
As we noted last issue (II, 2), Commodore now offers
a package containing 1) all SuperPET manuals, inclu
ding COBOL, 2) replacement pages for all manuals to

update them to Version 1.1, and 3) Version 1.1 disk software for all languages,
including COBOL. Price is $49-95- Order Part Number 900030, "SuperPET Manuals
and Languages." Either dealers or individuals may order the package (don't ask
for parts of it) from Commodore Computer Systems Division, Parts Dept, 1200 Wil
son Drive, West Chester, PA 19300. We're sorry to report that the second package
reported last issue (COBOL manual, manual update pages and V1.1 software) is not
available. If any of you need V1.1 manuals or software, go get it!
NEW COMPUTERS A few months back, Commodore bought the rights to the Amiga

computer; this 68000 machine should come to market in 1985.
The boss of Commodore is a veteran of the clothing trade; we wonder if it'll be
cut on the bias: cheap, reliable, bereft of any shred of customer support, and
closed to all outside software vendorc, in the good old Commodore tradition. We
hope not. We also read that kindly Uncle Jack Tramiel, the new boss of Atari,
plans to issue new 8-, 16-, and 32-bit computers in '85, assisted by his old
Commodore management team, now at Atari (is that good news or bad news?). Seems
that Digital Research has written an operating system overlay for the new line—
GEM, with pull-down menus, icons, windows, and all that MacJazz. The new compu
ters are supposed to sell for less than $1000. Maybe we'll see some options
between the IBM Scylla and the Apple Charybdis. And maybe not.
In the latest MIDNIGHT/PAPER, Jim Strasma tells us that Commodore has cut off
most of its remaining U.S. dealers, leaving about 40 in the country. Even if
Commodore produces a gee-whiz Amiga with a 68000 microprocessor, who'll want one
without any dealer support? (Anybody consider Toys R Us and K-Mart support?) We
also laugh (hysterically) at the thought of the local toy dealer demonstrating
MS DOS on Commodore's rumored PC clone. Or does Commodore plan to somehow find
shelf space at ComputerWorld and the other chains— at a time when those stores
are winnowing out the losing clones and wondering when the computer market will
recover? With its fortunes tied to the aging C-64, we suspect Commodore is head
ed for big trouble; Atari and kindly Uncle Jack are, of course, already in it.
(We swiped "kindly Uncle Jack" from its inventor, kindly Hal Hardenbergh.)

IS YOUR ADDRESS LABEL REDMARKED?
If so, check the RENEW block on the last page and send it with your address la
bel or a copy (don't fill out the form if you send the label). Remit $15 U.S. in
North .America or $25 if elsewhere. Please do it before Old Weakeyes must scratch
your file and then (ugh!) retype the whole address. Make checks to ISPUG. Mark
all letter bombs clearly so we may evacuate the innocent.

PRICE CUT ON COM-MASTER; When first we reviewed the terminal emulator C0M-
ISPUG DISTRIBUTES IT MASTER, written by ISPUG member Dan Jeffers out in

Hawaii, we called it a fine telecommunications pro
gram. Since then, Dan has adapted the program to handle data in APL as well as
it does in the other languages; Steve Zeller, in his last review of it, called
it the best terminal program existing for SuperPET, bar none. We've since had
confirmation of that view from Barry Bogart and a few others. Because Dan is a
professional programmer with other fish to fry, he's asked ISPUG to distribute
COM-MASTER henceforth at a price of $50 per copy of disk and manual. We agreed.

Reviews of COM-MASTER are found in the Gazette in I, 136, 210, 222, 269. The
program receives and transmits both SEQ and PRG files, and can handle 5, 6, 7,

Gazette, Vol.II, No. 2 -28- L'ecember 1984/January 1985

and 8-bit codes; incorporates XOi'i and XOFF protocol if you need it, and lets
you store, on disk, files which will configure COM-MASTER as you want it for
any specific application. Copies may be ordered from the editor, at PO Box 411,
Hatteras, N.C. 27943. State 4040 or 8050 format! Disks are not copy-protected;
you may make your own backups. This is a 6809-side program in machine language;
it'll handle files created in both 6809 and 6502 sides of SuperPET.

A PATCH FOR MFORTRAN1S
NEGATIVE INTEGER READ BUG

Last issue, Associate Editor Stan Brockman report
ed on the bug in READing negative integers from a
disk file in microFORTRAN. Shortly after we went

to press, WATCOM sent a patch for it. Happily, WATCOM adopted Associate Editor
Terry Peterson's superfast patch program, of which we wrote in I, 266. WATCOM's
old patches ran in half an hour or so; this one finishes the job in a bit over
three minutes. Beware a bad version of this patch, in which line three of the
DATA statements begins: 141»21,237.•• It's wrong. Use the patch below.

120 ! mFORTRAN patch 3, title: for_patch3:bp. Patch V1.1 only.
130
140 t0=time
150 dim a%(46)
160 data 71,25,52,22,221 ,152,227,102,237,98
170 data 236,102,141,170,227,228,237,228,236,98,52,6,48,98,31,16
180 data 141,19,237,248,10,236,98,163,100,38,3,198,255,33,95,29
190 data 50,102,57,-1,-1
200 open #2,"(f:128)disk/l.FORTRAN,PRG",input
210 x = peek(86)*256 + peek(87) + 4
220 y = peek(x)*256 + peek(x+l) + 1
230 poke y,2,0
240 open #3,"disk/0.FORTRAN,PRG",output
250 x = peek(86)*256 + peek(87) + 4 ! Make LRecL 0 for output file.
260 y = peek(x)*256 + peek(x+l) + 1
270 poke y,0,0

! Wish (f:512) allowed.
! Let's fake it!
! We'll find LRecL and
! tell it to be 512 bytes.

LRecL$=512 : CR$=chr$(l3)
280 mat read a%
290 i%=0 ; jjg=i
300
310 loop
320 for to a%(i%) !
330 call GetRec !
340 print #3,1$; !
350 next j%
360 i%=i%+'\
370 call GetRec
380 for k#=a#(i$)+1 to LRecL#
390 ij6=i56+1
400 if a#(i/6)=-1 then quit
410 l$(k#:k7b)=chr$(a#(i#))
420 next
430 i%=i%+'\ : print #3,1$;
440 j% = j% + 1
450 until (a#(i#)=-1)
46O on eof ignore
470 loop
480 call GetRec
490 Stat 2 = io status

Get 71 chunks of 512 bytes of code (see 71
in first DATA statement). Transfer them un
changed to the new disk file.

Get offending 512-byte record.
Start with byte 26 (see 25 in 2nd DATA
statement), and amend program from DATA
statements until DATA is -1.

This program is designed to handle multiple
patches; in this case, we have only one,
and so quit on the final -1 in DATA.

Thereafter, we copy the remainder of the
old program unchanged.

SuperPET Gazette, Vol.II, No. 2 -29- December 1984/January 1985

500 print #3,1$;
510 until Stat_2 ---
520 close #2 : close #3 We recommend you place a copy of mFORTRAN, as
530 print time-tO patched with mFORTRAN patch 2 (I, p. 208), on
540 stop drive 1, and put your master language disk in
560 drive 0 (we trust you have a backup of it!).
570 proc GetRec
580 linput #2,1$ Then run the patch. If you have copied accur-
590 while len(l$)<LRecL$ ately, the patched version will properly read
600 linput #2,11$ negative integers from a disk file. After you
610 1$=1$+CR$+11$ test the new version thoroughly, replace all
620 until io_status current mFORTRAN copies with the patched one.
630 endproc Save an unpatched copy of mFOR (bugs later?).

For mFORTRANners not familiar with mBASIC:
1) Be sure to include all terminal semicolons in any program line, 2) you may in
mBASIC get the mED, with which you're familiar, with the command: edit <RETURN>.
Once you have it, it will work exactly as does mED in mFORTRAN, including a RUN
with SHIFT/RUN. ______________________

ONCE OVER LIGHTLY Did you know that if you invoke SETUP from the monitor or
Miscellany from main menu, you reset SuperPET's interrupt table at

$0108 to its default or bootup values? This is deadly. If, for example, you have
an interrupt-driven ML module in memory, it will not execute after you refer to
SETUP. The address of your interrupt-driven routine is wiped out. Any interrupt-
driven routine (PIRQ, UDUMP, most telecom programs) is affected. Lesson: use
SETUP before you load any interrupt-driven module; or, if you invoke SETUP in a
program, reset the proper address for your interrupt routine at $108. We learned
this from Brad Bjorndahl of Bramalea, Ontario, who also notes that MemEnd_ isn't
reset to $7FFF by SETUP (We suspect young Bodsworth did this; who else would re
set one bootup value and leave the other alone— and not tell anybody?).

A 68000 CROSS-ASSEMBLER Grand satchem Terry Peterson has done it again! We
wrote last issue about HALG0L, a new language designed to run on the Motorola
68000 microprocessor (and about a black box which'11 soon hitch up to the 6502
side of SPET to put both to work). Seems Terry has a prototype of the black box
and an early version of HALG0L; to get at the 68000 itself, he needed an assem-
ler to generate 68000 code, and then proceeded to modify one for all Commodore
machines. ASSEM68K, the Phase Zero, Ltd. 6502-to-68000 Cross Assembler, now runs
on the 8032 or 4032 (with 4040, 8050, or 8250 drives) and on the C-64 with a
1541 drive. Written in 6502 machine language, it cross-assembles 68000 source
code into 68000 machine language, saved to disk in binary. ASSEM68K is supplied
with a 15+ page manual and a sample loader program. The loader reads the object
files on disk and transfers them to a 68000 attached-processor board (the DTACK
GROUNDED/Grande). You can prepare the source files on 1) The Commodore Assembler
Development System Editor, 2) any word processor able to write ASCII or PETASCII
files, or 3) on SPET's microEDITOR (a version of which now runs on the C-64).
Price: $95 U.S., check or postal money order, from T&S Peterson Software Produ
cts, 8628 Edgehill Court, El Cerrito, CA 94550. Add 6.5$ sales tax if you survi
ved in California after the reign of King Fuzzwuinp Brown and courtiers.

ON COPYING DISK FILES We've received a lot of letters about boo-boos in the
COPY command in the mED. See page 53 of the System Overview manual (V1.1).

The first difficulty: some folks don't realize that the DOS format of the file
(SEQ, PRG, USR, REL) must be specified as part of the COPY command. There is,

SuperPET Gazette, Vol.II, No. 2 -30- December 1984/January 1985

however, a default to SEQ. In the example below, left, a SEQ file 'example* is
copied from drive 0 to drive 1. If that same

copy example to disk/1 .example file should be a PRG, USR, or REL file, the
command at left will fail to a 'file type mis

match' error. The DOS format (for other than SEQ files) must be specified in the
COPY command, as shown in the next example at left for a PRG file. Which leads

us to the booby-trap: if you forget to
copy example,prg to disk/1.example,prg include the DOS formatT^prg,' as shown

in the example) when you specify the
destination filename, COPY will indeed copy the file— but as a SEQ file! And, of
course, when you try to load or run it, the mis-formatted copy fails.

