
WATERLOO PASCAL and STRUCTURED BASIC are
4. l/AI 2 1 f~l Tl now available for the C-64. Hmmm. We got

the red herring from WATCOM just before
this issue went to the printer, and began

to wonder how WATCOM crammed 'em into 64K with any room left over for programs,
and about the implications... In SuperPET, the 64K of bank-switched memory holds
the interpreters and the bank-switching routines (pure overhead). If we assume
WATCOM optimized the code to condense it (and exclude the bank-switching), we
figure the interpeters might go into 48K if handled as-is. Hmmm. That doesn't
leave much for programs. So we read the fine print, and, lo! Structured BASIC is
done in a 4K ROM, and clearly is similar to the version which runs on the 8032.

The PASCAL offered seems very similar to SuperPET's. The interpreter is on disk,
the EDITOR in a 16K ROM (WATCOM picked up some space!). Programs are limited to
700-800 lines— and the EDITOR (which we suspect is a version of the mED) can be
loaded alone. Prices: $149 for one copy of PASCAL; $99 for one of BASIC. Added
copies, ordered by schools at the same time, are $99 for PASCAL, $79 for BASIC,
in Canadian funds in Canada and U.S. funds elsewhere (20-25% surcharge on all
furriners, please note). Write WATCOM Products, Inc., 415 Phillips St., Water
loo, Ontario, Canada N2L 3X2.
What does this have to do with SuperPET? (1) Our readers in schools deserve to
know what is available; (2) the shape of the future doth appear. Commodore re
cently announced that the C-64 will be sold only to schools in an 8032 case with
a green screen; we hear the price is about $500. Does this mean the death of the
8032 and SuperPET, which Commodore makes by adding one board to the 8032? Will
WATCOM soon announce that FORTRAN is also available on the C-64? We ask these
questions during a deadly shakeout for computer makers and software houses. Only
a few computers and a few major software super-packages will survive. Forget the
computers for a moment, and ask: "How how many software packages do we need?"
Soon, the answer will be one integrated series, comprised of a word-processor, a
spreadsheet, a data base/mail list manager, and an accounting package. When two
or three such major SuperSoftware sets compete, who will buy any of the hundreds
of separate programs which now flood the market? Software for teaching faces a
hardware sieve; if such software doesn't run on an Apple, a PC, or a C-64, how
much will you sell? Inevitably, schools will teach on machines made in quantity
for commercial use and teaching. Will languages suited for commercial use and
teaching dominate and destroy teaching languages? Given the choice, which would
you buy? Are structure, good debuggers, and the ability to interpret as well as
compile useful only in schools? Do commercial users want no structure, bad de
buggers, and no way to check code before it's compiled? Watch the ongoing drama
in the marketplace. Our questions will be answered there.

IF YOU'RE RED, YOU'RE DEAD
Look at the mailing label on this issue. If, underlined in red, you find a note
that your membership has expired, this is your last issue. Please renew now if
you're going to renew. Check the RENEW block on the last page and send it with
your address label or a copy (you needn't fill the form if you send the label).
Honor us with $15 in North America or $25 U.S. from overseas, checks to ISPUG.
ONCE OVER LIGHTLY From Associate Editor Terry Peterson: "I've found out that

Miscellany A.B. Computers L252 Bethlehem Pike, Colmar PA 18915] has
the SuperPET version of PAPERCLIP (9000A) for $60! Woe, I did not find this out
until after shelling out $150 for it...Be Prepared to insist if you talk to A.B.
I asked the salesman there about the SPET versions before I ordered elsewhere,

SuperPET Gazette, Vol. I, No. 14 -238- June/July 1984

and the response was "Duuh. Wazzat?" To my pocketbook's chagrin, I gave up." So,
don't give up. Insist all $90 worth!

Also from Terry: "An undocumented feature of the 6502/6809 Waterloo assemblers:
If you give the assemblers, in response to the filename prompt, a string prefix
ed with "-1" [Ed. The letter "1", folks.] the effect is similar 1x5 including an
'option nolist' within the .asm file. It's very useful." For the uninitiated—
"option nolist" tells the assembler not to generate that long "list" (.1st) file
during assembly.

