The common value is six such lines, for both 10- and 12-pitch
type. The text you now read is spaced at six lines per inch. Many printer will
give you increments of l/48th of an inch for vertical paper motion (VMI). If
you check that value out, you'll see that normal six-line spacing is 8 vertical
microspaces per line (48/8=6). Again, if you're lucky, you'll find the command
sequence which will set to a minimum increment of l/48th of an inch for each
linefeed or negative linefeed sent to printer.

We show below the ESCAPE sequences which set DIABLO's HMI to 1/I20th of an inch
(domicro$) and then return it to normal 12-

domicro$=chr$(27)+chr$(31)+chr$(2) pitch character spacing, as an example. The
donorm$=chr$(2?)+chr$(31)+chr$(l1) strings can be sent to the printer at any

time; they are parameter commands and print
absolutely nothing. We'll demonstrate how to use them to proportional-space text
and justify it, and to make very accurate graphs.

For reasons we'll not explore in detail, we had to write a new printer formatter
to publish the Gazette. No word-processing program we've seen (or dedicated word
processor, either) is any damn good when you must print long documents. When we
wrote our formatter, we included proportional-spacing between words so we could
right-justify. This text is so printed, using microspacing. Here's how:

First, input whole lines from disk. Find 1) the line length and then 2) count
the spaces in the line (intrinsic function "idx" does this splendidly). Remember
that blanks following the end-of-line nre not spaces, but nulls. If we assume
1/I20th of an inch microspacing, print in 12-pitch, and justify only lines which

SuperPET Gazette, Vol. II, No. 3 -64- February/Mareb 1Q85

are longer than 72 characters, the
if len(line$)>72 and len(line$)<00 program at Left will figure out how

microspaces%=800-(len(line$)*10) many microspaces we must place be-
micro_per_space$=microspaces%/spaces% tween each word if we're to build a
odd_spaces^=mod(microspaces^,spaces#) justified right-hand margin. Since

endif the approach may not be clear, let
us dissect it a bit. How many inc

rements of 1/I20th of an inch are found in a 12-pitch line of 80 characters in
length? Each character takes up 10/l20ths of an inch, so 80 characters must then
occupy 80 times 10/l20ths, or 800/120ths inches. Now, suppose we have a line of
75 characters and 11 spaces. The first line above says 800-(75*10), or that we
need 50 microspaces (five regular spaces) to fill the line flush right. The sec
ond line tells us that micro per spaced (how many microspaces we must stuff in
between each word) equals 50/11 (note that we use integers so that this becomes
a value of 4)* But what do we do about the remainder of the microspaces, which
won't integer divide? Good old intrinsic function "mod" gives us that number of
spaces directly, for mod(50,1l) yields a value of six.

If we stuff between each word, in addition to a normal space, four microspaces
per space, we get a total of 44* If we odd in one of the six remaining spaces
between each word until we run out, we get our total of 50 microspaces.

Suppose we parse the string so we print a word at a time, including its suffixed
space. It's then simple to stuff in the microspaces. Pretend we have a variable
"toggle#", which tells us that we have a line which needs microspacing. Then:

if toggle#
if odd_spaces# ! Suppress all CR's with

add#=1 : odd_spaces#=odd_spaces#-1 ! semicolons,
endif
print #25, domicro$;rpt$(" ",micro_j?er_space#+add#); ! Microspace,
print #25, donorm$; ! Resume normal spacing.
add#=0

endif

We print the microspaces after the normal one from the program above. About half
the lines on this page hold an odd number of spaces; do you see the extra micro
space between the first few words, as compared to the spaces toward the end of
the line? We can't. We now pass on to the subject of graphing with microspaces.

BULLFEATHERS vs* BIRDSEED Having peered into how to justify text with micro-
Graphs from Microspacing spaces, let us take a look at what can be done to

draw precision graphs with a daisy-wheeler. Any
good dot-matrix printer should be capable of even better work. Don't be conned
into the belief that we don't need microspacing at 1/I20th or l/60th of an inch
to draw suitable graphs, as we'll demonstrate below.

Neither the screen of SuperPET nor any printer set to normal character spacing
will draw any graph in increments less than one full character space— which is
often grossly out of scale. Daisy_wheel printers offer no "graphing" character
which will form solid bars— unless you microspace and overprint. No printers
will graph values accurately unless microspaced: try to draw the difference be
tween 9.06 and 9. 14 without microspacing; then see the graph below— microspaced.

SuperPET Gazette, Vol. II, No. 3 -65- February/March 1985

COMPARISON OF M R S PRINTED WITH FACTIONAL VALUES f F 9.Ob and 9.14

1 2 3 4 5 6 y . , 8 9 10

9.06 Microspaces = 713
IL

9-14 Microspaces = 719
— — E asa s a a a w B E BBaag^g ^E ^ B ^ g g g CTBZBsaBB a E g ^ sa
-------+------- +------- +------- +------- +------- +------- +„ ------+.

Let's examine the problems we face when we draw. We'll graph the responses to a
question: "If one can of birdseed weighs three times as much as a can of bull-
feathers, how many pounds of bull feathers will equal a pound of birdseed?" We
graph the responses below:

RESPONSES TO BULLFEATHERS vs. BIRDSEED (in Per Cent of Respondents)

10 20 30 40 50 60 70 80 90 100
------- +------- +------- +-------- -̂------ f--------+------- +------- +------- +------- +

33*5 Grade school students who said "three"

27.6 High school students who said "three"

+ + + + + + + + + +
100 Advertising executives wiio said "three"

m m m B U K sxszsssssaEsezzxsasssszz^^ ^ t b e b h b b
38.2 All respondents who said "It depends on how much the can weighs"

--------1-------- i--- ------i-------- !----- I---- — -f----—— — I----------------- f--+
10 20 30 40 50 60 70 80 90 100

The originals of these graphs show good, solid black bars; unfortunately, they
will reproduce with gray in the center of the bars.

First problem: how do you form solid bars on a daisy-wKeeler? If you print a
vertical bar it starts in the middle of a character space at left margin,
no matter how fine the microspacing. The bar is indented; your graphs do not
start at zero. You must pick the widest character you can print, and one with
vertical sides. The capital letter "M" is not ideal, but serves. Overstruck at
fine microspacing, it forms a bar which starts at zero and is square at the end.
A problem occurs at very small bar values— you can't overstrike enough times to
form a bar to scale. So, leave out the bar and substitute a note about the num
eric value. Last, you find that the right half of "M" will stick out beyond your
scaled value (if you’re accurate to 1/I20th of an inch in scaling, the character
you print should be 1/I20th of an inch wide, right?). You must, therefore, sub
tract some microspaces from the width of "M" to end the bar on the right value.

The second serious problem is scale. You certainly don't want to have a scale in
increments of 1000 when your largest bar value is in 80. We found a simple way
to vary the scale by four orders of magnitude (1...10, 1000...10000) automatic
ally, depending upon the maximum bar value; it also accepts decimal fractions,
and prints them, rounded, to the nearest 1/120th of an inch.

The third problem is page width— how do you divide 6 5/8 inches of page into 10
even increments (ho! for the arrival of metrics). If you use a normal 12-pitch

SuperPET Gazette, Vol. II, No. 3 —b'>— February/March 1985

character spacing when not microspacing on an 80-character line, an increment of
eight spaces between scale marks turns the trick (see above). You then have 800
microspaces of 1/I20th of an inch for a full page width, or 80 microspaces for
each major scale increment (in the sample above, we have 80 microspaces for each
scale increment of 10). Only the bars are microspaced, and, for simplicity, they
are printed at a steady microspace of 1/I20th of an inch. It'd be far faster to
microspace at l/60th or less almost to the end of the bar, and then set to the
finest increment possible— but it takes more program (and space we don't have).

The program below has been cut to bare bones (no error or input traps, no bells
or whistles) simply to demonstrate how easy graphing is on a daisy-wheeler. It
should be equally simple on a dot-matrix printer which will microspace to l/60th
of an inch. With a little imagination, dot-matrix owners should be able to print
some very fancy graphs. Both graphs in this article were printed with it; you
may plot as many bars as you wish; for each two bars the scale marks "+" are re
peated; on long graphs, the number scale is repeated at the bottom. We used the
format for bar graphs developed by Delton B. Richardson of Norcross, Georgia.