In contrast, the 3*0 DOS commands, prefaced by "g ieee8-15«", and given at com
mand cursor in the microEDITOR, wil‘1 copy any file of any format properly from
one disk to another. If you use "g ieee9-15", the commands work on device 9. You
need not specify the DOS format. The proper one is selected by the DOS. The code

shown at left is bug-free and simple; it will
[destination always left of =] always copy to the destination drive the des-
g ieee8-15.01:*=0:example i^natrd file in original format— faster and

with less typing. The RENAME and SCRATCH com
mands don't share the flaw; you needn't specify DOS format. Unfortunately, COPY
is the only command available in 6809 to copy files between devices 8 and 9.

COPY TO TERMINAL Gee, we got a complaint that you can't read any files in
mED if you have a file on screen. Not so, Dodsworth. Say at command cursor:
copy filename to terminal; thee will see the whole file— even if it scrolls by
pretty fast. Touch STOP to stop the load at any time. Carry on, Bodsworth.

BELOW AVERAGE! By definition, half the population of the globe is below av
erage in intelligence, however measured. We wonder why the lower half seems to
be in charge of naming things. Noticed a new sign on a county building the other
day: Jail Facility Building. Whoever is responsible ought to be thrown in it. A
jail, says Webster, is a building for confinement. How about plain "Jail"? That
one isn't as bad as the new signs on our police cars: Security Police. Ever hear
of Insecurity Police? Then we read about some basic fundamentals in TIME (strain
the basics from the fundamentals, hmmm?), while the TV parson told us to "gather
together" to pray. Whilst we pondered how to gather untogether, he spoke of some
fundamental interrelationships (obviously not related?). Then we saw a User In
struction Manual. Gee, do they write 'em without instructions for non-users?

THANK YOU, DR. DOBBS In the December '84 issue of this good, grey magazine,
we ran into a handy-dandy toggle, which cycles always between the values of one
and zero. Write: toggle=1-toggle in a loop. See what happens? Elegant.

DEVELOPMENT MANUAL ERRORS Chuck Robinson of Minneapolis sent some notes on
changes you should mark in this book: On page 162, the MODIFY command (which
changes specified sections of memory) should be entered as: >m 00 00 00, with
spaces between entries, not commas as shown. On page 173, any string converted
by ST0I_ cannot hold any leading spaces; on page 182, library program DIRCL0SEF_
should be titled DIRCL0SE_, as it's shown on watlib.exp on disk. He also adds,
for those interested in driving a monitor from SuperPET, that pin 2 of the User
Port is TTL Video, pin 9 is TV horizontal, and pin 10 TV vertical— the latter
two presumably also TTL. He says the TTL level may be low for some monitors.

SuperPET Gazette, Vol.II, No. 2 -31- December 1984/January 1985

USER INDEX TO HAYES SMARTMODEM MANUAL Frank Brewster, 1 North Vista Avenue,
Bradford, PA 16701, writes that he recently got a Hayes Smartmodera and User Man
ual, written in High Abyssinian Greek (all computer engineers speak this langua-
age; ordinary folk require a four-phase Gaines-Moellner Transfinite Encabulator
to decrypt it). After two weeks or so, Frank finally wrote an index which groups
all references to whatever function he wants to perform whilst tc'ing. He offers
it to any equally frustrated member of ISPUG who also misses a functional index
in the Hayes manual. (Those who publish a manual with no index should, as pen
ance, translate Webster's unabridged from Swahili into Urdu.) Send a SASE to
Frank (a big one, size 10, dammit; those tiny 6.5 x 3.5 inch envelopes we get
won't hold a brief mash note to an elf!).

BLACK MAGIC ON THE SERIAL PORT Friend Frank (above) also reports mysterious
stuff when his printer is on the serial port. On stray occasions, turning the
printer on or off crashes SPET, even when the printer file is not open. When his
modem is on the serial port, turning it off and on can do the same thing. Even
more surprising: with his printer on the IEEE-488, and using his modem, a dis
connect from Telenet, during TC, can throw his printer into graphics mode, even
though the printer file is not open. We hesitate to mention the next one: if his
printer is on the serial port, it linefeeds with every CR— with the printer's
switch for linefeed OFF. On the IEEE-488, the printer linefeed switch must be on
to get ary a linefeed with a CR. Any wizards out there who can deal with this?
Or is his serial port bewitched? Send advice or powdered eye of newt.

Loch Rose reports similar problems: his parallel printer attaches to an ADA 1800
interface on the IEEE-488. If he uses disks and computer for a while, then turns
the printer on and does a disk operation, the printer prints a DOS command, such
as "$0" for a directory on drive 0— but only on the first disk operation after
printer ON— in both 6809 and 6502. Hmmm. Last, if he tries to use his printer
with the disk drive switched off, printer speed is about one-quarter normal—
sometimes. We have a printer cabled directly to the IEEE at one disk drive, and
it works fine— unless the printer is on when the computer is turned on, which
crashes SPET. When we 1) turn on computer 2) turn on disk drives 3) turn on the
printer, and 4) load what we want, everything is fine. Any explanations for the
weird events described above are welcome! Gurus, please respond.

CHECKING THOSE ROMS We stuffed disk images of all SPET's ROMs on the ISPUG
Utility Disk so folks could see if they had bombed. SPM0N, Terry Peterson's ex
tended monitor, lets you compare the disk images with the ROMs themselves. We
carefully gave an example in the SPMON instructions of how to do it— but not
carefully enough. We loaded the disk images into memory at $6000, and then ran
the COMPARE instruction. Poor fella called and said he crashed doing this, time
after time. No wonder. SPMON loads at $6000, and the ROM images overwrote it. We
ran our tests using SPM0NL0, which loads at $2000. There are two versions of SP
MON, one loading high and the other low; they were created to avoid just such
conflicts in address. Both are on the ISPUG Utility Disk. Use the right one.

OOPS, AHEM, AND ON YOUR TOES DEPT. In 1,121, in an opus on SuperPET files,
we carried on at length on how to form filenames. Seems that you designate a
non-default filetype (TEXT is default in all but APL, where VARiable is default)
on drive 0 with: (v)example,usr, for a VAR file— or (f:120)example,rel for REL.
Then we said to form such files on drive 1 with: disk/1.(v)example,usr. Wooops!
Nobody caught that one in over 14 months.... It's wrong. Old Weakeyes blew it.
The proper format: (v)disk/l.example,usr. The filetype, whether Variable, Text,

SuperPET Gazette, Vol.II, No. 2 -32- December 1984/January 1985

or Fixed, always precedes the device. Please change page 121, Vol. I, and Ref-
sheet 4, p.2 of the Starter-Pak manual. Stop giggling, Bodsworth.

T H E A P I E S l P f f i n c S S !by IREG IB HECK
Box 16, Glen Drive, Fox Mountain, RR//2, Williams Lake, B.C., Canada V2G 2P2

First, we'll look at the QUAD functions for disk I/O operations. We'll stick
to APL-seqential and BARE-sequential files and leave relative files for another
column. It is worthwhile, before beginning, to read chapters 4 and 5 of the
SuperPET System Overview manual to understand the different filetypes (Text,
Variable and Fixed). In APL, the Variable file is the default filetype for disk
I/O. Other file types need to be referenced according to the rules in the System
Overview manual and those on page 90 of the APL manual.

In the definitions following, please distinguish between the order in which data
are filed or retrieved (sequentially or nt rnndoin), the Waterloo filetypes de
scribed above, and the DOS formats of SEQ, USR, PRG and REL, which appear on a
directory. All SEQ, USR, and PRG files store data sequentially, whatever the
Waterloo filetype. Only Fixed files, in REL format, accessed at random, do not
store data in the sequence filed. If you are fuzzy on the differences between
data orde^, Waterloo filetype, and DOS formats, refer to the article on SuperPET
files in I, 117 (issue 9).

As in the last column, we will stick to device HQ in the following discussion.
The specific functions and definitions are found in chapter 9 of the SuperPET
APL manual, Some definitions follow:

term definition
A matrix or vector, either numeric or character, or a number.
An individual data item consisting of an APL value of any shape,
rank and type.
A collection of records or 8-bit binary characters external to the
active workspace.
Data are stored in the sequence filed and usually appear on direc
tory as SEQ files, though they may also be PRG files. All Water
loo filetypes (Text, Fixed, and Variable) may be used according to
the rules in System Overview.

APL-sequential file APL values are stored in sequential order. These files
default to VAR,SEQ files. They may be formed as TEXT,SEQ files.
Each value is treated as a sepax'ate record in the file, and when
retrieved takes the exact form it had when filed. The files con
tain data about the structure of the APL value as well as the val
ue itself. Text is treated as a character vector. The first eight
bytes of the file are data bytes.

BARE-sequential file 8-bit binary characters are stored sequentially in
files which default to VAR,SEQ, though they may be formed as TEXT,
SEQ files. APL character values are stored strictly as bytes in
the sequence filed. No structural information is stored with them.
When retrieved from file, they are stored in workspace as a char
acter vector. Each sequence of characters separately filed or ap
pended constitutes a record. In VAR,SEQ format, the first file
byte shows as NULL; such files cannot be read in the mED. Files in
TEXT,SEQ form can be so read.

Relative file A sequence of 8-bit binary characters stored as groups of fix
ed size records (Waterloo Fixed filetype). They are accessed in

APL value
record

file

sequential

SuperPET Gazette, Vol.II, No. 2 -33- December 1984/January 1985

random order and will be covered in later columns; noted for com
plete definition. Seen on directory as REL files.

Program file A special type of BARE-sequential file which stores workspaces.
Accessed using LOAD, COPY and PCOPY system commands and functions;
of Variable filetype, and PRG in DOS format on directory,

tie-number An integer scalar used to reference an active file. Positive in
tegers to 32767 are permitted as ties,

tied The active workspace and the disk drive are connected with respect
to the named file by a tie number,

untied A previously active file is disconnnected.
file-designator Up to 15 characters, including punctuation (but no blanks),

assigned according to rules in System Overview as the title or the
name of a file.

filename A combination of device and file-designator, as in disk/1.example.
Often mis-used to mean the file-designator.

1. General functions— These are used for both APL-sequential and BARE-sequen-
tial files. Obviously, any file must be first created on disk before it can be
accessed for input. To create a file, you must assign a filename and tie it, at
which time you may send data to it. Once all data are sent, the file must be un
tied. See examples below and in parts 2 and 3.

Before data are received from a file on disk, the filename must be tied. The re
ceived data from the tied file is assigned to an appropriate variable; when the
receive operation is finished the file is untied. See examples below.

You may create an empty file if you assign a name to a tied file and then untie
it without sending any data. If you attempt to read something from such a file
and assign it to a variable, the variable is found to be empty.

Whenever a filename is referenced in functions it must be placed in quotes, or,
more precisely, within apostrophes (the shifted k on the APL keyboard).

EX VC REATE 1
UUNTIE 1

nA FILE NAMED EX IS CREATED AND TIED WITH A 1.
hEX IS UNTIED. EX IS ALSO EMPTY AS NOTHING
nWAS WRITTEN TO IT.

'EXAMPLE'

UERASE 1EX’
ORENAME •EX*
UST4TUS

ftERASES THE NAMED FILE, EX. ONLY 1 FILE AT A
rTIME MAY BE ERASED. WORKS WITH ALL SEQ. FILES.
^FILENAME CHANGED FROM EX TO EXAMPLE.
nHAS AS ITS VALUE I/O ERROR MESSAGES RELATING
r\TO THE MOST RECENT I/O OPERATION.

2. APL-sequential files— Records are stored sequentially. Each record is read
in using a separate read statement, or in a loop. In any one file, each record
may differ in shape, rank and type. When read in, the value is assigned to a
variable which takes on the appropriate shape, rank, and type.