HARD HARDWARE! Jakob Bennema of the Netherlands writes that while we gave a
few good reasons for "going Commodore" in a recent issue, he has a better one.
In late '82 he drove toward home with a new SuperPET and an 8050 drive, crashed,
totalled the car, zapped himself, and threw SPET and drive out of their shipping
cases. Damage to SPET and drive: none. Heckuva way to make a point, Jakob.
WHY THE *SEQ ON DIRECTORY COPIES? Ever send a copy of directory to disk in
V1.1 with "di disk index" and wonder why the copy of directory you bring into
mED shows a *SEQ after the filename "index"? The same file on directory shows
without the asterisk. What goeth on? Gee, we finally figured it out: The file
"index" is opened, and dutifully includes all files on directory, including— ho
hum— a new file called "index", which isn't yet closed. Golly, if it isn't yet
closed, it'll be *SEQ to show that fact. Then, of course, having properly re
ported itself out of order, it closes. And any subsequent directory call shows
the file with no asterisk. Elemental logic, Watson. Only took us 18 months. Quiz
question: Why doesn't this happen when an old file 'index' is on the directory?

AN INEXPENSIVE MODEM Bob Kobenter of Canada has gone to Siemens AG as a pro
grammer, but reported as he left that the EMP MANUAL MINI-MODEM MM101 , at $85
U.S., did a fine job for him at 300 baud with NEWTERM. Operation is manual, but
he recommends it for those whose dollars won't stretch further.
THE PURLOINED CONTROLS Seems some of you didn't read Gary Ratliff on text
compression in the mED (issue 12) and still wonder why all CONTROLS (ASCII 1 to
31) are deleted from any file brought into mED, edited, and refiled. Well, the
mED uses the CONTROLS in the text compression algorithm, so they cannot be in
the text too. If you really want to keep CONTROLS after editing a file:
Translate all CONTROLS, either to their +128 counterparts in reverse field, or
to symbols you usually don't use, such as backslash, tilde, accent (shifted @),
or up-arrow. Do this in program, and put the translated file to disk. Then edit.
When through, file to disk, and run a program to retranslate back to the origin
al CONTROLS. Since the mED can't generate any reverse-field characters and you
dassn't edit any line with such characters (it destroys them), the +128 counter
part option isn't good. Your best bet is to substitute the characters we note
above, which you can enter and can edit in the mED. It's easy to write and run
the translation programs, to and from. Be sure you don't try this in any version
of the mED which runs in language, which will royally eff the files. Use the mED
loaded alone, or the one which runs in DEVELOPMENT.
A WILTED ROSE We finally got V1.1 software to Loch Rose a month or so back.
Poor fella had it on order from his dealer for two years, and, being delighted,
tried V1.1 microBASIC on some old V1.0 programs— and wilted. These files, in PRG
format, wouldn't run properly. Loch reports he salvaged them by getting them off
disk in V1.0 with a LOAD (PRG format) and SAVEing them to disk (SEQ format); the

SuperPET Gazette, Vol. I, No. 14 -239- June/July 1984

SEQ files, loaded in V1.1, run okay— unless you happen to employ one (of few)
syntax differences which V1.1 doesn't like. We repeat, SEQ files created in V1.0
run okay in V1.1 and vice-versa. Once you get an old file into V1.1 and running,
you can then STORE it as a PRG file. Be warned.
THOSE APL KEYBOARD DECALS The APL keyboard layout, made of thin decals atop
cardboard, still lies above our main keyboard. George Parry writes that you can
actually put the markers on the keys. He did it by removing the keys themselves
with gentle upward pressure and a small tool, and then affixing decals. Note the
decals don't go on the top of the keys, but on the front face— where they are
effectively obscured. If you want them on anyhow, position them with a pair of
eyebrow tweezers; press 'em into place with a Q-tip slipped between the keys.
George reports the keys come off and go back on easily (they do indeed) if you
don't lose the little spring underneath. You can't clear the keyboard contacts
this way; a rubber diaphragm at the bottom of the key tube closes it completely.
So leave the keys alone unless you're all thumbs or out of tweezers.
STOP DOES Loch Rose writes that he notices "a number of Gazette programs in
mBASIC have 'reset : stop' on the last line. Since STOP closes all open files,
the 'reset' is redundant, is it not?" It is. Sorry, Loch. We're conservative,
always close files out of habit, favor stiff collars, hair sofas, Kipling, the
gold standard, the flag, motherhood, a sound dollar, and vote straight Whig.
VALUES FOR SERVICE WATCOM has replied to
QUIT =0
INIT =1
EDIT =2
EXEC =3
ENCODE =4
DECODE =5
ALLOC =6
DEALL0C=7
IDENT =8