We add that any printer which can't do a negative linefeed or backspace ought to
be tied to the legs of its designer as he is thrown overboard. Such a beast can
transform graphics plots and printout of two-column text into a nightmare. Avoid
such printers as you'd avoid an Edsel (if you know what that was, you're getting
old!).

100 ! graph:bd. A simple bar graph program with microspacing.
110 ! DEFINE CONSTANTS
120 domicro$=chr$(27)+chr$(31)+chr$(2) : D$=chr$(l0) : CR$=chr$(l3)
130 donorm$=chr$(27)+chr$(31)+chr$(l1) : CS$=chr$(l2): L$=chr$(8) ! Backspace
140 ! GET BAR DATA
150 print CS$;
160 print "Enter the title of the graph in one line or less."
170 input title$
180 half$=(80-len(title$))/2 : title$=rpt$(" ",half#)+title$! Center title
190 print : input "How many bars will you draw? ", num_bars$
200 print
210 for i$=1 to num_bars%
220 print "What is the value for bar"; i#;"? "; : input "", bar(i%)
230 print "What is the name of the bar? " : input bar_name$(i%)
240 print
250 next i%
260 ! DETERMINE THE MAXIMUM BAR VALUE
270 max_value=bar(l)
280 for i%=2 to num_bars$
290 if bar(i#)>max_value then max_value=bar(i$)
300 next i.%
310 ! DETERMINE SCALE FOR BARS AND PRINT THEM
320 if max_value<=10
330 scale#=10 : long$=2 ! This is a simple-minded approach to save
340 elseif max value<=100 ! space, limited to a maximum scale of 10,000
350 scale#=100 : long$=3
360 elseif max_value<=1000 ! Larger values can easily be handled by
370 scale#=1000 : long$=4 ! showing scale x factors of 10 after the
380 elseif max_value<=10000 ! bar name, as in: (in thousands)
390 scale%=10000 : long$=5

SuperPET Gazette, Vol. II, No. 3 -67- February/March 1985

400 endif
410 open #12, "ieee4", output
420 print #12, title$;D$: call scale
430 call border(l)
440 for i#=1 to num_bars#
450 num_strikes#=(800*(bar(i#)/scale#)-12)+.5
460 print #12, bar(i#);tab (10);bar_name$(i#)
470 if num_strikes#>=8
480 print #12, domicro$; rpt$("M",num_strikes#); donorm$
490 else
500 print #12, "(Bar too small to print to scale)"
510 endif
520 if not fp(i#/2) and i#<num bars# then call border(0) ! Insert scale

Print title, scale,
and top border.
Set no. of microspaced
strikes, name bar, set
microspacing, print bar,
cancel microspacing.

! between each two lines,
if num bars#=>4 then call scale ! Repeat scale at bottom

530 next i#
540 call border(l)
550 stop
560
570 proc scale

for i#=scale#/l0 to scale# step scale#/l0
print #12, rpt$(" " ,9-long#);value$(i#);

next i#
print #12

620 endproc
630
64O proc border(all)

if all then print #12, rpt$("-",80);rpt$(L$,80);
for j#=scale#/l0 to scale# step scale#/l0

print #12, rpt$(" ",7);"+";
next j#
print #12

! on long graphs.

! Print scale values.
580
590
600
610

650
660
670
680
690

! Border & backspace.

! Print divisions.

700 endproc

We’ll cover two-dimensional graphs, with ordinate and abcissa, next issue.

UNDOCUMENTED SYSTEM ROUTINES This is the second in a series by John on the
Part II system routines in SuperPET1s ROMs. The Jump

by John A. Toebes, VIII Table address is the actual starting address of
the routine. If John CALLs a system routine, he

assumes the use of CALL MACRO (l,158) for passing parms and clearing the stack.
The term "FCB" means File Control Block, which is returned by the system each
time you open a file. We hope to dissect this block in a separate article.

___ MOD : WSL support routine for modulus : at $B069; Jump Table $B6D8

P1 - Divisor : P2 - Dividend : Result P2 MOD P1 with P2 removed from the stack

The result returned is the remainder after dividing P2 by P1; it is negative if
both operands are of opposite signs. 10 MOD 3 returns 1; 10 MOD -3 returns -1.

This routine uses the same routines as ___ DIV but takes
Example - LDD #20 the result from a different location.

PSHS D
LDD #6
JSR ___ MOD ;D now has 2 in it (remainder of 20/6)
... ;no LEAS is required to remove the 20

SuperPET Gazette, Vol. IT, Mo. 3 -68- February/March 1985

_RSHIFT : WSL support routine for right shift : at $B06C; Jump Table $B748

P1 - Signed Number of bits to shift right : P2 - Integer value to shift

Result - P2 shifted right P1 bits with P2 removed from the stack

This routine is used by the WSL languages to perform a right shift on a 16-bit
unsigned integer. Bits shifted out on the right are lost while zero bits are
shifted in on the left. If the number of bits to shift is given a minus sign, it
will shift left. This routine optimizes all cases, although the code isn't very
good, so that a shift right of 0 produces the input value and any shift of more
than 15 produces a zero value. Cleans P2 from the stack.

This routine calls the left shift routine. Although it makes it more flexible,
the overhead outweighs its usefulness. For values of 1 or 2, I recommend that

you hard code the shift instructions; for values larg-
Example - LDD #$1230 er than 2, you may construct a loop that is far more

PSHS D efficient than calling this routine.
LDD #3
CALL _RSHIFT ;D now contains $0246
... ;no LEAS is needed to remove the $1230

_LSHIFT : WSL support routine for left shift : at $B06F; Jump Table $B74A

P1 - Signed Number of bits to shift left s P2 - Integer value to shift

Result - P2 shifted left P1 bits with P2 removed from the stack

This routine is used by the WSL languages to perform a left shift on a unsigned
16 bit number. As in _RSHIFT, bits shifted out on the left are lost while zero
bits are shifted in on the right. A negative shift count causes a right shift
to be performed while values greater than 16 cause a result of 0 to be returned.
__RSHIFT removes the parameter P2 from the stack; you needn't clean it up.

This routine internally checks the sign of the shift count to determine if a
right or left shift is to be performed. It is of dubious value to the programmer

concerned about speed. As for space, a shift of less
Example - LDD #$1230 than 5 bits can be done in the same amount of code

PSHS D as the overhead of calling this routine.
LDD #3
CALL _LSHIFT ;D now contains $9180
... ;no LEAS is needed to remove the $1230

CARRYSET_ : Routine to check the carry bit : $B072; Jump Table $B6C4

No parameters. Result - Flag indicating if carry bit is set or not.

This routine is used by the WSL languages to get a value indicating the status
of the carry bit. It returns a -1 if the carry is set and a 0 if it is not.

The usefulness of this routine approaches zero for almost all levels of program
ming. Internally, all it does is test the carry flag and load the appropriate

value. It likewise sets the zero/non-zero condition
Example - ... code; after calling it you can test the EQ/NE flag.

SuperPET Gazette, Vol. II, No. 3 -69- February/March 1985

CALL CARRYSET_ This is of no utility; „ oa could have tested th<?
IF NE CARRY flag directly without calling this routine in

JMP WASSET the first place.
ENDIF

TIOINIT_ : Initialize the local terminal : at $B078; Jump Table $D4CC

No parameters : Does not return anything important.

This routine resets the CRT on the SuperPET to default configuration. It also
sets the default tab stops, clears the screen, selects the Waterloo ASCII char
acter set and restores the standard IRQ interrupt handler. Finally, it resets
the CRT controller chip to default state. You may use this routine in any pro
gram that reconfigures the terminal, to ensure that SuperFET is left in a known
state when the program ends.

Internally, this routine calls two other useful routines. The first, CRTINIT_,
($D63A) sets up all the hardware and screen memory. The other, SYSINIT1, ($DD48)

sets up the interrupt vector, initializes
the keyboard/screen descriptor, and empties

Example - CALL TI0INIT_ the keyboard buffer.