MAT<-10 lOpilOO
'MATV DCREATE 5

MAT OWRITE 5
UUNTIE 5

ftTHE MATRIX. MAT, IS DEFINED.
nA VAR. LENGTH APL*SEQ. FILE IS CREATED,
fiMAT IS SENT TO THE FILE, MAT1.
nMATl IS UNTIED.

In the above example only one record is filed. It may be read out again and may

SuperPET Gazette, Vol.II, No. 2 -34- December 1984/January 1985

be assigned to any variable name. A second read operation attempted directly
after the first will yield an empty value. The file formed is VAR,SEQ.

'MAT1* UTIE 2
K □READ 2
WNTIE 2

f\THE EXISTING FILE MAT 1 IS ACCESSED FOR READING.
f\A RECOFD IS READ FROM MAT1 AND PLACED IN K.
f\MATl IS UNTIED.

The matrix M which was filed in MAT1 by the initial write operation is read back
in and assigned to the variable, K.

^5.5
B<-125
'MAT!'

A
OAPPEND 3
D/RITE 3

B WRITE 3
aUNTIE 3

r\A SCALAR, A % IS DEFINED.
f\A VECTOR, B, IS DEFINED.
nMATl IS ACCESSED TO ADD MORE RECORDS.
nA IS WRITTEN TO MAT I.
f\B IS WRITTEN TO MAT1.
nMATl IS UNTIED.

The above method is used to add records to an existing file. The records are ap
pended sequentially after any already in the file.

VECT+- ' RUMPLESTILTSKIN1
'(T)CHARS' tt:REATE 1

VECT WRITE 1
UUNTIE 1

nA CHARACTER VECTOR IS DEFINED.
fl/1 TEXT FILE NAMED CHARS IS CREATED AND TIED.
nTHE CHARACTER VECTOR IS SENT TO CHARS.
f\THE FILE IS UNTIED.

In this example a TEXT file is created by prefixing the filename with (t). Each
record sent could be a character vector or an entire character matrix. The file
formed is a TEXT,SEQ file.

Only the quad READ and quad WRITE functions are used for sending and receiving
data when accessing APL-sequential files.

3. BARE-sequential files— All data are stored in byte form. One or more rec
ords may be sent to the file using a single quad PUT statement. To read the data
requires one quad GET statement for each record in the file. The quad GET state
ment also stipulates how many bytes of the record will be read. Any remaining
in that record will not be received by the next quad GET statement, which will
input bytes from the next record. The file formed is of VAR,SEQ format.

nFILE CREATED AND
^CHARACTER VECTOR
nFILE UNTIED.

TIED.
'ABCDE' SENT TO FILE.

'TEXT.EX'
V+

0VIE 1 fiFILE ACCESSED.
WET 15 n5 CHARACTERS BROUGHT IN AND ASSIGNED TO
WNTIE 1 nFILE UNTIED.

Only character data may be stored in bare sequential files. The data may be sent
as character vectors or matrices. Each vector or row of a matrix will be stored
as one record. The data may also be sent using atomic vectors, as in the follow
ing example. This method is useful for sending unprintable characters to a file.

•EX' WREATE :
UAVLl 5 6 9] 0PUT 1

WNTIE 1

(\FILE CREATED,
ft DAT A SENT.
r\FILE UNTIED.

SuperPET Gazette, Vol.II, Ho. 2 -35 December 1934/January 1985

When unprintable characters are received from a file they can be examined using
atomic vectors. In the following example, the code number corresponding to the
received character is printed.

'ex* nrib i hfile accessed.
OAVxWET 1 3 nBRINGS IN 3 BYTES AND DISPLAYS THEIR CODES.

WNTIE 1 fiFILE UNTIED.

Bare sequential files are often used to output data to printers and modems. In
this case, the filename contains a reference to the device. Note that you PUT
and GET data in BARE-sequential files.

It is interesting to play around with both APL-sequential and BARE-sequential
files to see if there is any benefit obtained from using one or the other type.
For instance, a large character vector sent to disk using an APL-sequential var
iable length structure, an APL-sequential text structure and a BARE-sequential
file took up the same 23 blocks of space in each case. Through this kind of ex
perimentation you can obtain a more thorough understanding of how these file
structures work.

Last year, I received a book titled, BASIC for Microcomputers: Apple, TRS-80,
PET, by Haigh and Radford. One chapter is devoted to models and simulations.
The examples and discussion are so interesting; I would recommend that anyone
with an interest in these topics should pick up a copy. The excellent develop
ment of pseudocode for teaching BASIC is a further inducement. The Leontief
model of an economy, a model of a pasture ecosystem, Okun's Law simulation, a
genetics simulation and a Monte Carlo inventory simulation are covered. An ex
ercise set includes a matrix model of a food web and a communications network.
The BASIC code is easily rewritten in APL, which is a natural for this topic.

In the Leontief model, matrices (and vectors in APL) are used to determine the
gross production of commodities given the internal consumption of these commod
ities and the required export amounts. I'll work through an example of the Leon
tief model. First, the matrix of commodities (called the technological matrix,
T) is defined:

steel timber beef coal transportation
0.1 0.0 0.0 0.3 0.1 steel
0.0 0.0 0.0 0.2 0.2 timber
0.0 0.0 0.0 0.1 0.1 beef
0.1 0.1 0.0 0.1 0.2 coal
0.3 0.1 0.1 0.2 0.0 transportation

Here, the elements in the transportation row and the steel column mean that it
takes .3 units of steel to produce 1 unit of transportation, and that .1 units
of timber, .1 unit of beef and .2 units of coal are also required. There are
similar interpretations for the other rows. The export matrix is a vector of
the net amount, in units, of each commodity to be exported. The example at left

means that we wish to export 3000 units of steel, 5000
E = (3000 5000 800 0 0) units of timber, and 800 units of beef, but no coal or

transportation.

What we need to know is the gross production of each commodity in order to meet
the requirements of internal consumption and export. The gross production vector

SuperPET Gazette, Vol.II, No. 2 -36- December 1984/January 1985

is the solution to the problem and is found by subtracting T from the identity
matrix, inverting the result and multiplying E by it. The solution for our exam
ple in units, is shown at left, below. I have a complete workspace for the Leon

tief model but the functions for
G = (4487.67 5570.88 1034*01 3368.78 2340.10) matrix entry and display are too

long to print here. An abbrevia
ted function for processing the matrices is given below. The technological mat
rix and export vector are entered into the workspace as global variables. The
number of commodities, A, must also be entered.

A+5 fi5 COMMODITIES.
£<-3000 5000 800 0 0 fiEXPORT VECTOR AND TECHNOLOGICAL MATRIX.
2’«-5 5p. 1 0 0.3 .1 0 0 0,2 .2 0 0 0.1 .1.1,1 0 .1 .2 .3 .1 .1 .2 0

VLEONlUlV
[0] LEON \TT\G
c 1] nwaUuOo.suO-r
[2] 0(L((E+.X2T)X100))*100
C 3] DTCC5]
[4] pi
[5] ’THE GROSS PRODUCTION MATRIX IS— '
[6] pi
[7] yG

Lines 1 and 2 of LEON replace a couple of pages of nested FOR-NEXT loops in the
original BASIC program. In line 1 the identity matrix is generated, T is sub
tracted from it, and the result is inverted using quad divide. In line 2 the
gross production matrix is calculated and rounded to 2 decimal places. To try
this example, define LEON first, enter A, T, and E, and then return LEON.

The screen dump to disk on page 1,109 of the Gazette is very useful in creating
text files on disk from material on the screen. The APL text rnay then printed
with ASCII text using a suitable direct dump from disk to printer. ADUMP, which
is available on the ISPUG Utility disk, works fine. [Ed. I just change print-
wheels if in the mED and "copy filename to ieee4"J Your printer must, of course
be converted to APL before printing the APL text. DTODISK, on this page, is a
modified version of the previous dump— which used no loops but sent an extra
carriage return, which always entered a final, blnnk line in the file. When you
dump to disk, make sure the material to be filed begins on the very first screen
.line. Return DTODISK 'filename' on the line just below the last file line to
be dunked. No extra blank lines will be formed if you do it this way. DTODISK
appends .TXT to the end of the filename. Text files saved in this way can only
be edited by bringing them back to the APL screen and redumping after editing.
Also, as Steve Zeller pointed out, reduce the length of long screen lines by two
characters for every overstruck character in that line or they may exceed 80
characters and be truncated.

FETCH 'filename' will bring back the text for editing in APL. It also appends
• TXT to the filename. Line 10 in FLitlll homes the cursor and keeps it there so
that the text starts from the first screen line.

VDT0DI5KL CUV
C 0] DTODISK NAME \FILE\ROW\lMO\SCR',I
[1] FILE*-' (T)' ,NAME,' .TXT'
[2] FILE [TREATE 1 + OT0«-O

SuperPET Gazette, Vol.II, No. 2 -37- December 1984/January 1985

3] ROW+~\+W (256 256TDSY5 45188)-1
4] SC7M (ROW,80) pUPEEK 32768 + (80x 1 ROW) <>. +0
5] QIO-l+I-K)
6] LOOP: (DYtf SCRlI+I+1;]) □PUT 1
7] HI*R0W)/L00P
8] ENDL00P: □UNTIE 1

VFETCH[D]V
0] FETCH NAME ;DI0;I;A
1] NAME*-' (T) 1 ,NAME,' .TXT'
2] OT<?«-1+I«-0
3] M*-2b 79p * •
4] NAME aVIE 1
5] LOOP: MlI+I+1; h+A ,(79-pA+WET 1 79)p
6] -+L00P* 1 ((+/' EOF1 =3iZiSTATUS) *3)
7] ENDL00P: DUNTIE 1
8] AMU-l).79)p,A/
9] □rc[5]
10] 0 0p257 DSYS 45191
11] M

Several publications available from APL Press, Suite 201, 220 California Ave.,
Palo Alto, CA 94306 are of interest to teachers. Some titles: Introducing APL
to Teachers, APL in Exposition, A Source Book in APL— Papers by Adin D. Falkoff
and Kenneth E Iverson, APL and Insight, and Starmap. Information and prices on
these and other publications from APL Press are available from them on request.

ON POSITION-INDEPENDENT CODE The 6809 microprocessor was designed to
AND LOADING ML ROUTINES IN LANGUAGE allow programmers to write and use code

which can be located anywhere in memory
(position-independent code, or PIC). Such code need not be linked (tied to a
specific set of addresses) and runs right well wherever you put it. After you
load such code, you need to know only its starting address to execute it.

Not an assembly-language programmer and not interested? You need know nothing
about assembly language to use PIC code in high-level languages. You can 1) copy
it (thine eyeballs will ache), or 2) copy the assembly language program and as
semble it. Anybody who can breathe and type can do it. (See Vol I, p. 142 ff.)
SuperPET does all the work and makes a file you can use directly to load ML code
into the languages.

Why should you bother? What are PIC's advantages? (l) Programs are modular:
Any PIC module may be used in any program in any language we've tried so far.
You can use as many PIC modules as memory can hold in any specific program. (2)
Programs are independent: Every PIC module is self-sufficient; it works where-
ever the language may locate it. (3) Programs are integrated: You need never set
MemEnd_ or go through fancy procedures to use PIC modules. They are loaded from,
and are a part of, a program in language. You'd never know you were using ML
routines— except for the speed of execution. In sum, you can write or use PIC
modules in a high level language to do swiftly what the language itself may do
very slowly or not at all; you may use that same PIC module anywhere.