Return to Command Processor/Menu.
Initialize
Editor Requested
Execution Requested
Encoding of Source Line Requested
Decoding of Source Line Requested
Add a Source Line
Delete Source Line(s)
Identify Yourself

a letter of inquiry about the var
ious value for the system service
variable SERVICE_ at $32, and to
the left are those values as de
fined by Waterloo.
If any of you bit-twiddlers have
further definitions or examples
of general use to other bit-twid-
lers, send 'em in.

SORTED MEMORY MAP DATA With much help, we've put together two sorted lists
of system routines/pointers/addresses, one sorted by names of routines, and the
second by address. The lists include routines from WATLIB.EXP, FPPLIB.EXP, those
located by Ratliff, Larson, Toebes, Rose, Peterson and others, plus the undocu
mented integer arithmetic routines and a bunch of zero page pointers/addresses
from WATCOM. Each list now exceeds six pages; you can find anything by its name
or address. We've added the jump table addresses to each system routine. To get
a copy (14+ pages), send $1.50 U.S. for printing and postage to Editor, Box 411»
Hatteras, N.C. 27943* If you find errors or omissions, or can further define the
routines/pointers followed by ??, tell us! Don't expect the Holy Grail.
WHAT'S INTEGER? Loch Rose has been waiting for three months for a printer,
but can't get one delivered because of the worldwide shortage of chips— partic
ularly those made by Intel. Undefeated, he sends his notes writ by hand. Latest:
"Terry Peterson pointed out (I, 116) that the mBASIC function 'idx' returns an
integer result, and discussed the consequences when you use the logical operat
ors AND, OR, and NOT with this function. The manual does not say which functions
return integer values, so I checked all of them. No less than nine functions can
return integer values. These seven always return integer values: cursor(i%), pe-
ek(i%), idx(a$,b$), hex(s$), len(s$), ord(s$) and sgn(x). The other two, abs(x)

SuperPET Gazette, Vol. I, No. 14 -240- June/July 1984

and int(x), return an integer value if the parameter is in integer variable.
Thus abs(i%) returns an integer; abs(l) and abs(x) do not. Oddly, int(i%) re-
turns an integer, but ip(i%) does not." The summary is for mBASIC. The same AND,
OR, and NOT problems exist in the other languages with integers. Any lists?
HOW TO GIVE GRANNY A FACELIFT WITH A CARVING KNIFE Well, it's not quite as
dangerous, but Russ McMillan of Madison WI writes: "Here's how to rewrite a dir
ectory header on a 4040 disk and not lose the files: Put a disk with the right
header in drive 0. 'Mount' this disk. Remove it and insert in drive 0 the disk
whose header is to be changed. 'Put' an empty file to drive 0 (e.g.'p zilch').
You now find the disk in drive 0 has the header of the first as well as its BAM.
Validate the disk to correct its BAM, and scratch file 'zilch'. You can guess
how I discovered this." Yup. Tumble into the privy and leap out with a rose.

SUPERPET nicroFORTRAN in SCHOOL This semester, I have been using FORTRAN FOR
A Software-Book Review STUDENTS, written by G.W. Booth, in ray ad-

by Stephen Pace, vanced programming classes. I have found the
Snowflake High School, Box 1100 book to be easy to use on an individualized

Snowflake, Arizona 85937 basis. Each lesson consists of written mat
erial and examples that are loaded from the

example disk. This manner of presentation I found to be a good way for the stu
dents to work with new concepts. A student can modify an example as much as may
be needed until the concept is mastered, unlike a standard textbook, where all
they can do is look at it.
At first I encountered some resistance from my students, who were used to text
books with pictures, charts and drawings. Now that the students have used the
Booth text, most of them quite like it. They all feel that it is an improvement
over the tutorial in the manual that came with the SuperPETs.
The first nine lessons in the text discuss the commands and operations of the
raicroEDITOR. The last fifteen lessons include formatting, read statements, loop/
endloop, until, while, if...elseif...else...endif structures, string operations,
subroutines, sequential files, and relative files.