TPUTCHR_ : Put a character to the local terminal : $B07B; Jump Table $D4F0

P1 - Character to output. Does not return anything predictable.

This routine outputs the single character P1 to the terminal screen. Writing a
character through this routine is identical to writing a character to a file
opened to TERMINAL for output. The primary difference between calling this rou
tine and calling PUTCHAR_: PUTCHAR_ writes to the file control by a global FCB
STDOUT_ ($006D). A s a result, PUTCHAR_ may be deflected to another file under
program control while TPUTCHR_ always writes to the terminal screen.

This routine is always faster than writing to a file opened to TERMINAL because
the output routines don't have

Example - CALL TPUTCHR_,#12 ; clear the screen the overhead of figuring out
CALL TPUTCHR ,#'H' ; output an H which device to write to.

TGETCHR__ : Get a character from,the local terminal : $B07E; Jump Table $D4D2

P1 - Address of single byte to flag EOR (a Carriage Return)
Returns - Next character input from the terminal

This routine inputs a single character from the terminal. Getting a character
through this routine is identical to getting a character from the file TERMINAL
opened for input. This routine differs from GETCHAR in that GETCHAR_ reads from
a file controlled by a global FCB at STDIN_ ($006b"7; input from GETCHAR_ can be
deflected to another file. As with reading from TERMINAL, characters typed-ahead
are input.

This routine is faster than going through the standard I/O routines; it doesn't
have to determine where the input comes from. A strange aspect of TGETCHR_ is in
the way it indicates EOR. When a carriage return is input, this routine sets the

SuperPET Gazette, Vol. II, No. 3 -70- February/March 1985

Example - CLR EORFLAG
LOOP

CALL TGETCHR__,#EORFLAG
TST EORFLAG ;got a cr yet?

UNTIL NE

single byte pointed to by the parameter
P1 to a 1. It does nothing to the byte
when another character is input; you
must manually clear the flag before you
can rely on its value.

SPUTCHR_ : Write a character to the serial port : at $B096; Jump Table $D598

P1 - address of FCB opened to the serial port. P2 - character to send.
Does not return anything predictable

This routine is used internally for I/O to the serial port. It checks on the
serial port before it sends a character to ensure that it is OK to send. It also
checks for an I/O TIME OUT to prevent an infinite loop in waiting for the port
to clear before it sends a character. It also checks the FCB to ensure that no
error condition is present, and updates the FCB and the system error message if
a TIME OUT occurs.

Example - CALL OPENF_,#SERIAL,#WRITE Internally, this routine depends upon
STD SIOFCB the address of the serial
CALL SPUTCHR_,SIOFCB,#$0d ;Send a <CR> port being contained in the

... FCB. It is used by the host
SERIAL FCS 'SERIAL' communications routines to
WRITE FCS 'W' perform all of the host file
SIOFCB RMB 2 transfers.

A HEAP ON THAT STACK Assembly language is not black magic, but it sometimes
or seems to be— especially when you first try to compre-

We Blow Away Some Fog hend the workings of the hardware and user stacks. We'd
guess most of the confusion arises from the terminology

programmers use to describe the stack— and from weirdly wrong analogies writers
employ when they talk about the stack.

What analogies do we mean? There are two. In the first, folks compare the stack
to a cartridge clip, from which you can remove only the last cartridge loaded;
none of the others can be reached. In the second analogy, writers picture the
stack as a pile of bricks and say you can act only on the top brick. Both analo
gies are totally false; we wish people wouldn't write such nonsense. We'll later
show why.

If the analogies are bad, the words writers use to describe the parts of the
stack are worse. Why? Wherever the stack is started, it stacks downward. If,
for example, the stack begins at decimal 2000 in memory, any 16-bit PUSH on the
stack stores values at decimal 1999 and 1998; the next PUSH at decimal 1997 and
decimal 1996. And what do the writers call decimal 1996? The TOP of the stack!
And where's the bottom? Why, at decimal 2000, where we started. Confusing? Ut
terly! Don't you always think of high user memory, at $7FFF, as being the top
of user memory? Forget it when dealing with the stack. The top of the stack is
the lowest location in memory you have filled with a stack value, (if you pre
tend the stack is sited in antipodean China, the "top" is indeed the "top!")

Let us now look at the two components of stack handling, 1) the Stack Pointer or
S register, and 2) the stack itself. Beginners tend to confuse the two. What we

SuperPET Gazette, Vol. II, No. 3 -71- February/March 1985

say about the Stack Pointer or S register applies equally to the U register of
the 6809, the User Stack Pointer.

The Stack Pointer is not a memory location, but a 6809 register. It points to
the location in memory where the stack itself is formed. If, for example, the
Stack Pointer contains 1000, the next 16-bit value PUSHed on the stack is stored
at memory locations 999 and 998. How come? It's a convention that the 6809 S
register (Stack Pointer) points to the last stored value. A PUSH, therefore, al
ways fills the next lower memory locations. In distinction, a PULL always gets
back the data at the position pointed to. Suppose the Stack Pointer holds 998,
and that we PULL a 16-bit value. We retrieve, from the stack, whatever data is
in locations 998 and 999. The Stack Pointer then points to 1000.

The U Stack Pointer works exactly the same way— except that you must give it a
starting address and reserve some room for the stack itself. Unlike the S Stack
Pointer, the U Stack Pointer doesn't hold an address until you give it one in
your assembly language program. There's one big exception: Waterloo uses the U
stack for bank-switching in the languages/facilities of SuperPET. Don't try to
use the U Stack Pointer or U stack when a language or a facility is loaded, un
less you safely store the values there and get 'em back when you are done.

6809 Stack Pointer To make this clear, let's set the U Register at 1000 and
U PUSH decimal digits 1-5 on the stack. The 6809 assembler

1000 will PUSH only 8 bits at a time when you PUSH values from
any 8-bit register (CC, DP, A or B registers). After five

The Stack PUSHes on the stack, we find the values at left. Where is
Memory Value the Stack Pointer when we're done? It points to the last
Location: on Stack memory location we filled— 995. If we then PULL 8 bits 5

times, into either the A or B
1000 None <— Stack Pointer at Start and accumulators, we get back all
999 01 after five PULLs. five digits and return the U
998 02 pointer to 1000. But— suppose
997 03 we want to get the first value
996 04
995 05 <— Stack Pointer at 995 after five 8-bit PUSHes.

we PUSHed (at 999» above) after five PUSHes; the Stack Pointer then points to
995. How do we get "1" at memory location 999? By the stack-of-bricks/cartridge-
clip analogies, we can't do it. Malarkey. We simply write "ldb 4>u"; that means
"Add 4 to the address now in the U pointer; load B register with the value at
that address." The U Stack Pointer holds 995; add 4> and you point at location
999. You load your "1" in B register. So much for all the arrant nonsense about
stacks of bricks and cartridge clips. You can load anything on the stack at any
time— just as you can from any other set of memory locations in SuperPET.

Obviously, you must know both what is on the stack and where it is. How do you
keep tally? You visit the nearest department-store kindergarten shop or contrib
ute to 3M's dividend, that's what you do. More later.

Before we go on, a warning. When you work in the monitor and use the S or hard
ware stack, you won't find stack values starting at $0220, even though the S
pointer says the S stack starts there; even though you PUSH values and PULL them
accurately on the S stack. For example, run the program at left and then take a

SuperPET Gazette, Vol. II, No. 3 -72- February/March 1985

good look at the S stack from $0200 to $0220. You'd surely expect
ldd #1 to find 00 01, 00 02...00 05, in order, on the S stack. You won't,
loop Yet if you add to the program at left to PULL the values and to

pshs d store them, you indeed will PULL 00 01 through 00 05. Hmmmm. What
incb happens? Revise the program at left. Begin it with: ldu #$6000,
cmpb #6 to start the user stack at $6000; change the "pshs d" to "pshu d";

until eq and "leas 10,s" to "leau 10,u". Run the program and take a look at
leas 10,s the U stack, from $5FFA through $6000. Well, well. The values we
swi defined are indeed stored on the U stack as we expect, and right

where they should be. Why can't we find them on the S stack? This
is a most important question— for, suppose you run a test program using the S
stack, and want to see if the values you expect are stored there. You won't find
them. You can easily conclude that your program is incorrect when it isn’t.