We received a classic example of how to write and use PIC from Associate Editor
Stan Brockman. Because it is a very short machine-language dump, anybody with a
printer can use it to find out how to write and use PIC. The rest of this arti

SuperPET Gazette, Vol.II, No. 2 -38- December 1984/January 1985

cle is in three parts: 1) How PIC works, 2) How to write it, and 3) How to use
it in mFORTRAN, in a very direct and simple way. Later articles this issue will
show more advanced ways to use PIC in the languages.

1 - HOW PIC WORKS Every 6809 ML routine is executed step by step, with the
Program Counter (PC) telling the 6809 the address of the next instruction. The
6809 dutifully gets the instruction at that address and executes it. In all ma
chine language but PIC, the instruction addresses are absolute. The start of a
routine may, for example, be given as $702C, and every instruction after that
likewise is at a specific 16-bit address. If you move the code up or down in
memory by a single byte, it will not work. All ML code but PIC must be linked
to a specific set of addresses; that's what the Linker is for.

In contrast, PIC code is position independent. All addresses within the ML code
itself are defined relative to the Program Counter, as so many bytes ahead of or
behind the address which appears in the PC at a particular time. Let's look at
a simple example:

Relative address
in Program Counter:

Instruction
Number:

Comments:

0000 [The starting address,
0001 offset by the number of
0002 bytes at the left.]
0003
0004

1 The first instruction is followed by an
operand of two bytes (we don't care what).

2 The second instruction, followed by another
operand of one byte.

Isn't it obvious that instruction 2 is always in the Program Counter when the
PC holds the starting address plus 3 bytes? If the starting address is $6000,
instruction 2 starts at $6003; if we start at $7000, we find instruction 2 at
$7003. Simple arithmetic will keep track of the address of any part of our code;
in fact, the the assembler itself will tell the 6809 to find the address of any
piece of code if we use PC relative addressing (PCR). We must tell the 6809 only
one thing when we execute PIC code: the address at which the code starts.

2 - HOW TO WRITE PIC CODE: Let's take a look at Stan’s program to see how
he uses PCR to generate his PIC code. We call this package per.asm:

openf_ equ $b0ae
closef_ equ $b0b1
fputchar equ $b0cf

ldd
addd
std
leax
pshs
leax
tfr
jsr
leas
std
if
ldd

$0122
//$7 f b0
istop,pcr
mode,per
x
file,per
x,d
openf_
2,s
outp,pcr
ne
#$8000

We assign the ROM addresses of system routines
so we do not have to link this code after it is
assembled. Linking merely assigns addresses.

Stan revised some old PIRQ code for this demo.
The code itself is not important, but the use of
PCR is— as here, where a label is offset, PCR.
And another label here. Each label and each sub
routine call is PCR offset— except for the system
routines in ROM whose addresses we define in the
equates at the very start of this program.
WARNING! Do not attempt to assemble this code in
the V1.0 assembler, which will refuse it. Use the
V1.1 assembler only!

There is no advantage to PCR addressing when pro

SuperPET Gazette, Vol.II, No. 2 -39 December 1984/January 1985

std
loop
ldx
jsr
ldx
ldb
abx
stx

line,per

line,per
print,per
line,per
#80

line,pcr
cmpx istop,pcr

until ge
ldd outp,pcr
jsr elosef_

endif
rts

;subroutine and data follow:
print

istop
outp
line
mode
file

tfr x,d
addd #80
tfr d,y
loop
ldb ,-y
cmpb #32
quif ne
cmpy line,per

until eq
tfr y,d
subd line,per
addd #1
tfr d,y
loop
ldb ,x+
pshs y,x,d
ldd outp,per
jsr fputchar_
leas 2,s
puls y,x
leay -1,y

until eq
ldb #$0d
pshs d
ldd outp,per
jsr fputehar_
puls d
rts
rmb 2
rmb 2
rmb 2
feb 'w,0
fee "ieee4"
feb 0
end

grams are to be linked for a specific starting
address and will always be used at that address.
The code nans more slowly than it otherwise would
because of the added arithmetic. In addition, no
starting address is included in the code (since
it is not linked); it cannot be loaded either
from menu or in the monitor unless it is linked.
Nothing keeps you from linking PIC such as this
for use at a specific address (it works fine),
but why go to the trouble of writing PIC if it
is to be used at a fixed address? On UNIX and
UNIX-like systems (such as OS-9), however, PIC
is invaluable, for it can be put anywhere in mem
ory and will, run there without problems. Stan's
use of it in mFORTRAN and our later use in mBAS-
SIC show other applications of PIC.
Remember that this routine, once assembled, need
not be linked (which means assigned to specific
addresses). The assembled code in the .b09 file
may be put directly into memory and executed by
a call to the starting address. There are several
ways to do this; Stan simply gets the .b09 file
and stuffs it into an mFORTRAN program as a char
acter variable, as we'll later show.

If you prefer, you can get the code from the LIST
or .1st file, after assembly, and transcribe it
by hand (if fond of copying). It's far less work
to pull the .b09 file into your language code and
use it without transcribing (though you'll have
edit a bit before you use it.)

Stan thoughtfully put the output file designation
at the very end of this code. If your printer is
"printer" and not "ieee4", it's simple to revise
the ASCII code (in hex) at the end of program to
say "printer" instead, without reassembly. The
program in language is commented to show where
the code is, so you can change it— to serial, if
you wish.
If you'd rather use this routine to disk, change
label "file", below, as shown at end of program,
and then assemble it.

Each of these labels is always referred to PCR,
wherever employed in the code above.

;Change this to "printer" or "serial", or to
;"disk.filename", as you wish.

Note that all system addresses are handled as absolute values; all labels are
specified PCR. A note on stack handling is found at the end of this article.

SuperPET Gazette, Vol.II, No. 2 -40- December 1984/January 1985

3 - A SIMPLE EXAMPLE OF HOW TO USE PIC CODE IN MFORTRAN: The code generated
by the assembler is called the pcr.b09 file. For this demonstration, we bring
that file directly into the microEDITOR (used alone or in Development— never in
a language; you'll ruin the file!). We must edit it, for it holds some English
phrases we must get rid of, and we must assign the code to a character variable.
How do we stuff "a='fc0122...'" on the line below (the first line of code) to
assign it to character variable "a" without running the end of the 80-character
code line into oblivion? That's easy. We duplicate each line in the mED— and we
then erase the last half of the original line, and the first half of the dupli
cate line, like this:

fc0122c37fb0ed8d007f308d00813410308d007 [last half of line erased]
[first half of duplicate erased] d-1f10bdb0ae3262ed8d006c2727cc8000ed8d0065

Now we can assign each line to a character variable by concatenating:

a="fc0122c37fb0ed8d007f308d00813410308d007"
a=a//"d1f10bdb0ae3262ed8d006c2727cc8000ed8d0065"

We repeat the process for all lines and file all lines of the code to disk, say
as the file "per.char". We can now get the code off disk into mFORTRAN so we can
use it. Be sure to have the quotes shown above around the code when filed.

In language, we face a second problem. The code, as a character variable, is not
executable. In memory, the first character ("f") will show as $66. We don't want
$66; when we look in memory, we want to see the exact code printed above. In Su
perPET, there's a system routine to do this— HSTOB_ (Hex String to Binary), at
address $B01E. So Stan SYS's that routine to convert the code from its character
representation to executable binary code. If you look in the monitor after char
acter "a" is converted, you'll see an exact duplicate of the code above.

The last problem is to find the address of the character variable after it has
been converted to executable code. In mFORTRAN, intrinsic function VARPTR will
find the the starting address for us. If we now SYS that address, the code will
execute. Remember that as an mFORTRAN program runs, the addresses of character
variables may change, so we must find the address of our PIC code each time we
use it by a call to subroutine "mldump".

subroutine mldump
character a

a="fc0122c37fb0ed8d007f308d00813410308d007" * The code to the left was
a=a//"d1f10bdb0ae3262ed8d006c2727cc8000ed8d0065" * formed in the mED, loaded
a=a//"ae8d006lad8d0019ae8d0059c6503aaf8d0052a" * alone, exactly as we descri-
a=a//"c8d004a2de7ec8d0046bdb0b1391f10c300501f02" * be the process in the text
a=a//"e6a2c120260710ac8d003226f31f20a38d002ac" * above. We haul this file in-
a=a//"300011f02e6803436ec8d001bbdbOcf326235303111 * to mFORTRAN and write this
a=a//"3f26edc60d3406ec8d0008bdb0cf35063939ff0" * program to use it.
a=a//"0ff77007700696565653400"//char(0)
* w i e e e 4 Change this hex code for your printer filename.
* 'w' stand for 'write'
ia=varptr(a) * Integer "ia" points, through VARPTR, to string a.
j=sys(cnvh2i('b01e'),ia,ia)* We SYS a routine to convert a hex string to binary

* (hstob , p. 173» Assembler Manual, at $B01E).

SuperPET Gazette, Vol.II, No. 2 •41- December 1984/January 1985

j=sys(ia) * And SYS to the address of the ML program.
a="" * Be SURE to null "a" or you'll run out of memory
end * if you use the dump repeatedly.

* * *
Stan Brockman warns those who write PIC code to beware on stack handling. When
you SYS, the return address for mFORTRAN is pushed on the stack; if you pass two
or more parameters, they are also stacked (only parm 1 is passed in the D accu
mulator). If, in your PIC routine, you manipulate the parms by a PULL or PUSH,

the Stack Pointer will be offset so
RIGHT WRONG Action: that you will not return from the
std P1,pcr std P1,pcr ;store Parm 1 SYS to language— but will crash. In
ldd 2,s puls d ;get Parm 2 place of PUSHes or PULLs, use off-
std P2,pcr std P2,pcr ;store Parm 2 set addressing (as at left)— and

leave the Stack Pointer alone. We
ran a little SYS program in mFORTRAN and recorded the D register, the Stack it
self, and the Stack Pointer after passing three parameters. Parameter one was in
the D register, as expected. Our code started at $7500, so we SYS'd our routine
as follows: i=sys(cnvh2i('7500'),01 ,02,03)• After we passed the three parms 01,
02, and 03, the stack and stack pointer were as follows:

Stack location relative to Pointer: Stack Contents:

+4 bytes 00 03 (Parameter 3)

+2 bytes 00 02 (Parameter 2)

Stack Pointer— > 0 9A B6 (Return Address to mFORTRAN)

In short, when you SYS, the Stack Pointer points to the return address to the
language'. If you move the pointer, 1) at least move it back there, and 2) don't
adjust the stack pointer to clear out the parms. The SYS routine does that for
you. The programmer normally must clean up the stack when passing parms. Don't!

VARIABLE FILES AND PIC CODE A VARiable file is most useful for saving mach
ine language code, because you can write to and

read from VAR files any values, including the CONTROLS (ASCII 0 through 31). All
machine language code is full of such values. When you read a file designated as
a VAR file, CONTROLS are read as data values, and not as control values. A car
riage return, for example, is read as decimal 13» not as end-of-line or record;
ASCII code 12 is read as such, and not as a command to clear screen and home the
cursor. All .mod files created by assembly and linking in SuperPET are, for this
reason, filed to disk as VAR files in PRG format.