The problems that I have had with this book are few. I think some students would
appreciate having an occasional 'fun' exercise like programming a game. Some of
my students had a little bit of a problem with the section on commands at the
beginning of book. Several of the commands seem to indicate that quotes are nec
essary when none are actually needed. I hope that an index can be included.
Overall I give the book a very favorable recommendation. The author may be con
tacted at Parkland Composite High School,4630 12th. Ave., Edson, Alberta, TOE
0P0, Canada. [Ed. We chatted with Mr. Booth, the author, after this review came
in. The book contains 25 lessons in 94 pages, plus 15 pages of prefatory mater-
ieal and overview. The author has added an index. Two disks, available in either
4040 or 8050 format, come with the book; the tutorial disk holds 46 programs
tied to the book; the second disk, the answer set. The last lesson sets forth
five major programming projects in which the student must employ what has been
learned. The book and disks may be ordered directly from the author at the add
ress above. For $500 Canadian, schools receive one copy of book and disks which
may be copied as needed within that school. The permission to copy is realistic,
for while Mr. Booth supervises 24 SuperPETs, we know of schools in which one
teacher supervises 90; even at $10 per copy, the price would be prohibitive. Let
it be clear that this book is designed specifically around SuperPET's mFORTRAN.]

SuperPET Gazette, Vol. I, No. 14 -241- June/July 1984

FOR WANT OF A NAIL... ...the battle was lost, and for want of a ha'penny
felt no larger than a pencil eraser, your disk drives

will quit reading and writing. On 4040 and some 8050 drives, you can avoid the
cost and inconvenience of some drive repair jobs.
A major cause of "10/Time Out" messages is bad connections. Living near the sea,
ye ed catches #$! from salt-mist corrosion. Whenever "10/Time Out" appears, we
immediately: (1) slide back and forth (wipe) all IEEE-488 connections. Usually
this alone puts us back in business. If it doesn't, we (2) lift the lid on the
drives and wipe every plug connector in the drive, running 'em back and forth at
least ten times to get firm contact. That usually cures motors that won't run,
R/W heads that refuse to work, and ends device not present messages. A very few
times, we've had to move socketed chips up and down in the sockets.
The simple tricks above take care of about eight of ten disk drive failures. The
rest of them have been traced to a problem we've never seen mentioned anywhere:
badly worn pressure felts. What are they, and where? Something must press the
disk itself downward until it touches or almost touches the read/write head— and
that something is a tiny felt cylinder which rides on the top surface of the
disk. As the felt wears, the downward pressure on the disk decreases until the
read/write head no longer reads or writes reliably. The shiny sections you see
on a well-used disk are buffed by the pressure felt.
How long do the felts last? Under heavy use (6-8 hours a day, five days a week),
for less than nine months. We have to replace ours at least that often. It would
appear that some repair shops never look at them or replace them. Though Steve
Zeller sent his 8050 out for a repair a few months ago, the felts weren't re
placed, and Steve was soon out of business. We sent him spare felts. That solved
his problem. He then recommended we write this article.
Steve found out he could get felts directly from Commodore. If you need them for
Tandon drives, the part no. is 990011. Call Commodore at 215 431 9200 for the
part number on Micropolis drives. Send checks to CBM, 1200 Wilson Drive, West
Chester, PA 19380. The Tandon felts cost $1.30 each (buy a bunch whilst at it!).
Tandon drives have a top-hinged door; so do (!*!) some Micropolis drives which
confine the read-write head in a turtle shell of metal (we can't repair these).
Other -Micropolis drives use a push-down latch at the bottom of the door. These
can be fixed. You can make your own felts if you find utterly clean, dense, in-
strument-grade felt which doesn't shed lint. Pads are about 0.83-inch high (just
over 5/64-inch), including the paper which shields the adhesive on new felts. We
have found that felts a bit overlong are okay (no mars on disk from high press
ure against the R/W head). Use them at your own risk.