We bent our mind into pretzels on that problem before we asked Loch Rose what
went on. He replied (chuckling, dammit) that any SWI (Software Interrupt), like
all interrupts, stacks all register of the 6809 on the S Stack. Obviously! #@!!
We ran our programs in the monitor; they always end with SWI. Those stacked reg
isters overwrite whatever else was on the 3 stack. A breakpoint in the monitor
is also an interrupt, so there is utterly no way to look at the S stack unless
you store its values somewhere else. When you test a new program and must check
the contents of the stack, run the tests on the U stack.

We return to how to keep tab on what’s on the stack, wherever you start it and
whichever stack you use— S or U. A notepad isn't of much use because the values
continually change as you PUSH and PULL. You get tired of redrawing the whole
stack and stack pointer with every change. We found a few simple answers, and

track what's on the stack and where
Relative Stack Stack Contents: the Stack Pointer is with the diagram
Position (bytes): at left. There are four easy ways to

--------------------------------- keep your diagram current:
0 Parm 2 - Parm for subroutine

--------------------------------- 1. Buy a child's slate and a piece of
-2 JSR Return address from subr. of chalk. It's messy but easy to use.

-4 Parm stacked by subroutine 2. Get a child's drawing platen, which
--------------------------------- is a clear plastic sheet over a waxy

-6 SP-> Second parm stacked by subr. substrate. When you write on the plas-
--------------------------------- tic, it sticks to the wax and reveals

what you wrote. Erase by pulling the
plastic away from the substrate. Slit the plastic for the strips wanted.

3. Slit a small notepad with a razor. Erase by tearing off a strip.

4. Simplest of all, buy some 3M Scotch Post-It Pads, and cut 'em into strips
which you can stick on or pull off without wrecking the writing underneath. Even
better is Post-It Note tape; you can write on it; it comes in a dispenser, like
Scotch Tape. Bless 3M.

Any value put on the stack stays there until it is overwritten— just as with any
location in memory. If you stack a value, don't stack it again. If you keep tab
of what's on the stack, you can get any value off it. You'd be surprised how of
ten the same data are written to the stack, even by professionals who failed to
keep track of what was already there!

SuperPET Gazette, Vol. II, No. 3 -73- February/March 1985

A GRAPHICS PROGRAM FOR SUPERPET High resolution graphics can't be had on
AND THE 8023P PRINTER SuperPET1s screen without a new board or so.

But that's no reason you can't create them
on your printer, as we demonstrate elsewhere this issue. Delton B. Richardson of
4299 Old Bridge Lane, Norcross, GA 30092, has written a program, in part in 6502
machine language, which gives any ISPUGger the capability to design and print
graphics to the limit of the resolution of the Commodore 8023P printer. No, you
don't have to know maple syrup from machine language to use it.

He calls the program SPGP (for SuperPET Graphics Program). Why is it written in
6502 code? Well, Del ton stores the 4K of machine language in high user memory;
the rest of the program is written in BASIC 4»0, which also resides in user mem
ory. This leaves all of the upper 64K in SuperPET available for the image. Each
image contains 512 x 768 pixels (393»216) for a page of about 8.5x11 inches. Two
character fonts are also stored in the upper 64 (you can change these). That's
a lot of data, and almost fills 64K bytes.

The BASIC program is menu-driven, and allows you to design your own images and
character fonts. You may combine both graphics and text and save images you have
created to disk. Delton provides on disk the 6502 source code, which he wrote,
assembled, and linked using WATCOM's 6502 Development System (which is very sim
ilar to the 6809 Development package in SuperPET, and runs on the 6809 side. You
use the microEDITOR to write and edit).

Because Delton wants to distribute this disk as FREEWARE (more later), he has
taken inordinate pains with his instructions and with the tutorial on disk; the
BASIC program itself is user-friendly (in the best sense of that tired phrase).

He conducts you through the program step-by-
step until you thoroughly understand how to
use it. Since the source code is available,
you can modify the program to work on other
printers; indeed, you can change it to become
part of an application program. We print at
left a small sample of some graphics Delton
generated for us. Though the ribbon for Del
ton's printer is much healthier than most in
ISPUG (we suspect all were new when Achilles
chased Hector around Troy and haven't been
inked since), the sample graphics at left are

too light to reproduce well. We hope you can see and appreciate the detail.

As it stands, the program should be used only by those with 8023P printers. The
material fills all but 86 blocks of an 8050 disk; it will not be made available
in 4040 format because of the number of disks needed and because the program
does not call for disk switches. Those who want the disk may obtain it from the
Editor at P0 Box 411» Hatteras, N.C. 27943 for $10 U.S. You are not only free to
copy the disk and send it to friends, you are encouraged to do so.

If you like the program and its documentation, and feel the author should be re
warded for his work, Delton asks that you send a $20 contribution. You aren't
obligated to do so (particularly if you don't like it!). Remember, however, that
authors have little motive to issue good software with good instructions if they
are not rewarded by a tangible token of your thanks (builfeathers for money). If

Q_

CO

/ < £ / / / / / A

/ / / / •r""

* I**' / *' 1,1,f i---'- i
/ r* .!•' .-•**' _■ J
/ / /' S

j sfisa J
! 1

”1

SuperPET Gazette, Vol. II, No. 3 -74- February/March 1985

you expect more good software, you must flash a carrot. The Gazette will follow
this FREEWARE experiment and report what happens.

ON VARIABLE FILES, PLAIN FILES One of the three Waterloo disk filetypes is
AND HOW TO FOOL THE SYSTEM the VARiable file— most useful for saving ma-

chine-language code because you can write to
and read from VAR files any value, including the CONTROLS (ASCII 0 thruough 31) >
as we noted last issue. The .mod files generated by the linker in SuperPET are
formed as VAR files; we used them last issue to store PIC (Position Independent
Code) since the CONTROLS may be loaded without CONTROLling SuperPET.

In APL, unlike the other languages, the default filetype is the VAR file. Work
spaces are automatically saved as VAR,PRG files; APL-sequential and BARE-sequen-
tial files default to the format of VAR,SEQ, though you may change their format
to TEXT,SEQ (and, indeed, APL creates BARE-sequential files in PRG format when
ever you SAVE a workspace). The word "sequential" means that data are saved in
the sequence filed, and not necessarily that the DOS format of SEQ is used.

You won't find any prefacing (v) for VARTABLE filetype on directory, any more
than you'll find a prefacing (t) for the TEXT,SEQ files created by the micro-
EDITOR, or an (f) preface for FIXED files in REL format. Indeed, as we'll see,
the files do not know their own filetype (VAR, FIXED, TEXT).

Let us now examine the anatomy of VAR files, which depends upon where and how
they are used. All of them contain data about the file in the first few bytes.
A VAR,PRG file formed by the linker (a .mod file) will bear the following data
in the first six bytes (the example below loads in bank 15» at address $9000,
and is $97 bytes long):

Byte No: 1 2 3 4 5 6 7

90 00 00 97 01 OF Start of User
Code

Means: Load Address Byte Length Load in Bank F

VAR,PRG files so prefaced are meant to be loaded from main menu or in the raoni-
or; at either place, the operating system loads them at the proper address and
strips off the first six bytes after it has read them and knows what to do with
the file. Obviously, you can load it anywhere by a change to bytes 1-2 or 5-6.

In contrast, a VAR,USR file you make to load into a language requires only two
initial data bytes showing the length, in bytes, of the executable code in the
file. The languages expect these first two bytes to show length, and will strip
them off when the file is loaded. You can demonstrate this very easily by form
ing such a file and reading it both as a TEXT and as a VAR file. If you tell the
language interpreters you have a TEXT file, you’ll see the first two bytes in
memory after you load the file; if you say it's a VAR file, you won't. In short,
SuperPET and its interpreters do not know anything about filetype unless you
specify it. You can pull some rather marvellous tricks once you realize this, as
we'll later show.