What is a VAR file? It can take any number of forms; either 1) the pre-defined
format expected by SuperPET's operating system, or 2) any format you create to
work in a certain way. We'll say more on VAR files in general next issue. Mean
while, let's define the type we'll use to hold PIC code.

We'll create a VAR,USR file which is prefaced by two data bytes which define the
length of the executable code in the file. If the executable code is $80 bytes
long and the first byte of executable code is $FC, then we want the first three

bytes in the file to be those at the left. Both mBASIC and mFORTRAN
00 80 FC will load a file designated as a VAR file by throwing away the first

two bytes— the length bytes— and then starting the load with $FC. The

SuperPET Gazette, Vol.II, No. 2 -42- December 1984/January 1985

VAR files we make can be read in mFOR and mBASIC and probably in all languages.

The statement in the mBASIC manual that it doesn't support VAR filetype is only
true in part. mBASIC can't form VAR files as such, but it can be tricked into
making them— we simply write a text file and read it as a VAR file— anywhere.
There is one minor flaw in mBASIC (but not, so far as we know, in any other lan
guage); mBASIC strips all CR's from a VAR file as it's brought into memory. It
is easy, however, to replace the CR's during loading if you know about this.

LOADING PIC INTO microBASIC Can't we find a simple way to convert a PIC
AND OTHER LANGUAGES FROM DISK .b09 file into a disk file which we can load

into any language whenever we need it? Well,
with a great deal of help from Associate Editors Stan Brockman and Terry Peter
son, we indeed can. So far, we can do it in both mBASIC and mFORTRAN— using the
same disk file for both languages. We suspect that disk file will work in all of
the languages if the proper loading program is written in each language. Credit
Terry Peterson for insisting that VAR (variable) files were the proper file for
mat for PIC code in the languages, and for chrome-plating our programs.

Because we want a file of machine code, we use VAR files in USR format (it's
easy to remember what they're for). The first two bytes must specify the length
of the executable code in the file. "pcr.b09", the file we convert, says that
its code is $96 (decimal 150) bytes long— but as with all .b09 files, Waterloo
either started counting bytes with zero or plain goofed. All .b09 files are one
byte longer than they say they are; we have to add that to reported file length.
(The two bytes of length data with which we start the file are not counted.)

To make what we are about to do clear, let's look at the .b09 file itself. Note
that it is prefaced by data and English phrases. These we must get rid of. We'll

also add one to the file length shown. Note the carriage re-
Errors 0 turn in the last line, marked with two carats. We'll have to
$0096 ; Length patch in every CR when we read the file in mBASIC.
Object
fc0122c37fb0ed8d007f308d00813410308d007d1f10bdb0ae3262ed8d006c2727cc8000ed8d0065
...several lines removed
3f26edc60d3406ec8d0008bdb0cf35063939ff00ff77007700696565653400

TO CREATE AN EXECUTABLE DISK FILE: This first step we take only once. There
after, the disk file of executable code may be used as often as we need it. Why
must we convert "pcr.b09" to executable code? Isn't it executable already? Well,
we're going to load it into language as a string value; the first characters in
the .b09 file are hex "fc", which will form $66 ("f"), $63 ("c"), etc. Instead,
we want hex "fc" to translate as one byte to itself (decimal 252). The program
below forms a disk VAR file which loads to form an exact duplicate of .b09 file.

110 ! con_to_var:bd. Loads and converts the .b09 PIC file to a (VAR) file.
120
130 print chr$(l2); : open #12, "pcr.b09", input
140 open #14, "(t)pic_code,usr", output ! Form as TEXT file, read
150 ! as VAR file.
160 on eof ignore
170 input #12, a$,b$! Read ERRORS (throw away), then $LENGTH.
180 b$=hex$(hex(b$(2:5))+1) ! Add one and convert length to hex.
190 print #14, chr$(hex(b$(l:2)));chr$(hex(b$(3:4)))5 ! Print LENGTH to file.

SuperPET Gazette, Vol.II, No. 2 -43- December 1984/January 1985

200 loop
210 linput //12, trash$
220 until trash$="0bject"
230 loop
240 linput //12, a$
250 if io_status thon quit
260 for i%=1 to len(a$) step 2
270 print #14> chr$(hex(a$(i?S:i7o+1)));
280 next i%
290 endloop
300 print //14 : reset
310 call read var : stop

! Get rid of remaining English words,

! Get object code.

! Parse code 2 bytes at a time and
! convez*t it for disk file.

! End file with a CR!!!

We include with the program the short procedure below, which will read the VAR
file so created to the screen in hex. If you vary the conversion program, you'll
need it.— unless you'd rather spend your time block-reading your disk.

Reads all VAR,USR and VAR,PRG
files to screen in hex.
This definition of EOF seems
to catch the end of all PRG and
VAR files you wish to read.

! Also reads all APL VAR files,
! whether SEQ or PRG.

350 proc read_var
360 print chr$(l2);
370 endd$=chr$(0)+chr$(13)+chr$(13)
380 open //20, "(t)pic_code,usr", output
390 on eof ignore
400 loop
410 get //20, a
420 a$=a$+chr$(a)
430 if idx(a$,endd$) then quit
440 code$=hex$(a) : print code$(3:4);"
450 endloop
460 ondproc

LOADING A VAR FILE INTO LANGUAGE If you're not an mBASIC programmer, skip
this section and proceed to the article on loading PIC from disk in mFORTRAN. li.
the program below, we load PIC code into mBASIC. Once it's loaded, you may call
it at any time so long a.j the string which holds it (pic$) is not nulled. The
code lines below must be the very first of your program, so that pic$ will be
the first string identified in the variable table and easy to find.

100 ! picload:bu. Load PIC code from (var) file on disk, ready to use.
110
120 on eof ignore
130 open //12, "(v)pic_code ,usr" , input
140 loop
150 linput #12, a$
160 if io_status then quit
170 pic$=pic$+a$+chr$(l3)
180 endloop
190 loaded=1 : close #12
195
200 ! Insert any amount of your own program here.
203
205 call find_do("3511210599:') ! Call PIC. Mad search string explained below.

The PIC module is short; the load from disk swift. If you now search high memory
you'll find an exact image of the .b09 file. Mark the address; SYS it; the code

! Read as a (VAR) file; SPET looks
! to the first two bytes for length
! of record on all (VAR) files.

! Replace CR's removed during disk load

! End of load.

.;>er*PET Cnr.et.te, Vol.II, No. 2 -44- Dccembcr 1984/January 1985

executes. But how do we avoid a long, slow search in the monitor for the address
of the module? And will the address not change as we null or revise strings? It
will. We found a short, swift, simple way to locate and SYS any PIC code:

210 proc find_do(search$) !
220 address$=0 : var$=""
230 start_var^=peek(hex(1441))*256+peek(hex(1451)) !
240 end_var$=peek(hex('4 6 '))*256+peek(hex('47')) !
250 for i$=start_var$! to end_var$
260 var$=var$+value$(peek(i?£)) !
270 if idx(var$, search$)
280 address^=peek(i^+1)*256+peek(i^+2) !
290 endif
300 if address^ then quit
310 next i.%
320 if address^ and loaded then sys address^ !
330 endproc

An Explanation of Procedure Find_Do: Though the procedure above is fast and
simple, and we can't measure the delay while it finds and executes PIC code, it
requires some explanation. Simmer :iown, Bodsworth; if you don't wont to know
why it works, skip the details which follow.

Thanks to Gary Ratliff and Loch Rose, we know about two pointers in mBASIC which
make the job easy. Th^ first pointer, at $44-$45, points to the start of the Ta
ble of Single Variables; the second, at $/[6-$47, shows the end of the table. If
we know what to look for, we can locate the address of "pic$" in the table. How?

From Gary Ratliff's work, we know string values are identified in the Variable
Table with a hex number 111 front of the string name. The three high bits of the

number are always 001 for a simple string, as
High 3 Bits: Low Five Bits: at the left. The low five bits say how long the
0 0 1 0 0 0 1 1 string name is. We know that "pic" is a three-

character name (00011 , as at left), so we know
"pic" will be identified with a hex number which, in binary, is 0010 0011 . In
hex, that's 2 (high nybble) and 3 (low nybble). We look for $23. Because all
PEEKs come back in decimal, we first search for the decimal equivalent— 35; when
we find a 35, we know we're about to read a string name. Is it "pic$?"

Our PEEKs will come back in decimal ASCII codes; "p" is 112, "i" is 105, "c" is
99* So we must scan the variable table for this sequence: 35 112 105 99. Because
string numbers aren't separated by spaces, the true sequence is "3511210599"—
which explains the mad IDX search string in the loader program above, and also
explains how to create your own search string for any PIC string name— except
for even-length string names. Hold tight, Bou^worth. What about 'em?

In the Variable Table, Waterloo converts all even-length strings to odd-length
by adding a space (ASCII 32) right after the string identifying number. Suppose
"picc" is a four-character string name. It's made five characters long, so we

parse the identifier at left, to read $25 or decimal 37- We
0 0 1 0 0 1 0 1 therefore search for "37 32̂ 112 105 99 99", without spaces,
string len=5 of course. The added space is underlined in the line above.

We've now located both identifier and name of "pic$" in the Table. Where's its
address? In the next two bytes. We read the address in line 280 of "find_do"; we

Pass the search parm.

Find start of var. table.
Find end of var. table.

Search table for pic$

When found, get address.

And SYS that address.

SuperPET Gazette, Vol.II, No. 2 -45- December 1984/January 1985

SYS it. That's it. Remember to use find_do each call; the address may change.
Since search strings arc passed to finU_uo as parms, you can use the procedure
with any number of PIC modules in memory.

When you write and amend a program using PIC, you'll bv~y pic$ in obsolete trash
in the variable table as you revise. File program to disk and reload to get pic$
up front again. When the program i3 run as loaded, pic$ stays up front.

A warning: If you switch from mBASIC to its microEDITOR, all variables go null,
including pic$. If you return to mBASIC an>. call find_do, guess what happens...
V/e therefore set variable "loaded" to 1 (see program "picload-bu") when we load
pic$. Note find_do won't work if you switch to mED and back— loaded becomes 0.
It's a safety precaution— use it! t

OTHER WAYS TO HANDLE PIC CODE It's obvious that if we can load PIC code from
IN THE LANGUAGES disk in mBASIC, we can do it even more simply

in the other languages; we needn't fuss around
with string identifiers or with procedures to find the code. Intrinsic functions
analogous to VARPTR in mFORTRAN will easily find the address of PIC code for us.

We print below two mFORTRAN programs, either of which will load and execute PIC
code stored on VAR files. They use the disk file, "(v)pic_code,usr" which we
created in the n.'JASIC program "con_to_var:bd" in previous pages, this issue. The
file i3 $97 or decimal 151 bytes long.

You can load the code into mFORTRAN at any time, and call it at any later time.
The programs below, to save space, load and execute the code in one swoop.