If you're game to replace the felts yourself, secure the rare items at the left.
The dental mirror will be found at any good
hardware store, and is the small, round mirror-
on-a-handle with which your cavity-chaser peers
at your wisdom teeth. Get a small one. You need
naptha to clear the old adhesive from the felt
holder. The pliers should have needle jaws some
1.25 inches long. Any hatpin suitable for the
defense of female virtue, even if blunt (hat

pin, not virtue), is fine. If you have a Micropolis drive, you'll need at least

Tools and Gear:
One hatpin (3-inch)
Some naptha or lighter fluid
One small dental mirror
One pair of needle-nose pliers
Two dozen fierce expletives

SuperPET Gazette, Vol. I, No. 14 -242- June/July 1984

four paperclips in place of the hatpin. The expletives will be required in the
quantity specified whatever the drive, for here is what you'll see:

Tandon Drives Micropolis Drives
Side views

Slots 1 2 3

disk
Felt
Pressure spring's*,^

Spring hinge

Nuts

disk ----------
Lower bar helc
spring tensior.

Felt

Use the dental mirror before you do anything else. If you see 1/32-inch or less
of felt below the plastic cup which holds it, your felts are worn. It's not un
common to see no felt at all on a long-used drive. With the circuit board prop
ped out of the way, see if light downward pressure, applied with a wooden tool
against the felt holder to increase pressure, will let the drive read and write.
You may increase the pad pressure on Micropolis drives by moving the top bar
from Slot 3, its as-shipped position, to slots 2 or 1. But even this won't help
if the pad is worn down to the nub. If increased pressure solves the problem,
you know you need new felts.

Steps: After you open the drive and record on paper the circuit-board connec
tions, (1) remove the plastic pressure head. On Tandon drives, you must remove
2 tiny nuts to do this. If you can find a socket to fit, fine; we couldn't, and
so used needle-nose pliers. Note that the studs on which the nuts are threaded
are hollow. Insert the hatpin into the hollow— and then remove the nuts, sliding
them up the hatpin when they are free. You'll never find the nuts if they fall.
On Micropolis drives, there are no nuts. Instead, you'll see a bar lying in a
slot. Lift the bar, turn, and the pressure head will come free— as the lower bar
at the other end of the spring, held in its slot by the spring, drops (oooosh!)
into the works.... Don't let it happen. Rig a Rube Goldberg line and hooks made
from paperclips, to lift and hold the upper bar and spring after you free and
remove the plastic pressure arm (the hook rig must come in two so you can get
the pressure arm fully off— tricky!).

Step (2) is simple. Remove the old felt; clean off the old cement with naptha.
Remove the protective paper from the pressure-sensitive adhesive, and insert the
new felt firmly, (if you make your own felts, Devcon Rubber Adhesive, a clear
yellow substance, holds like a mastiff once dry, but needs at least 30 minuntes
to dry. You must put on two coats because the felt is so absorbent. If you get
any adhesive either on the side or pressure-face of the felt, throw it away.)

Step (3) is a reverse of step (1), except that you must align the felt care
fully over the Read/Write head on Tandon drives. Use the mirror. When aligned,
tighten the nuts, and check again for alignment. Micropolis drives are self
aligning. When finished, check the rig with a scratch disk and a backup.

The sharp of eye wonder how you convert purchased felt to tiny cylinders. Easy.
While you're buying the dental mirror, get a belt-hole punch— the kind with
five or six hollow punches on a wheel, which will make five or six different
sizes of hole in leather. Pick the punch to suit, and punch out a dozen or so
felts. Trim off both ends of the cylinder, for we haven't seen a felt-seller

SuperPET Gazette, Vol. I, No. 14 -243- June/July 1984

yet who maintained a dust-free storage room. Department store felt won't work.
You must have lint-free, clean, white instrument-grade felt. We got some 3/8-
inch thick, which should last us until A.D. 2000 or so.
This sounds about as difficult as it is. Once you've gone through it, you'll be
able to do it without a resupply of expletives. Be sure to return the hatpin,
for you never know when virtue will require defense. Warning: Commodore has not
approved the method, and you proceed at your own risk.
ON CONVERTING PAPERCLIP FILES Having been somewhat bewildered on how to con-

T0 6809 ASCII FILES vert 'CLIP files to ASCII files readable in
the mED in 6809» and having found that others

were equally confused by what the 'CLIP manual does not tell you, we outline be
low how to do it. (Read page 6.5 in the 'CLIP manual first.)
1. Load the ASCII printer version of 'CLIP.

2. Call the file to be converted to ASCII to screen.
3. Command: CONTROL # 8 <RETURN> [Nothing seems to happen]

4* Command: CONTROL o <RETURN> and then go through that long option list for
the printer, accepting all of 'CLIP'S default commands.