In APL, a VAR file is far more complex in APL-sequential format. The difference
between VAR,SEQ and TEXT,SEQ files in APL with BARE-sequential format is minor.
A VAR file is created by default in APL with a program such as that at the left.

SuperPET Gazette, Vol. II, No. 3 -75 February/March 1985

We don't use a (v) to preface the de-
[1] 'DISK/1 .VAR_BARE_SEQ' [] CREATE 4 vice because VAR "is "a" default. If we
[2] 'ABCDEF' []PUT4 block-read the file in hex, we find:
[3] []UNTIE 4 00 61 62 63 64 65 66

If we change line 1 of the program to
create a TEXT,SEQ file with: [1] '(T)DISK/1.TEXTJ3AREJSEQ', the initial null is
left out; we form a standard TEXT,SEQ file, which can be read by mED or in the
other languages as such. So: if you want to convert a VAR,SEQ file to a TEXT,
SEQ file without the hassle of running a program again, simply read the first
byte of the VAR,SEQ file and throw it away.

The mBASIC manual says that mBASLC does not support VAR files; well, it does and
doesn't. mBASIC can't form VAR files, as .such, but you can create thorn as TEXT
files and then read them as VAR files— and mBASIC will dutifully strip out the
first two bytes, though it will still consider any CR as End-of-Record and strip
it out when the file is loaded.

All of this leads us to the stupidity (in kinder terms, ignorance) of the langu
age interpreters in SuperPET regarding filetype. Let us demonstrate: put a short
REL file, FIXED filetype, on a test disk. Suppose its name is "(f:128)test,rel".
In the mED, copy it to another disk with: cop (f:128)test,rel to disk/1.newtest,
seq. It copies. Then recopy it back to REL format with: cop disk/1 newtest,seq
to (f:128)test,rel. Again, it copies. But— will the copied file now run as a REL
file? Indeed it will! We compared the original file "test,rel" with the copied
file "newtest,seq"— and with the final, copied "test,rel" on disk/1, using PIP.
All three files, despite their differences in name, were identical.

When we thought about it, we whumped up an hypothesis: You can copy any file as
a TEXT file (whatever its DOS format— PRG,REL,USR,SEQ) if you simply tell the
dumb DOS and the dumber interpreters that the file you want copied ijs a TEXT
file. The DOS copies any file identified as a TEXT file as-is; the prefacing
bytes in VAR files and the side sectors in REL files read and transfer just as
they stand. Example: we copied a file "(f:74)test,rel" to another disk as file
(t)disk9/1 .test,rel in the mED; checked it with PIP (!‘iles identic.1!), then
recopied it to fixed filetype, and it ran perfectly. In short, our hypothesis is
confirmed: you can copy any file as a TEXT file if you use the right DOS suffix:

(f:80)program,PRG may be copied as (t)program,PRG
(f:128)test,REL may be copied as (t)tost,REL
(v)trial.mod,PRG may be copied as (t)trial.mod,PRG
(v)pic,USR may be copied as (t)pic,USR, etc.

What may we then conclude?

1. The filetype identification demanded by the interpreters (as FIXED, VAR
IABLE, or TEXT) merely tells the interpreters how to reui or how to format the
bytes in the file. We include the mED in the term "interpreters."

2. The files themselves are merely a series of binary bytes written in an
arbitary format to arbitrary rules set up by the DOS and the interpreters. You
may evade the rules when it is convenient. If you cannot remember the record
length of a REL file, copy it as a SEQ file, read it in mED and find the record
length. Or, should you want to modify a VAR file, read it as a TEXT file, amend
it, refile it as a TEXT file, and read it as a VAR file (see II, p. 44)*

SuperPET Gazette, Vol. II, No. 3 - 76- February/March 1985

3. Next, you may use assembly language to copy any file, in any filetype,
byte for byte, if the routine you write considers that every file copied is a
TEXT file. You need worry about only one thing: that the file has the right name
after being copied.

4» In sum, the filetypes are set up so that the interpreters and the mffD
know 1) how to format a file, and 2) how to read it. You may quite easily estab
lish your own USR format for any file, writing and reading it as is convenient.
After all, that is exactly what the DOS and the interpreters do!

SEARCH AND REPLACE IN THE MICROEDITOR The explanation in the Systems Overiew
Definition and Simplification manual on this subject is terse and

hard to follow. We summarized the pro
cess in Reference Sheet 3 of the Starter-Pak manual, but find even that summary
far from complete. This article attempts to define command characters, metachar
acters, and the search and replace functions simply, clearly, and in depth.

Before we proceed, a warning: it often is far simpler and safer to manually cor
rect a few phrases than to parse and write a complex find/change command. If you
require a massive number of changes, you may well enter and execute an bad one,
which will destroy your program. Test on a few lines first!

SEARCH COMMANDS: These are limited to the slashbar used alone or prefixed by
+ or -, as shown below. The first slashbar means "search for"; the second is a
terminator for the search string.

/ word / Find the first occurrence of "word", prefixed and suffixed by at
least one space; start search at first line of file in memory.

+/ . Assumes a search command has been uttered, as above. Finds the next
occurrence of "word". Repeats a search for the last search string
uttered as often as the command is entered. Searches from current
line (of screen cursor) downward.

/phrase/ Find a defined phrase, with or without terminal spaces or within
a larger string. Finds "fix" within "suffix" or "demo" within the
words "demon" or "demonstration"; also finds " demo ".

-/ Repeats the last search command entered, searching from the current
line to start of text.

-/ word A variant of / word/. The absent terminal slashbar creates a null
after "word" in the search string.

/ / Finds two (or more) spaces, but no blank lines or terminal blanks,
which are NULLS, not spaces.

SEARCH LIMITS: Though you may with other mED commands define a line range for
the command, as in "12,20 p disk", you may not define a specific line range for
search: "1,20/e", an attempt to find an "e" in lines 1 through 20, fails. Only
+ and - specifiers are allowed. The false command "5»/ " will execute, but finds
nothing, scrolling the screen from line 5 to end of text. We don't know why line
range specifiers are absent from the search command, since we do have them with
the search/replace command, and we could speed up searches if we were allowed to

SuperPET Gazette, Vol. II, No. 3 -77- February/March 1985

place line range specifiers. We wish we had 'em. [Ed. In the latest version of
Joe Bostic's BEDIT, they’re emplaced!)

Nulls and Spaces: SEARCH itself is more complex than might appear. Let us try
to search the last two lines of the previous paragraph for /place/. We'll find
it twice, once as a terminal phrase in "emplaced". If we want only " place ", we
might amend the command to add two spaces: / place /. Unfortunately, that will
not find "place " at the start of any line of the last paragraph— the start of a
line isn't a space. We need: /place / to find it— but that form of search won't
find " place" at end-line; the terminal blank there is a null, not a space. At
end-line, we must search with / place/. To our sorrow, that command also finds
words such as placebo and placenta.

In short, the SEARCH command lacks a way to find a word bounded by a null or by
a space to catch search strings at start and end of line. We need a metacharac
ter to designate a null or space; with it, search/replace would be universal and
much more powerful. Suppose Waterloo had used a tilde, thus: /%~place%~/, where

means: "a space or null." We hope those vjho get their kicks writing new ver
sion of the mED take this suggestion to heart! (Ed. Later comment: We now have
this metacharacter in BEDIT; it represents not only the "null or space" we asked
for, but also any non-alphabetic characters. You may now find and replace every
occurrence of a specific word or phrase— at end of line, start of line, or sur
rounded by non-alpha characters, as in: (placeit) and placeit=2. Our thanks to
Joe Bostic for this ingenious extension. Search and replace now is universal!)

Part of the Search/Replace problem may be our own fault. If we write code such
as, "limit=limit+2", we cannot search/replace the variable name "limit" with
out also finding and changing every "limited", "limits", and "delimit" in the
program. If code is wricten with conventional spaces (limit = limit + 2) , then
search and replace is simple and safe. (Ed. See comment above; the meta in
BEDIT now solves this problem as well.)

COMMAND CHARACTERS and METACHARACTERS: Some of the Command Characters (the
., $, and *) serve both as Command Characters and as Metacharacters. They play
entirely different and distinct roles in these two functions:

Command. Characters and Meaning: Metacharacter Meaning:

Line where screen cursor rests. %. Represents any character.