*program stanload:fd By Stan Brockman. This program, to line 1, loads PIC
character pic,a code from a VflR file. The portion
integer ctr from line 1 onward executes it. If
open(9,file="(v:151)pic code1,usr") you want to call PIC by subroutine,
pic=rpt(' ',151) write one with these two lines:
ctr=0
while(l) do ii=varptr(pic)
read(9,*,end-1) a i=sys(ii)
il=len(a)
pic(ctr+1:il+ctr)=a Insert nothing between the call to
ctr=ctr+il VARPTR and the SYS, for the address

endwhile of PIC can change!
1 ii=varptr(pic)
print,ii * This line and next for test only. Remove both PRINT and PAUSE
pause * statements for full execution, since PIC address may change!
i=sys(ii)
a='' * Be tidy, Bodsworth. Null a and save some memory,

end

*program loadvar:fd
character pic
pic=rpt(" ",152)
open(9, file="(v:151)pic_code1,usr")
read(9,*) pic(l:15l)
close(9)
ipic=varptr(pic)
i=sys(ipic)

end

* The length of PIC must be defined as
* one byte longer than the true VAR file
* length in this version. V/e don't know
* why, but the program won't work unless
* it's done.

SuperPET Gazette, Vol.II, No. 2 December 198-1 /January 1985

As you can see, it's simple to load PIC Iron: a VAR file, and easy to execute it
with intrinsic function VARPTR.

Are there any other ways to store PIC code and use it in the languages? Yes. We
have successfully loaded PIC code from plain TEXT,SEQ files, but the presence of
carriage returns in such files makes them hard to load in mFORTRAN and, we sus
pect, in most languages. The VAR,USR file loads CR's as well as anything else.

Stan Brockman favors VAR,PRG files. lie simply links the PIC code and then loads
the .mod file created by the linker. But there are a few contortions. He must
link them to an origin four bytes higher than the .b09 file length, and read the
file in mFORTRAN with a record length from two to eight bytes longer than .mod
file length. Last, he has to SYS an address several bytes higher than the start
of the loaded code. The first six bytes in every .mod file contain loading in
formation and make loading a problem.

Stan managed to work around them with a program which 1) reads the file in a
preliminary pass, 2) loads it after the true length is known, and 3) then SYS's
the start-of-code. We figure VAR,USR files are easier to understand and use. No
body has yet tried to load a block of PIC code longer than 5 12 bytes from any
file of whatever kind. Be interestin' to see what happens!

WE SORT OUT SOME SORTS We previously asked readers to send in some neatly
structured string sorts; we not only received a large

bunch, but gained much insight into the proper way to employ various types. It's
clear that there's no such thing as a "best" sort. Before we go into the why of
that conclusion, we note that the speed of a sort depends on how you format it.
Use integer variables (not reals) and multiple statements per 1 Lne (not.singles)
and your sort will execute 30% faster in mBASIC. In the other languages, use in
teger variables, not reals. The difference in speed is substantial. Note also
that the sorts printed below should be easy to convert to other languages.

V.’jll, why do we say there's no such thing as a "best" sort? In I, 270, we print
ed a modified shell sort. This issue, in the pages following, you'll find two
more: 1) a structured version of Hoare's Quicksort, sent in by Jerry W. Carroll,
and, 2) a double-bubble sort from Robert Dray. Your iirst reaction, we guess, is
that nobody in his right mind ever uses a slow bubble sort. Dead wrong. Compare
performance of the double-bubble, shell, and Hoare sorts on randomly arranged
(disordered) lists and on almost-ordered lists below. The "almost-ordered" list
was in alphabetical order except for six names added at the top of their alpha
betical place (e.g., "Axord" at the top of the A's; "Blucher" at the top of the
B's). This list ;s the "ordered" one below. Data in seconds to execute the sort:

Array Size Quicksort Double Bubble S) ’1? Sort
Sorted: List List List List List List

Random Ordered Random Ordered Randc:;: Ordered
25 4 5 14 2 7 3
75 14 33 93 6 28 12
150 33 147 407 10 75 28
300 79 749 • • • 16 256 55
600 205 • • • • • • • • • • • • •

Hoare's Quicksort obviously is best at sorting random]ists, but is miserable at
handling a list which is almost sorted. The double bubble likewise is miserable

SupcrPF.T C.-nr̂ -te, Vol.II, No. 2 -47- Decembei.- 1904/January 1909

when it sorts a random list but performs well on ordered ones. Our poor shell
can't beat the other two at their best, but it wins over the bubble at sorting
random lists and whips Quicksort on ordered lists. Because of this, we designed
ALPHA (the assembly language sort on ISPUG's utility disk) as a shell sort.

Both sorts following are set up with input sections so you avoid a few problems
in DIMensioning and the proper Option Base. The first is Robert Dray's Double-
Bubble. He scans the list alternately fro::! top to bottom and bottom to top, so
that "heavy" items bubble down and "light" items bubble up. But don't add new
items to an already-sorted list either at the very top or at the very bottom—
if you do, comparative time to sort rises by a factor of 10. Take the time to
put items in their alphabetic niche ("Axord" at the head of the A's, as we did),
and the double-bubble will do a swifter job for you than any other sort if there
are relatively few changes to an already-sorted list.

100 ! double_bubble:bd. From Robart Dray. Use OPTION BASE 1.
110 print chr$(l2); : option base 1
120 input "Enter filename of file to be sorted: ", file$
130 print : input "Enter number of items to be sorted: ", nura_items$.
140 dim list$(num_items$) : open #12, file$, input
150 on eof ignore
160 for i%=1 to num_items$! The list on disk must be formed
170 linput #12, list$(i^) ! with a single entry on each line.
180 if io_status then quit
190 next i%
200 reset : print "Sorting ..." : t1=time : call double_bubble
210 t2=time
220 mat print list$
230 print "Time to sortt2-t1;"seconds"
240 stop
250
260 proc double_bubble
270 upper_bound?o=num_items$: lower_bound$=2
280 last_swap__up7S=upper_bound% : last_swap_down^=lower_boundJ?
290 loop
300 for j$=upper_bound$ to lower_bound;& step -1
310 if list$(j#-1) > list$(j%)
320 exchange$=list$(j$) : list$(j7o) = list$(j%-1)
330 list$(j$-1)=exchange$: last_swap_down$=j$
340 endif
350 next
360 if lower_bound%=last_swap_down$+1 then quit
370 lower_bound$= In st_swap_down/£+1
380 for k$=lower_bound$-1 to upper__bound$
390 if Iist$(k$6-1) > list$(kj6)
400 exchange$=list$(k$) : list$(k$)=list$(k%-1)
410 list$(k$-1)=exchange$: last_swap_up%=kjS
420 endif
430 next k%
440 upper_bound#=l j.ct_swap_up̂
450 endloop
460 endproc

Jerry W. Carroll obviously spent a lot of time pulling Hoare's Quicksort out of
the maze of GOSUBs and COTOs in which it was buried. Don't protest because he

SuperPET Gazette, Vol.II, No. 2 -48- December 1984/January 1985

file$

uses some single-character variable names in the sort. If the names were 31 cha
racters long, we wouidn1t know any more about how the sort works than we now do.

100 ! "shortsort:bd". A Quicksort routine from Jerry W. Carroll.
110
120 print chr$(l2); : one^=1
130 input "Enter no. of items to sort: ", n%
140 print : input "Enter filename of list to be sorted:
150 dim string$(n#+one5u) : open //4, file$, input
160 for x% = or\e% to n%
170 input ft4, string$(i/o)
180 next i%
190 reset : t1=time
200 if n% <= 9
210 call straight_insertion_sort
220 else
230 call quicksort ! The MAT PRINT statement (line 260) will
240 endif ! print chr$(0) and chr$(255) to screen
250 print "Sorting is done ..." ! at end of sort. We used MAT PRINT to
260 mat print string$! save space. A loop
270 print "Time to complete s^rt was:";t2-t1;"seconds." ! will get them out.
280 stop
290
300 proc quicksort

! Reset closes files in V1.1

310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600

Quicksort pp.
string$(n% +

116-117* Donald Knuth, vol. Ill - Sorting & Searching
1) is array of strings to be sorted.

n% = number ox items in array excluding string$(0) and string$(n%'+1)
- max. no. of items in largest partition for straight insertion sort,

print "Sorting hns started ..."
lower boundary of array
upper boundary of array
stage Q1
start of new stage Q2

j£=r^+one$! Boolean argument

! stage Q3

string$(0)=chr$(0)
string$(n^+one^)=chr$(255)
m%=9 : p%=one% : r%=n%
loop

loop
done%=one% : i%=p%
key$=string$(p%)
loop

i.%=i%+one%
while str.ing$(i/o) < key$ and i% <= 3%

i%=i%+one%
endloop
j#=j/6-one?a ! stage Q4
while key$ < string$(jl£) and >= i%-one%
j%=j%-one%

endloop
if j% <= i%

hold$=string$(p%)
else

hold$=string$(i%)
endif

until j# <= i%
if r%-j% >= j/o-pft an^ ! stage Q7
s%=s%+one% : stack$S(s7o,one?S)=j7J+one% : stack$(s$S,2)=r$
r$=j;£-one# : done#=0

! stage Q5
string$(p^)=string$(j/S)

! stage Q6
string$(i.5»)=string$(j%) : string$(j%)=hold$

string$(j^)=hold$

r%=j%-one%

SuperPET Gazette, Vol.II, No. 2 -49- December 1984/January 1985

610 elseif > r#-j% and r$~j% > m%
6) B%~s%\or\e% : stack$S(s2»,one;£)=P# s stack$S(s56,2)=j#-one/i
630 p%=j%+one% : done/o=0
64O elseif > m% and >= j/o-p/S
C50 p*£= j%+one% : done/o=0
660 elseif j%-p% > m% and m% >= r%-^%
670 r$=j#-one$: done%=0
680 endif
690 until done#
700 if b% > 0
710 p#=stack#(s$,one$) : r#=stack#(s%,2) : s7?=s#-one# : done$=0
720 endif
730 until done#
740 call straight__insertion_sort
750 endproc
760
770 proc straight_insertion_sort
780 for j#=2 to n%
790 i#=j#-one# : key$=string$(j$)
800 while key$ < string$(i$)
810 string$(i%+one#)=string$(i#) : i%-i%-one%
820 until i%=0
830 string$(i#+one£)=key$
840 next j%
850 t2=time
860 endproc

A MAP OF THE BATTLEFIELD A charter member of ISPUG, an applications program
mer, scarred and weary, dropped us a note: "While I

don't want to become a machine language programmer, I'm often driven in that di
rection by specific problems which I can't solve in high-level language— but I
don't know enough to start. The Development manual leaves me gasping; your auth
ors say, for example, to load ML routines in the "top of user memory;" why? I
think I know, but really don't; I don't understand linking, locating, getting
rid of a module when you no longer need it. In shoxt, I need a map of the funda
mentals." So we take up silicon cartography and start with SPET's address space,
for our old hand is not the only confused reader (we exclude poor Bodsworth, who
is always confused):

System Addresses
--------------- $FFFF
ROM Routines

from $A000-$FFFF

--------------- $9FFF
The Switched

Banks

--------------- $8FFF
Hyde

--------------- $87DO
Screen Memory

Comments:

System Library and System Routines— 24K bytes. ROMs are
often identified as A block, B block, C block, etc. Se
lected ROM routines are found, by address, on disk as
"watlib.exp" (Waterloo Library Exports). Floating point
(decimal arithmetic) routines are filed as "fpplib.exp"

One of 16 switched banks of 4K. bytes. Current bank is
shown at $0220 as $0 through $F. All languages inter
preters, linker, assembler load here. 64K bytes.

Ms"ory above screen is used in part by Waterloo.

Decimal 2000 bytes allocated to screen memory.