5. Eventually, the program will ask you for the filename and disk for the new
file. Give them. The screen file goes to disk— and not to printer— as an
ASCII SEQ file.

6. Leave 'CLIP. Load mED. Get the new file (use CAPS for the filename) and you
will find perfect ASCII files in whatever format you set in 'CLIP.

ON FONT CHANGE, COMMODORE GRAPHICS, Indeed you may decorate your programs
TEXT WITH GRAPHICS, and THUDS with the Commodore graphics fonts from

6809 mode. (Some readers asked.) Shrewd
heads will note the plural "fonts". We suggest you read pp. 68-69 of the System
Overview manual before you go further into this article.
Before- we go on, a warning. In those languages which have an immediate mode, in
which you can PEEK and POKE out of program, font changes come easy. But don't
draw any conclusions from such trials about what'll work in program. Font change
is controlled at $E880-E881, the CRT controller. In immediate mode, you can POKE
a value there and it will remain unchanged. This isn't true in program; to see
what happens, run any program of length in any language, and stuff in some PEEKS
of $E880-E881 here and there. Lo! The values change. To keep from crashing when
you change between WATERLOO and COMMODORE fonts, always switch with the POKEs at

the left. At times, you can switch back without a
first POKE of 59520 and not crash, but then again
sooner or later thee will. Use both POKEs at each
switch between Waterloo and Commodore fonts while
in program.

From Commodore to Waterloo
poke 59520,12
poke 59521,48

or $E880,0C
or $E881,30

From Waterloo to Commodore
or $E880,0C Once in the Waterloo or Commodore font-pair, you

may choose either of two sub-fonts. When you com
plete either of the sets of POKEs at left, above,

you obviously will get one of the sub-fonts by default. You select the sub-fonts

poke 59520,12
poke 59521,16 or $E881,10

SuperPET Gazette, Vol. I, No. 14 -244- June/July 1984

with the POKEs shown at left, below. If you are in 6809 mode, be warned: 1) If
you are in APL and POKE to Waterloo Roman, the

For Waterloo Sub-Fonts keyboard will be a hybrid though the font will
poke 59468,12 j Waterloo Roman be Roman, and, 2) If you are in Roman and poke
poke 59468,14 i Waterloo APL to APL, the keyboard again will be a different

hybrid. If you're not going to use the keyboard
For Commodore Sub-Fonts in program, this is no problem. If you are, you
poke 59468,12 j Pure Graphics may avoid the keyboard problem with a SYS, as
poke 59468,14 I TEXT, Graphics noted on pages 115-116 of Issue 9.

Assume we've poked to the Commodore font from microBASIC. We were in the Water
loo Roman font, and the value of 12 (Poke 59468,12— see above) governs. We get
the Commodore pure graphics font called by that value. You'll find only graphics
characters on the keyboard. You aren't stuck there forever; carefully type: poke
59468,14, even though you can't read 'poke1, and you'll switch to the Commodore
text+graphics font. There, you'll find everything is turned around; graphics are
on the unshifted keys, and characters on the shifted.

When ready to return to the Waterloo fonts, enter the right POKEs (left,above),
and you'll come back— but in APL. Why? The Commodore text+graphics sub-font has
the same value at 59468 (14) as APL does in 6809. The System Overview manual
does not mention these across-font defaults. Obviously, in this case you'd want
to poke 59468,12 to get back to the Waterloo Roman font. We demonstrate all this
vividly in the short program below, which also shows how to eliminate spaces be
tween text lines for good graphics.

100 ! "them.fonts:bd"
105 print chr$(12); : z=255
110 print "
115 print "] J"
120 print " J WATCH WHAT HAPPENS TO THIS BOX AND TEXT]"
125 print "] J"
130 print " j]"
135 print " "
140 if cursor(z) then print "In Waterloo. Next: remove spaces " : call delay
145 call lines_out
150 if cursor(z) then print "Next: Shift to pure graphics " : call delay
155 poke 59520,12
160 poke 59521,16 ! Choose Commodore fonts.
165 call delay
170 poke 59468,14
175 if cursor(z) then print "IN TEXT/GRAPHICS. NEXT: TO WATERLOO" : call delay
180 poke 59468,12 ! Return to lower case sub-font.
185 poke 59520,12 ! Choose Waterloo fonts.
190 poke 59521,48
195 if cursor(z) then print "We're back. Next: get line spaces " : call delay
200 call lines_in
205 if cursor(z) then print " Back to normal line separation "
210 x=cursor(l841) : stop
215 1 **
220 proc lines_out It's quite easy to design your graphics in 6809
225 data 4 >4 0,5 ,5 ,7 ,3 3 ,9 ,7 ,0 mode, using characters which transmute into the
230 loop graphics characters of the Commodore fonts, as
235 read i the big box above demonstrates. Remember, though,