$ The last line of a file. %% Represents the end of a line.

* Global command. %* Represents zero or more repeti
tions of the character preceding.

The characters above often intermix, in the two roles, in the same command. With
these differences in symbols in hand, we review the metacharacters, which are
formed with an initial % coupled to one or two added characters. Metacharacters
are easier to understand if parsed in doublets or triplets. See below:

Metacharacter and Meaning: Comments:

% Represents any character Do not use alone.

SuperPET Gazette, Vol. II, No. 3 -73- February/March 1985

Represents a "#" Will find and replace a single #.

#/ Represents a slashbar "/" A special way to find / is required, since it
is the terminator for SEARCH and REPLACE.

#~ Represents start of line Since the carat or up arrow defines the start
of a line, you need a special way to find ,

##A Represents a as shown at left.

#. Represents any character Useless unless used in combination. Since .
has a special meaning, you must have a way to

##. Represents a "#." find . preceded by #, as at left.

#$ Represents end of a line Search strings must precede this raetachar.

#* A wild card call; represents ZERO or more repetitions of the character
which precedes the #*; useless unless used in combination.

#& Represents, in a change string.- the text found by the SEARCH command. It
is useful to change complex phrases, as in: *c*/ zpat24s / mod_#&/, which
will change "zpat24s.1" to read "mod_zpat24s.1". It avoids copy errors.

THE CHANGE COMMAND: There are four forms of the change command: *c* changes
all occurrences on all lines. *c changes all first occurrences on all lines; c*
changes all occurrences in the current line; c changes only the first occurrence
in the current line.

Only c* and c may be used with line range commands (both *c and *c* are global
commands). Thus 1,20 c*/... and .,+20 c/... and similar commands are allowed.

Search and Replace Examples We illustrate some useful commands:

Command: Comments:

*/:bd/d Delete all LINES holding ":bd". We are indebted to Terry
Peterson for this. It globally finds and deletes any line
containing the phrase ":bd". It combines both the search
and delete commands. Superbly powerful.

/variable## Finds the integer "variable#"; most useful in microBASIC.

c/ x## / flag## / Globally changes the integer variable x# to flag#.

/l0-#.#*-83 We search a list of dates for entries in October, 1983. The
first #. searches for zero or more repetitions of any charac
ter; the #* for zero or more repetitions of the preceding "any
character" designator. Finds entry for any day in the month or
year specified, as in: 10-12-83 or 10-1-83. God help those who
write dates with slashbars, as in 10/21/83! Parse that one!

*c/#""/ Finds any quotation mark at the start of a line and replaces
it with a NULL, pulling all text left one space. Useful for
removing the quotation marks from WordPro files converted to
ASCII for use in 6809* Very slow on long files. Be patient.

SuperPET Gazette, Vol. II, No. 3 -79 February/March 1985

A second slashbar, as in *c/#<‘"//» will work but isn't needed.

*c/ / Globally deletes two spaces, if present, at the start of every
line; the splendid "indent remover." A final // is not needed.

.,+10 c*/ / / From current line forward ten lines, change all single spaces
to three spaces. Superb for spreading monitor dumps out for
comment or for widening titles and captions.

Automatic Copying of Files Using Search/Replace

Assume we have on screen a disk file of a directory, in which a typical entry is
as follows: 12 "patch:e" SEQ .

c/#.#"/C1:*=0:/ At start of all lines, we replace everything through the first
quotation mark. The command at left changes all entries on the
screen so that the file title follows the Copy command:

C1:*=0:patch:e" SEQ

c/"#.%/ Let us then utter the command at left; we delete everything
from the quotation mark (above) through end of line, leaving
this typical entry on screen:

C1:*=0:patch:e
If we then put the screen cursor on the line of each file we want copied, and
say: . p disk at command cursor, the DOS will copy each file without further
typing. The batch file capability emerging in new programs written by our mem
bers takes advantage of this approach by putting the search/replace commands
into a disk file which can be executed automatically any time you EXEC it. We
write these commands once; they are forever available when we must process a
number of files selected from a large directory. We thank Terry Peterson for the
last two examples.

If you take the process one step further, you may create a BATCH file which will
automatically EXECUTE the COPYing from one disk to another.

T f f l E A P I BE X H? ffi HE $ S fey IRBC© 1 I C K

Box 16, Glen Drive, Fox Mountain, RR#2, Williams Lake, B.C., Canada V2G 2P2

In my previous two columns, I've devoted space to APL system commands and func
tions, and to manipulation of files. Further odds and ends are included here.

THE FOLLOWING EXAMPLE SHOWS THE DIFFERENCE BETWEEN) SYSTEM COMMANDS AND
□ SYSTEM FUNCTIONS: LIB REFERS TO LIBRARY, THE APL VERSION OF DIRECTORY.

)LIB ^DISPLAYS DIRECTORY FROM DISK 0 IN DIRECT MODE ONLY.
)LIB DISK/1 nDISPLAYS DIRECTORY FROM DISK 1 IN DIRECT MODE ONLY.
QLIB 'DISK' ^DISPLAYS DIRECTORY FROM DISK 0 IN DIRECT OR FUNCTION MODE.
0LIB 'DISK/1* ^DISPLAYS DIRECTORY FROM DISK 1 IN DIRECT OR FUNCTION MODE.

IN EACH OF THE ABOVE CASES DEVICE NUMBER 8 IS ACCESSED. TO ACCESS ANY OTHER
DEVICE, USE DISKS/I FOR INSTANCE FOR DEVICE NUMBER 9. SYSTEM COMMANDS
NEVER REQUIRE QUOTES. SYSTEM FUNCTIONS ALWAYS DO. A FURTHER EXAMPLE OF THIS
IS:

SuperPET Gazette, Vol. II, No. 3 -80- February/March 1985

)LOAD SORT nSORT IS A SAVED WORKSPACE ON DISK AND BECOMES THE ACTIVE
^WORKSPACE, REPLACING ANY PREVIOUSLY ACTIVE WORKSPACE.

ULOAD 'SORT' nIS IDENTICAL TO)LOAD SORT AND MAY BE USED IN DIRECT MODE
r\OR AS AN APL STATEMENT IN A USER DEFINED FUNCTION.

The usual method is to use the) system commands (if there are appropraite ones)
in direct mode (from the keyboard), and to use the quad system functions mainly
in defined functions, or to manipulate files.

TEXT MAY BE DUMPED TO A PRINTER USING THE FOLLOWING PRINTER NAMES AS FILE
NAMES. EXAMPLES FOLLOW.
*PRINTER' fiCBM PRINTER, ASCII IS CONVERTED TO PET ASCII.
*IEEE4 1 nASCII PRINTER ON THE IEEE'488 BUS USING DEVICE NR. *+.
'SERIAL1 r\ASCII PRINTER ON THE RS232 PORT.

'IEEEH' DC RE ATE 1 nOPENS A FILE TO THE IEEE1*- PRINTER AND TIES IT.
(ULIB 'DISK') □PUT 1 nPRINTS THE DIRECTORY FROM DRIVE 0 ON THE PRINTER.

UUNTIE 1 fiUNTIES THE PRINTER FILE.

EX*-'NOW IS THE TIME FOR ALL GOOD ME N , ETC.' ft ASSIGN SOME TEXT TO EX
'SERIAL' W R E A T E 5 fiOPENS A FILE TO A SERIAL RS232 PRINTER.

EX UPUT 5 ^PRINTS EX.
UUNTIE 5 f\UNTIES THE SERIAL PRINTER.

'IEEE1*' □CREATE 1 nOPENS A FILE TO IEEE PRINTER.
'(T) STUFF' UTIE 2 ft OPENS A TEXT FILE STUFF ON DISK 0.

W E T 2 79) □PUT 1 f\GETS 79 BYTES FROM STUFF AND PRINTS IT.
(0GET 2 79) UPUT 1 nGETS NEXT 79 BYTES FROM STUFF AND PRINTS IT. :
(W E T 2 79) □PUT 1 nGETS NEXT 79 BYTES FROM STUFF AND PRINTS IT.