SuperPET Gazette, Vol.II, No. 2 -50- December 1984/January 1985

$7FFF

User Memory

$0A00
System and

Language Operating
Memory

$0000

Workspace used for programs by the languages and by
assembly language programmers who don't use the switch
ed banks. Top of user memory is set by pointer at $0022
and bottom of user memory at $0020. Some of this memory
is used by pointers and tables in languages/facilities.

Hardware Stack, Bank-Switch Stack, Language and System
Pointers, IEEE Handling, Keyboard Handling, Tabset,
Time, 1/0 Control; Language Pointers; Buffers.

---------------- $7FFF
User ML Module
--------------- $7F00
New Top of User
Memory. All Program
Data Form Below it.

If you add up the memory space above, with one switched bank in operation, it
totals 65,536 bytes, which is the maximum address space of the 6809.

Let us now put a microscope on User Memory and answer the questions about using
that space. Below, we show a small ML module at $7F00, with MemEnd_ set also
at $7F00. It's a convention that assembly language programs be located at the

very top, just belew $7FFF. There are two good reas
ons to use the top, not the bottom at $0A00. First,
if you goof, and your ML module is larger than you
thought, the tail-end will appear on screen as a war
ning— the overflow visibly prints. Second, if the
ML module were placed just above $0A00 and then over
flowed, it'd overwrite whatever program you used, and
you'd crash.

Bottom of
User Memory When you load an ML module in high user memory, you

--------------- $0A00 set the pointer for MemEnd_, at $0022, to the exact
starting address of that module. Whatever language or

facility you then load is forbidden, by that pointer, to invade the memory space
above the pointer. If you don't reset MemEnd_, the language or facility you load
will, sooner or later, overwrite your ML module. Examples: 1) strings are stored
just below the location defined by MemEnd_. If you put an ML module at top of
user memory, the strings almost always overwrite it; 2) the languages/facilities
set up some pointers/tables very near MemEnd_. They also overwrite ML code.

All the languages and facilities in SuperPET obey the MemEnd_ pointer at $0022—
if you load the language from menu after you reset MemEnd_. Once MemEnd_ is set,
it remains at that value until you change it, turn off SuperPET, or switch to
6502 iaode. In all languages but mBASIC, do not reset MemEnd_ while a program is
loaded, for all its internal pointers are adjusted to that MemEnd_ value. In m-
BASIC only may you switch to mED, enter the monitor, change MemEnd_, and return
safely to language. Calling mED resets all pointers to "just loaded" values.’

MemEnd_ is set or reset in the monitor by dumping memory location $0022 (>d 22
is the command), by overtyping the first two bytes with 7f ff or whatever value
you want, and by hitting <RETURN> on that line. Then >q the monitor.

There is a quick way to reset MemEnd_ in all languages. Leave the language with
a "bye"; reset MemEnd_ in the monitor at menu; then use RESET (I, 114) to return
to the language. You may recover the memory previously occupied by an ML module
by doing this because you also reset all pointers the language uses. In short,
SuperPET acts as if the language or facility were just loaded. RESET is found on
the ISPUG Utility and Starter-Pak disks.

SuperPET Gazette, Vol.II, No. 2 -51- December 1984/January 1985

We've now drawn a general map, explained MemEnd_ and how to protect ML modules
in high user memory, how to get back the space occupied by such modules, and how
to set and reset SuperPET's language and facility pointers safely.

Which leaves the matter of "linking." (Wake up, Bodsworth.) The code created by
an assembler shows relative addresses only (relative to the start of a program,
defined as 00 00). Linking assigns the code to absolute addresses in memory,
starting with the origin (abbreviated to "org" in the linker's .cmd file). This
work comes in two parts a) telling the program itself where its parts are lo
cated (Jeez, what's the address of the first subroutine?), and b) assigning the
addresses of system routines from the disk file "watlib.exp". The linker must
also 1) note in the file the starting load address, 2) convert the .b09 file of
unaddressed code to addressed code, 3) specify the bank in which the code is to
be loaded (if it goes into a switched bank at all), and 4) state the length of
the code. SPET's loader programs, either at main menu or in the monitor, read
this information from the file, load the code at the addresses specified, and
stop loading at the number of bytes stated in the .mod file created by the link
er. If you want a simile, the assembler writes the letter; the linker addresses
it; the loader programs deliver it; the 6809 reads and executes it.

UNDOCUMENTED SYSTEM ROUTINES We print below the first of a series of artic-
Part I les by John on the system routines available

by John A. Toebes, VIII to the assembly language programmer in Super
PET 's ROMs. John defines the routines and then

shows how to use each of them. We'll continue this series until all the major
undocumented routines have been covered. The Jump Table addresses shown are the
actual routine addresses. If, for example, you call SPAWN_, below, at $B000, you
will find a JMP to $BC75, where the routine starts. In the examples below, when
John CALLs a system routine, he assumes use of CALL MACRO (I, 158) to load the D
register with parameter 1 (P1) and to stack the remaining parms, if any. — Ed.

SPAWN_ : Spawn a process s at $B000; Jump Table $BC75

P1 - Address of routine to call : Result - Return code from procedure:
$0000 indicates routine successfully completed
$0001 indicates failure by the called routine.

This routine is used for calling a routine so that any of its internal routines
may exit prematurely if an error condition arrises. This premature exit is done
by calling the system routine SUICIDE_, which causes immediate termination, re
turning a failure code to the calling routine. Waterloo uses this routine in
the editor to catch attempts to add a line when no more memory is available.

Upon entry, this routine preserves the contents of ExitSP_ ($002c), ExitU_ (at
$0033)» and CurBnk_ ($0220) on the stack. It then saves the U and S stack point
ers at ExitU_ and ExitSP_, respectively. If the SPAWNed subroutine then returns
through an RTS then the current bank, ExitSP_ and ExitSP_ are restored to their
previous values. This method allows SPAWNed subroutines to nest correctly with
a SUICIDE_, returning to the correct SPAWNing point.

Example: CALL SPAWN_, #GETMEM
IF NE ;test spawn_ return code;

JMP N0MEM ;if 0000, proceed; if 0001,
ENDIF ;print OUT OF MEMORY message.

SuperPET Gazette, Vol.II, No. 2 -52- December 1984/January 1985

SUICIDE_ : Terminate a SPAWNed subroutine : at $B003; Jump Table, $BCAB
No parameters; does not return to calling code.

This routine is only used within a subroutine that has been invoked through
SPAWN_. When executed, it causes execution to resume at the point where the
current procedure was SPAWNed. In addition, the routine that issued the SPAWN
will be returned a result code of $0001 indicating failure. If a routine invokes
SUICIDE_ and no SPAWN is active, results are unpredictable, but SuperPET usually
goes into never-never land.

SPAWN_ restores the S and U registers from

Example: CALL SPAWN_, #SUBR0UT
• • •

SUBROUT ...
JSR INTERN
• • •
RTS

INTERN ...
IF NE ; Did we fail miserably?

JMP SUICIDE_ ; Yes, go back.
ENDIF
• • •
RTS

their saved values at ExitSP_ and at
ExitU_. It then restores ExitU_, Ex-
itSP_, and the current bank from the
values saved by the call to Spawn_.

BANKSW_ : Perform a bank switched call : at $B009; Jump Table $BBF1

No parameters; does not return directly.

This routine is used to support calling routines in bank-switched RAM. It is
invoked only indirectly through an ALV (Auto Load Vector) created by the linker
or artificially with the assembler. Attempting to call this routine directly
will meet with disastrous results.

This routine takes the next byte immediately after the call to it as the bank of
the routine to be called. Immediately after the bank is the address of the rou
tine within that bank which is called. It saves the current bank on the U stack
and selects the bank of the routine to be called. It then jumps directly to the
routine specified.

Example: JSR ALV29020 ; Proceed to Bank 2, call routine at $9020

ALV29020 JSR
FCB
FDB

BANKSW
$02
$9020

;Bank to call
;address of routine in bank

ISHEX_ : Check for hex digit : at $B02A; Jump Table, $BA2D

PI - Character to check : Result - TRUE ($FFFF) or FALSE ($0000) returns in D
Register. CC Register ZERO Flag is Set if FALSE, or
clear if TRUE; NEG flag is set if TRUE.

SuperPET Gazette, Vol.II, No. 2 -53- December 1984/January 1985

This j.oatine checks to see if an ASCII character is a valid digit in a ntxhc A-
mal number. It returns a true flag for the digits 'O' thru '9' and both upper
and lower case 'a' thru 'f*. It does not convert the character to its binary
form, but is intended to validate input before you call HEX or HSTOB .

Example: CALL ISHEX_, INCHAR
IF EQ

JMP BADHEX
ENDIF

Is it a hex digit? (is zero flag set?)
No, it wasn't.

RET : WSL support routine to clean the stack : at $B05A; Jump Table, $B677
X register holds unsigned number of bytes to release from the stack : No result
is returned.

This routine is used by the WSL languages to clean up the stack upon exit from a
procedure. It removes the number of bytes specified by the X register. If the
routine is called with a JSR then the number of bytes should be incremented by 2
to account for the return address placed on the stack by the JSR. Note that exe
cution from this routine returns to who called it, not to the calling routine.

For some strange reason, Waterloo wrote some extremely poor, slow and clumsy
code for this routine, even using a loop, when

LEAS X,S the entire routine could be replaced by the 3
TFR D,X statements at left. Because of its design, I do
RTS not recommend that you even consider use of the

routine.
Example: SUBROUT LEAS -10,S

• • •

LDX #10
JMP RET

; We simulate 10 bytes of used stack space
; with LEAS -10,S and let ___RET recover them.

RET2 : WSL support routine to clean the stack : at $B05D; Jump Table, $B67F
X holds unsigned number of bytes to release from the stack; no result returns.

This routine is identical to ___RET except that it also removes from the stack
the first stacked parm passed the routine.

Example: LDD
PSHS D
LDD #20
CALL MYSUB

#10 ;Parra 2 : [Ed. Here John passes Parra 1 in the D reg-
; is ter, and Parm 2 on the stack. ___RET2
; removes not only the 15 bytes called for
; in the X register, but also Parra 2.

MYSUB LEAS -15,S

LDX
JMP

#15
RET2

Use up 15 bytes of storage for simulation.
Then recover that space plus space which
is occupied by Parm 2.

___NEG : WSL routine to negate an integer : at $B063; Jump Table, $B742
P1 - Signed 16 bit integer to negate : Result: Algebraic negation of P1

SuperPET Gazette, Vol.II, No. 2 -54- December 1984/January 1985

This routine is extremely straightforward and clean. It negates the parameter in
the D register. Use it wherever or whenever useful.

Example: LDD #5
CALL ___NEG ; After this, D has -5 in it.

MUL : WSL support routine for multiplication : at $B060; Jump Table $B687

P1 - Multiplier : P2 - Multiplicand : Result: P1*P2, P2 removed from the stack.

This routine is used by the WSL interpreters to multiply two 16-bit signed inte
gers, producing a 16 bit signed result. It does not check for overflow; results
are truncated to 16 bits. This routine, as with all "___X" routines, clears the
parms from the stack for you.

Internally, this routine is a very poor implementation of the standard shift/add
algorithm for multiplication. Apparently, whoever implemented it did not under

stand how the MUL instruction can be extended. Note also
Example - LDD #80 that the primary use is for multiplication by 2 or 80. Do

PSHS D not use if yo ur code is to have any resemblance of speed.
LDD #5
JSR ___MUL ;D reg now contains 400(5*80)
... ;no LEAS is need to get rid of the 80

DIV : WSL support routine for division : at $B066; Jump Table $B6CE

P1 - Divisor : P2 - Dividend : Result: P2/P1 with P2 removed from the stack

This routine is used by the WSL languages to divide one 16-bit signed integer by
another. It does not check for division by zero, but there are no cases in which
overflow should cause it to produce the incorrect result. The sign of the result
will be negative iff both operands are of opposite signs. Removes P2 from stack.