SuperPET Gazette, Vol. I, No. 14 -245- June/July 1984

240 if i=0 then quit
245 poke -6016, i : read i
250 poke -6015, i
255 endloop
260 endproc
265
270 proc lines_in
275 data 4,32,5,3,7,29,9,9,0
280 loop
285 read i
290 if i = 0 then quit
295 poke -6016, i : read i
300 poke -6015, i
305 endloop
310 restore
315 endproc
320
325 proc delay
330 x=cursor(l76l)
335 input "PRESS RETURN TO
340 endproc

that your printer has no idea of what's going on,
and will output ASCII characters, not graphics.
The procedures at left remove spaces between text
lines, put there to make text readable. You may
remove them and put them back (see p. 69, System
Overview manual). Some languages won't let you
use integers above 32767 or hex, so we converted
to negative decimal values at left. Here's the
table showing how we got there:

Location Minus
Hex Decimal Neg.Decimal 64K bytes (Decimal)
E880 59520 -6016 = (59520-65536)
E881 59521 -6015 = (59521-65536)
We urge you to do these POKEs in subroutines or
procedures which you can call from immediate or
debugger mode— for when you STOP a program and

are stranded without spaces it's far
GO 0N",o$ easier to call a routine than to type

in the pokes— and get new eyeballs.

TELECOMMUNICATION FROM THE LANGUAGES Steve Zeller devoted his column, issue
11 (p. 162 ff), to telecommunications

within APL, but found the process too slow for his purposes. He cried for help
from a dedicated 6809 assembly language programmer. Help has arrived; the dedi
cated programmer is Loch Rose of 102 Fresh Pond Parkway, Cambridge, MA 02138,
who has written APLC0M, an assembly language program which allows APL to pass
data to and from the ML module. Loch then wrote BASIC0M, which does the same
for microBASIC. After Steve waxed enthusiastic over APLC0M and ye ed had tried
BASIC0M, we suggested to Loch that he write a universal program which would work
in all languages, so he wouldn't have to develop a different version for the
rest. As we go to press, Loch reports he has the first version up and running.
Why would you want to TC from language? (1) All the repetitive chaff— phone num
bers, logon sequences with a mini or mainframe, your account numbers in a pay-
my-bills scheme, access codes and such— can be put into program so that you need
no longer deal with this mass of trivia; (2) all the stuff you want to upload
and download can be identified and defined before you make a connection; (3) you
can bring data, if you care to, right into the program which will process it.
Don't get the idea you are going to stay on line whilst processing; that would
be too expensive. Instead, think of the time and effort saved by defining what
will do before you do it and by not having to refer to those lists of trivia you
used to thumbtack all over the walls. These programs don't replace terminal pro
grams such as NEWTERM, COM-MASTER and PETC0M, in which you can interactively
chat and browse (as well as transfer files). They shine at repetitive jobs.
The ML modules to do the job are finished; you needn't concern yourselves with
assembly language. You must, however, write a program in language to specify
what's to be done. Loch has provided a demo program in mBASIC which shows, in a
very simple way, how to use the capability. APLC0M is similarly set up. We hope
the effort on UNI-COM is successful. The disk with APLC0M and BASIC0M on it will
be available August 1st. When and as and if UNICOM is worked out, it will be on
the same disk. For copies, send $10 U.S. to Editor, P0 Box 411, Hatteras, N.C.
27943* State disk format: 4040 or 8050! We'll report on UNI-COM next issue. The
instructions for all ...COM programs will be on the disk.