UUNTIE 2 1 nUNTIES BOTH PRINTER AND DISK FILE.

The (T) in the filename indicates a text file. If you wish to communicate with
the outside world from APL, be sure to prefix all filenames involved with (T).

* * *

Direct function definition is a method of writing APL functions which appears
more and more frequently in texts and articles. When you use direct definition,
you enter information about the function to be defined; it is transformed into
the required APL function by a compiler, a set of functions for this purpose.
The compiler I use was written by Ted Edwards of Capilano College. It allows
you to define recursive and conditional functions.

Loading Ted's compiler into the active workspace displays the following on the
screen:

COMPILER FOR DIRECT DEFINTION BY TED EDWARDS
PERMITS RECURSIVE USE AS IN

DEFINE
FAC : o) x FAC orl: o»=l : 1
FAC

FAC 5
120

DEFINITION READS

SuperPET Gazette, Vol. II, No. 3 -81- February/March 1985

FAC IS DEFINED AS oj x FAC arl, UNLESS «=1 I// JWICtf CV1S£
F.4C 1 IS DEFINED TO BE 1.

FAC is the factorial function, in this case recursively defined as an example of
this type of definition. FAC 5 returns the product of all positive integers up
to 5- A simpler non-recursive example is given below (FACN). As defined, FAC
is a monadic function. Omega, used in the definition, will be replaced by the
right argument of the function. In the definition of a dyadic function, omega
is used for the right argument and alpha for the left. ROUND is an example of a
dyadic function in direct definition. To invoke the compiler, the word DEFINE is
entered and the cursor moves down one line and over to the leftmost screen col
umn. The function name is typed in, followed by a colon and the definition. When
this has been entered and returned the con-piler does its job; if it succeeds, it
prints the name of the compiled function; otherwise an error message appears.

FACN: x/l£J "NON-RECURSIVE FACTORIAL.
FACN 4

24
MEAN: +/uipo) hFINDS MEAN OF A VECTOR.

MEAN 1 2 3 4 5
3
ROUND:ctx|..5+«*a ftROUNDS OFF TO ACCURACY INDICATED BY a.

.01 ROUND 52.34698
52.35

I include a listing of the compiler functions except for DESCRIBE, which produ
ces the description in the APL text above. I print these listings reluctantly,
as they take up a whole page. Some of you, however, may have some willing
slaves (i.e., students) who could type in the listings; otherwise, you'll have
to acquire a compiler on disk. The program is in the public domain.

WEFINELU JV
[0] RS <- DEFINE ;ISS;ISiNMS;SPLSiNCLS;CRSiDFNSiVS
[1] R820224 COMPILES DIRECT DEFINITIONS . BY EMEDWARDS
[2] D T ^ l
C 3] I9+C]
[4] -K)x1o=pI9^((v\J99)A<})V\<J)I99^’ '*I9)/I9
[5] MV9-K<|>v\<j>» '*NMS)/NMS<-(SPLS+r l+IS\':')iIS
[6] -+ERR0RS Tx W N C L S + Q 3 =UNC M 9) v ' 9 ' e M 9
[7] ERRORS [i'DEFINE'*.=S+NMS
[8] -*((' 'a .=(1+SPL3)*IS)*NCLS)/ERR0RS,SH0WS
[9] TERRORS T \ 0 t x / pi?9«-C0MPILES IS
[10] TERRORS x0=0\0p fl9+OF;if RS
[11] SHOWS: +ERRORS Ti 3 5 a,*l+pC7?9+{rf? NMS
[12] + ERRORS T i (ft*l+Z?FAF9)vi/ (Z?fW9-*-C7?9[2;]) i *:1'1
[1 3] jl(1=1+DFX CRS)*VS<-':' elS)/'-^ERRORS .OpO* 'NO'. FUNCTION SUSPENDED'''
[14] +1 [\ VS a* *v.*I9
[15] -K},0pi(~79)/,/?9̂ 14'Z?F̂ 9'
[1 6] ERRORS;'DEFINITION ERROR',0pUEX 'RS'

VCOMPILESlUlV
[0] R + COMPILES X iLiZ;IiJ;IN;LOCiARG;HED
[1] ^CREATES CANONICAL FORM FOR RECURSIVE DIRECT DEFINITION
[2] r\E .M.EDWARDS
[3] R<-0 0 pZ*-I\{I-<-LA=\L<-""*X)/X

SuperPET Gazette, Vol. II, No. 3 -82- February/March 1985

4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5

ARG+-2 i r . x v / L ^ W o . = Z< K l < - A \ Z * » f l ’) / Z
L O O LV9 z

Z [(v / L) / i p Z ^ M > l L i ? ‘ [(O ^ J ') / e / '^ l 2+.xL]
Z ^ (Z * (p I ^) p » 9 *) [U , I ^ (v / L) / l ^ i p Z]
-K) x i a/ 3 5*ltpZ-*-': ' B9K Z,’ :n'

HED+- *Z9«- \((2-ARG)/tL9 »), ((<J>v\4>f • z D / I + Z C l ;]) ,((o*4ffl?)/» i?9»),L

± (Iff < 2 H / (pff£0), (1+pX),9+IN+-1 IpZ) /1 Z<~Z, ((1+pZ),I-IN) p• ’ * *»
Z [l; \ptf#Z?]-«-ffE,.D(0pZC * *ppZ;l+ipX]-«-^
-K70L1 Ti 3=l+pZ
Z [{ > 0 0 ’ 4 “9 “9 <J)ZCl 5 3 2 4 ;]
Z[4 5 ; i 8 > 2 8p '-K) ,0pZ9«-’ ,0 p Z [3 ; i 1
-K),0pi?<-Z
C0L1; Z [; > 0 0 - 4 <J>Z[1 3 2 ;]
Z [3;i4> *Z 9< - *
R+Z

VL79[D]V
Z «- LV9 S \ASS\VARiA\GET\E\L

RPUT LOCAL VARIABLES IN HEADER FOR DDEF
Z*-'1
-K)xi l=+/ASS*-SeSlS\ 1 : »
VAR+Se1ABCDEFGHIJKLMNOPQRSTUVWX?ZJ
GET*-VAR*A e (VAR^lfyASS) / A++\VAR< U V A R t0
Z « -(4 *0 M ? Z) + Z+'+-' B9K (GETVASS)/S
Z*-(0,1+ (A\A) = ip/H-(Za . =$Z) T. xi I f pZ)/ Z
Z H ' '*Z)/Z * -t *; * ,Z

VB9K[[]]V

Z +- C B9K X \L\N\E\UI0
r BREAK VECTOR X INTO MATRIX ON DELIMITERS C IGNORING
R C'S IN QUOTES. E.M.EDWARDS
L H X e C) * L ^ \ L + " " * X
N*-(N tpL)-0 tl+N*-L/1 (OnM))+pL
Z<-(pE)p(,EHN-l)°.Z\WN)\(~L)/X

Printed below are further examples using Ted's compiler:

MAT:(cjW) ,LllMAT <u:0=p7-H3: (0,w) p* »
FMAT:(o)*{{ui-pV)p' 1) ,10 .lllFMAT w:0=p7-HD: (0,a)pf 1
THE FIRST FUNCTION, MAT, FROM TAMA TRABERMAN'S ARTICLE DISCUSSED NEXT,
PERMITS DIRECT ENTRY OF A VERTICAL LIST. FMAT, WHICH I OBTAINED BY
MODIFYING MAT, RIGHT-JUSTIFIES A LIST AS IT IS ENTERED. EXAMPLES:
CONTINENTS+MAT 15 rUSING MAT, THE CONTINENTS ARE ENTERED DIRECTLY
EUROPE MAKING ENTRY EASIER FOR STUDENTS. JUST
ASIA ftTYPE IN EACH ENTRY AND HIT RETURN.
NORTH AMERICA
SOUTH AMERICA
AFRICA
ANTARCTICA
AUSTRALIA
POPULATIONS+FMAT 12 nFMAT SETS UP A CHARACTER MATRIX OF
490171000 nRIGHT-JUSTIFIED POPULATION NUMBERS AVOIDING
2647970000 ftPOWER OF TEN NOTATION WHICH WOULD BE
249722000 ^UNSUITABLE FOR USE WITH ELEMENTARY STUDENTS.
383188000 nTHIS CANNOT BE AVOIDED WITH LARGE NUMBERS IF THEY
49696000 nARE ENTERED AS A NUMERICAL VECTOR.