This routine is a fairly clean implementation, although it could have been done
better in places. It uses the most generic form of the

Example - LDD #20 shift/subtract algorithm.
PSHS D
LDD #6
JSR ___DIV ;D now has 3 in it
... ;no LEAS is required to remove the 20

B I T T S B Y T E S & B U G S Boy (Gaairy IB m It 11 £ AT ff „ Sir.
215 Pemberton Drive, Pearl, Mississippi 39208

In our last installment we introduced the notion of a cross-assembler; a cross-
assembler is defined as a product which will assemble code for another processor
while running in a machine which uses a different chip. Our resident SuperPET
assembler uses 6809 code and has a 6809 assembler. If we designed a SuperPET
assembler for the 8080, Z80 or 8088 chip, it would be a cross-assembler. Water
loo has provided a cross-assembler for the 6502 chip which opererates very much
like the assembler for the 6809. The 6502 chip is only a switch-throw away for
those who own the SuperPET. Those who have solved the riddle of the RESTRICTED
command of ray extended monitor, XM0N6809, may use it to go from the 6809 side to
the 6502 side and back again.

SuperPET Gazette, Vol.II, No. 2 -55- December 1984/January 1985

The 6502 is very similar to the 6800 in design and in the use of assembler mne
monics. When this chip was introduced, the article in BYTE was entitled, "Son of
MOTOROLA." This is because some of the original designers of the 6800 decided
they could do better, formed MOS Technology and developed the 6502. Because the
instruction sets of the two chips are so similar, it's possible to have one .asm
file do double duty in producing a version of a program which will assemble to
run on either the 6809 or the 6502 side of SuperPET.

The mechanics of this idea involve the feature of conditional assembly. For
those functions of the machine which require a difference in the .asm routine,
we'll set a flag; when we select 1 we will assemble the 6502 version; if we set
the flag to 0, we'll assemble the 6809 version.

Of course, to assemble the 6502 version of this program the user will need to
have the 6502 Assembler from Waterloo. Because this product is so similar
in design to the 6809 Assembler, those who are familiar with the 6809 assembler
will have no trouble in using the similar 6502 product. [Ed. The 6502 Assembly
Language System, including disk and manual and dongle, can be purchased from
WATCOM Products, Inc. 415 Philip St., Waterloo, Ontario, Canada N2L 3X2. Last
time we looked, the cost was $250 U.S. The dongle is required during assembly
and linking, but is not needed when lin'ted programs are run.]

example of 6502-6809 routine assembly
code = 1 for 6809 and 2 for 6502
xref putchar
code equ 1 ;
ifeq (code - 1)

ldx ^string
endc
ifeq (code - 2)

ldx # 0
Ida string,x

endc
loop
ifeq (code - 1)

ldb ,x+
quif eq
pshs x

endc
jsr putchar_

ifeq (code - 1)
puls x

endc
ifeq (code - 2)

inx
Ida string,x
quif eq

endc
endloop
ifeq (code - 1)

swi
endc
ifeq (code - 2)

brk
endc

Change this FLAG

Here we have a simple example which
we will assemble for the 6809 pro
cessor and then assemble again for
the 6502. As you can see, the only
change to make this program run on
the 6502 is to alter the line con
taining the definition of code so
that the value of the flag is 2.

The two different versions may be
stored as duall. and dual2.asm.

We also must create the .cmd files
for the linkers to use. Again, the
files are very similar. First is
the .cmd file for the 6809:

"duall"
org $1000
include "disk/1.watlib.exp"
"duall.b09"

Here is the .cmd file for the 6502:

"dual2"
org $1000
include "disk/1.cbm801ib.exp"
"dual2.b02"

SuperPET Gazette, Vol.II, No. 2 -56- Deo^mber 1984/January 1985

string feb $0d
ifeq (code - 1)

fee "hello"
endc
ifeq (code - 2)

pec "hello"
endc

We use separate names to keep from
overwriting the 6809 .map and .exp
files when these are run through
the 6502 linker.

Let us now assemble these two ver-
feb 0
end

sions of the program.

1 ; example of 6502-6809 routine assembly
2 ; code = 1 for 6809 and 2 for 6502
3 xref putchar
4 0001 code equ 1 ;6809 Version

6 0000 8E 00 11 ldx ^string
12 loop
14 0003 E6 80 ldb ,x+
15 0005 27 09 quif eq
16 0007 34 10 pshs x
18 0009 BD 00 00 jsr putchar_
20 000C 35 10 puls X
27 000E 20 F3 endloop
29 0010 3F swi
34 0011 0D string feb $0d
36 0012 68 65 6C 6C fee "hello"
41 0017 00 feb 0
42 end

0018 bytes of object code (ASM6809 V1.1 01:12:23)

1 ; example of 6502-6809 routine assembly
2 ; code = 1 for 6809 and 2 for 6502
3 xref putchar
4 0002 code equ 2 ;6502 Version
9 0000 A2 00 ldx ft 0
10 0002 BD 12 00 Ida string,x
12 loop
18 0005 20 00 00 jsr putchar_
23 0008 E8 inx
24 0009 BD 12 00 Ida string,x
25 000C F0 03 quif eq
27 000E 4C 05 00 endloop
32 0011 00 brk
34 0012 0D string feb $0d
39 0013 48 45 4C 4C pec "hello"
41 0018 00 feb 0
42 end

0019 bytes of object code (ASM6502V1.2 01:17:30)

Notice that each. version lists only the proper commands for the chip being used.
The common portions assemble the different hex patterns required for each chip.
One assembler file now serves <double duty for both sides of SuperPET.

SuperPET Gazette, Vol.II, No. 2 -57- December 1984/January 1985

A NEW UTILITY DISK? As noted last issue, we have some gems of new programs
at hand: Joe Bostic's new Editor, from which the last of the bugs are being rel-
enlessly exterminated. Batch files which can be automatically executed are now
in style; not only does BEDIT implement them, but Terry Peterson sent us a much-
improved version of GSCROLL, which also implements BATCHing— as well as a selec
tive directory capability. Using that, you can list only the files which have
the names you want; if you want only files holding "aboo", you get them. Terry
also sent us an improved SPMON, his extended monitor, which parses the flags in
the CC register while you trace code (cheers!), and converts any ANDCC in hex or
binary to show the flags affected. BATCH files we also find in John Toebes' new
Command Line Monitor (CLM), an overlay on SPET's operating system, which loads
from menu and gives you an arsenal of new commands and capabilities— including,
again, selective directories! We don't know how or why three people invented the
same capabilities at the same time, but the day of the selective directory and
the batch file has arrived for SuperPET. No longer will any of us have to use
separate programs to profile our printers and computers when we bootup in the
mornin' , nor have to read that long sphagetti list of filenames when we want a
specific set of files. We hope these programs, as well as COPY/KILL (below) will
be ready to issue on a second ISPUG utility disk by next issue.

Loch Rose's new COPY/KILL is not only at hand but debugged and working fine. If
you hate typing filenames while you edit or copy files, you'll love this one. It
lets you specify with a single keypress that a file is to be copied or deleted;
better, you can juggle the order in which the files will be copied to another
disk, so that the new disk will carry the files in logical order. Because Loch,
like most of us, can't always remember what's in a file, he built in a command
to send any SEQ file to the screen; you can abort the read at any time. This
program is in machine language, loads at main menu, and is easy to use. The keys
used for commands make sense; REPEAT means copy; DELETE means delete; it took
us about five minutes to learn to use the delight Loch built.

Prices, back copies, Vol. I (Postpaid), $ U.S. : Vol. I, No. 1 not available.
No. 2: $1.25 No. 5: $1.25 No. 8: $2.50 No. 11: $3.50 No. 14: $3.75
No. 3: $1.25 No. 6: $3.75 No. 9: $2.75 No. 12: $3-50 No. 15: $3.75
No. 4 : $1.25 No. 7: $2.50 No. 10:$2.50 No. 13: $3.75 Set: $36.00
----------------------------Volume II--------------------------------------
No. 1: $3.75 No. 2: $3.75
Send check to the Editor, P0 Box 411 » Hatteras, N.C. 27943. Add 30# to prices
above for additional postage if outside North America. Make checks to ISPUG.

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$
APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP

(A non-profit organization of SuperPET Users)

Name:____________________________ Disk Drive: ________ Printer:____________

Address:__
Street, P0 Box City or Town State/Province/Country Postal ID#

[] Check if you're renewing; clip and mail this form with address label, please.
If you send the address label or a copy, you needn't fill in the form above.

For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check payable
to ISPUG in U.S. Dollars. DUES ELSEWHERE: $25 U^S. Mail to: ISPUG, P0 Box 411,
Hatteras, N.C. 27943, USA. SCHOOLS!: send check with Purchase Order. We do not
voucher or send bills.

^’iperPET Gazette, Vol.II, No. 2 -58- December 1984/January 1985

This journal is published by the International SuperPET Users Group (ISPUG), a
non-profit association; purpose, interchange of useful data. Offices at PO Box
411, Hatteras, N.C. 27943. Please mail all inquiries, manuscripts, and applica
tions for membership to Dick Barnes, Editor, PO Box 411 , Hatteras, N.C. 27943*
SuperPET is a trademark of Commodore Business Machines, Inc.; WordPro, that of
Professional Software, Inc. Contents of this issue copyrighted by ISPUG, 1984,
except as otherwise shown; excerpts may be reprinted for review or information
if the source is quoted. TPUG and members of ISPUG may copy any material. Send
appropriate postpaid reply envelopes with inquiries and submissions. Canadians:
enclose Canadian dimes or quarters for postage. The Gazettte comes with member
ship in ISPUG.

ASSOCIATE EDITORS
Terry Peterson, 8628 Edgehill Court, El Cerrito, California 94530
Gary L. Ratliff, Sr., 215 Pemberton Drive, Pearl, Mississippi 39208
Stanley Brockman, 11715 West 33rd Place, Wheat Ridge, Colorado 80033
Loch H. Rose, 102 Fresh Pond Parkway, Cambridge, Massachusetts 02138
Reginald Beck, Box 16, Glen
John D. Frost, 77??. Fpuntl^rby

Drive,
Way. .?>

Fox Mountain, RR#2, B.C., Canada V2G
,W., Seattle, Washington 98136

2P2

Table of Contents , Issue 2, Volume II
V1.1 Available from Commodore. ...28 Disk Files of PIC Code; Loading... ..43
ISPUG Distributes COM-MASTER.. Loading PIC in mFORTRAN......... ..46

..47
SETUP Changes IRQ Vector..... ...30 ..50
A 68000 Cross-Assembler..... ...30 ..52

Bits, Bytes on Cross-Assembly.... ..55
New Utility Disk?............... ..58

Correction to Filetype Use.... ...32 Copy to Terminal................ ..31
APL 1/0 Functions and Files... ...33
APL DTODISK and FETCH Functions..37

..32
On Variable Files and PIC Code...42

SuperPET Gazette
P0 Box 411

Firrtt-Class Mail
in U.S. and Canada