SuperPET Gazette, Vol. II, No. 3 -83- February/March 1985

ldd #string1 3 P3 is the address of 'in deci
pshs d mal.'
ldd number 4 P4 is the value of number,
pshs d 5 P5 is the address of 'conver-

ldd ^string ted.'
j sr printf_
leas 8,s The items must be placed on the

stack in the order: P5, ?4» P3,
; same example using PIC methods P2; then P1 must be placed in

D register before we call the
routine PRINTF_.

leax string2,pc
pshs x • i i Because P1 , P3, and P5 are add-
ldd number,pc resses we use LEAX to determine
pshs d them. Note that only the immed-
leax stringl,pc idate mode of addressing, used
pshs x otherwise to load an address,
ldd number,pc must be changed to employ LEAX.
pshs d LDD #55 in this example would
leax string,pc " substitute nicely for the LDD
tfr x,d number,pc instruction. The TFR
jsr printf operation is required only be-
leas 8,s cause P1 must be placed in the
swi D register,

string fee "The number %d %s is %h when %s to hex.#n"
feb 0

number fdb 55 It is not at all difficult to make your
stringl fee "in decimal " programs use the Waterloo library in PIC

feb 0 code. Just remember how to use the LEAX
string2 fee " converted " (or, for that matter, LEAY) instruction,

feb 0 and let the assembler worry about the
end offset.

The difference with PIC is obvious: The code required to write an application in
PIC must be longer than similar code using absolute addresses. Yet a routine
which has been so encoded will operate properly no matter where it is located,
while a routine using absolute addresses must be drastically altered every time
it is relocated.

You may assemble a PIC routine once and forget it. If you later want to move the
code you may use the MOVE instructions from either SPMON or XM0N-6809 and the
code will still click.

So, here we have shown just how easy it is to move from absolute coding of rou-
routines to writing PIC. With a little practice it will become quite natural.
For those wanting a good example: disassemble some code of SPMON and XM0N-6809.
Note that Terry uses PIC for SPMON, while XMON employs absolute addressing. To
get HI and LO versions of SPMON, all Terry had to do was move the code to load
at a new address. Several bugs were corrected in XM0N6809 at the last minute,
as patches, so a correct .asm file of the final version doesn't exist. Thus I
can't relocate XMON, even by changing the ORG in a .cmd file. Now, you decide
which method of coding is more effective... The case in favor of PIC is a strong
one.

SuperPET Gazette, Vol. II, No. 3 -88- February/March 1985

PC or PCR? IS THERE A DIFFERENCE? From reading Lance Leventhal, "6809 Assem
bly Language Programming," you will conclude that there is a distinct difference
between specifying addresses ",PC" or ",PCR". You can infer from pages 3-23 thru
3-25 that ",PC" addressing is limited to absolute values (as in: LDD $03,PC) and
that the programmer must do the math to determine the offset to the address he
wants. At least that's the way we read what the man says— especially his comment
on the programmer doing the arithmetic on p. 3-25, "We would like to have the
assembler handle this for us, since the procedure is simple to explain but dif
ficult to perform correctly." Leventhal then comments that the "standard 6809
assembler will calculate the program counter offset for you if you designate the
address as 'program counter relative,' or PCR."

We therefore expected the Waterloo Assembler to react differently when we used
PC and PCR. It didn't. We assembled some test code PC and PCR, and then compared

the object code generated in the two modes. Both forms were
accepted; the code was identical for the codings at left.

It 'twould appear that Waterloo treated PC and PCR as iden
tical modes, and that the SuperPET Assembler will generate
identical code whichever mode is used.

This may not be true of code written for OS-9, or for other
6809 assemblers, where there may be a distinct difference
as to what the assembler accepts in these modes. After dis

cussing this with John Toebes, we recommend you use PC mode for absolute addres
sing (LDD $03,PC) and PCR for relative addressing (LDD LABEL,PCR)— exactly as
Leventhal defines them. If you disagree, tell us why! We seek enlightenment.

Prices, back copies, Vol. I (Postpaid), $ U.S. : Vol. I, No. 1 not available.
No. 2: $1.25 No. 5: $1.25 No. 8: $2.50 No. 11: $3.50 No. 14: $3.75
No. 3: $1.25 No. 6: $3.75 No. 9: $2.75 No. 12: $3.50 No. 15: $3.75
No. 4: $1.25 No. 7: $2.50 No. 10:$2.50 No. 13: $3.75 Set: $36.00
---------------------------------Volume II---
No. 1: $3.75 No. 2: $3.75 No. 3: $3.75
Send check to the Editor, P0 Box 411, Hatteras, N.C. 27943. Add 30% to prices
above for additional postage if outside North America. Make checks to ISPUG.

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$
APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP

(A non-profit organization of SuperPET Users)

Name:_________________________________ Disk Drive: __________ Printer:_______________

Address:__ _________ __________________________
Street, P0 Box City or Town State/Province/Country Postal ID#

[] Check if you're renewing; clip and mail this form with address label, please.
If you send the address label or a copy, you needn't fill in the form above.

For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check payable
to ISPUG in U.S. Dollars. DUES ELSEWHERE: $25 IKS. Mail to: ISPUG, P0 Box 411,
Hatteras, N.C. 27943, USA. SCHOOLS!: send check with Purchase Order. We do not
voucher or send bills.

leax label,pc
leax label,per

ldd $03,pc
ldd $03, per

ldd [label,pc]
ldd [label,per]

SuperPET Gazette, Vol. II, No. 3 -89 February/March 1985

This journal is published by the International SuperPET Users G*.oup (ISPUG;,
non-profit association; purpose, interchange of useful data. Offices at PO Box
411, Hatteras, N.C. 27943. Please mail all inquiries, manuscripts, and applica
tions for membership to Dick Barnes, Editor, PO Box 411 , Hatteras, N.C. 27943.
SuperPET is a trademark of Commodore Business Machines, Inc.; WordPro, that of
Professional Software, Inc. Contents of this issue copyrighted by ISPUG, 1985,
except as otherwise shown; excerpts may be reprinted for review or information
if the source is quoted. TPUG and members of ISPUG may copy any material. Send
appropriate postpaid reply envelopes with inquiries and submissions. Canadians:
enclose Canadian dimes or quarters for postage. The Gazettte comes with member
ship in ISPUG.

ASSOCIATE EDITORS
Terry Peterson, 8628 Edgehill Court, El Cerrito, California 94530
Gary L. Ratliff, Sr., 215 Pemberton Drive, Pearl, Mississippi 39208
Stanley Brockman, 11715 West 33rd Place, '.ilheat Ridge, Colorado 80033
Loch H. Rose, 102 Fresh Pond Parkway, Cambridge, Massachusetts 02138
Reginald Beck, Box 1b, Glen Drive, Fox Mountain, RR#2, B.C., Canada V2G 2P2
John D. Frost, 7722 fauntleroy Way, S.i.'., Seattle, Washington 93136

Table of Contents. Issue 3. Volume II

0S/9 Operating System released...59
Delay in Release, ISPUG disk.... 59
Printing from MUMPS............... 60
Another Pascal Compiler.......... 60
4040 DOS Problems................. 61
Repair for CBM Products.......... 62
Microspacing printers.............63
Graphs from microspacing......... 65
Undocumented Routines, Part II...68

Mow the 6809 Stack Works............. 71
A Graphics Program for SuperPET..... 74
On VAR Files and Plain File.*.........75
Search/Replace in the mED............ 77
The APL Express....................... 80
Bits, Bytes on PIC Code.............. 86
Difference between PC and PCR.......89
Notes on Expiration Notices..........59
Printer Troubles............. 60

SuperPET Gazette
P0 Box 411
Hatteras, N.C. 27943
U.S.A.

J.U.3Q7530

First-Class Mail
i n U . S . a ad C in a d a