SuperPET Gazette, Vol. I, No. 14 -246 June/July 1984

THUD, CLUNK, CRASH DEPT. Some folks seem to think that if the wings come off
SuperPET, the computer and drives turn into a smok

ing ruin, and you have to buy new ones. We keep getting letters saying, "I tried
so-and-so and crashed; SuperPET seems to be okay, but I won't try THAT again..."
If any harm could come to SPET from a program crash, ours would be a junkpile.
Crash as often as you like; only your ego is dented. Flip to 6502 mode and back;
RESET to program, and go. You don't learn unless you clunk, thud, crash at least
once every session. We encourage Immelmann turns at altitudes of one foot with
this column, in which we hope users will tell us how they knocked out their eye-
teeth— to save others from similar fates.
Ever spend one whole day trying to get an assembly-language program to SYS from
the languages, only to find that while it works fine, you always crash when you
leave the ML module? Clunk, thud. We did. We always use JSR INITSTD_ to start an
asserably-language program, which works fine from menu or in the monitor. But do
not use it in a program which you SYS from language! The language itself initi
alizes 10, and you needn't. We think (not sure) INITSTD_ resets the user stack
pointer and stack, which handles bank-switched calls (in language, there are a
bunch). Anyway, as soon as we took INITSTD_ out, our SYS modules ran fine and
values on the U stack pointer returned from the vale of tears.

A GOOD THUD Butterflies, full moons, and io_status are ephemera— which means
they don't last very long. In the loop at the left, if you're getting a string

from a disk file, you'll find yourself staring at a blank
on eof ignore screen forever after the last line$ comes off disk. The
loop system variable io_status will give you a quick

linput #40, line$ end-of-file signal when you try to 'linput line$'
print line$ at end-of-file. Ignore it and it evaporates— for
if io_status<>0 then quit io_status is a current report. You must catch the

endloop report when it says "end-of-file", for io_status
will change to report on the next operation. The

instruction to QUIT must immediately follow the linput statement, else thou art
in an infinite loop....
SUPERCLUNK Six of you poor devils have ISPUG utility disks with a #*! dumb-
john on it. We wanted to give users a way to quit ALPHASYS when they got trapped
in the program and could not remember the name of the file to be sorted. So we
put a 'quit' on 'q' in, and told the program to JUMP to FINI, a label that wound
up RTS'ing (we thought back to language) when it got that 'q'. We did it in a
subroutine that had its own RTS.... Yeah. The address on the stack for the RTS
was that to return to the ML program from the subroutine, not the final RTS back
to language. If you six don't starve to death waiting to get out of that loop,
send back the disk and we'll put on an ALPHASYS that really will quit. Really.
Moral for dumbheads: if you want to quit an ML program in a subroutine, set a
flag in the subroutine and jump to the final RTS from the main program. Yeah, we
caught it on most of the disks. Blush.
HOW NOT TO MURDER THE EDITOR We had this great program which ran in the mon
itor in mED everywhere, but we always crashed when we left the monitor and tried
to re-enter mED. Of course, we used all of user memory, from $0a00 on up...and
it finally dawned that we'd wiped out those two low pointers in mED which tell
the poor thing it has an empty file. As soon as we changed the ML routine so it
loaded the four bytes starting at $0a00 with: 02 01 02 01, we no longer crashed

SuperPET Gazette, Vol. I, No. 14 -247- June/July 1984

the mED, and returned to it from the monitor happily. As Gary Ratliff noted in
issue 12, starting on p. 188, those two pointers tell mED where its file doth
start and end. If you wipe 'em out, you murder the editor.

DECREMENTING A LABEL?? We won't tell on the poor fella who sent this one in,
but he set up a label with LABEL EQU *, and then did a DEC LABEL, and wondered
why 1) he couldn't find label on his variable list, and 2) why he kept crashing.
Poor thing wasn't decrementing a label at all, but the value at the address de
fined by LABEL, which was (of course) part of his program. Then he tried LABEL
EQU 40 (since 40 was the number he wanted to decrement) and that didn't work,
either, since it decrements whatever is at address decimal 40 down in the zero
page. He finally got going by setting up LABEL FCB 40, which forms a single byte
holding the value of 40, which he can decrement safely. Old hands may think this
is funny, but beginners surely won't.

OOPS, AHEM and SMALL DISASTER DEPT. In issue 13 we published on pp. 217-219
a safe-bank-switch patch based on that

sent in by Terry Peterson. Shortly after, we got a note from Joe Bostic: "There
is a subtle yet potentially disastrous error in the patch on p. 219- The patch
will indeed make interrupt routines in banked memory safe to operate but it will
cause any other routine in bank-switched memory to fail if these routines need
the interrupt disabled when they are called.
"The patch first disables the interrupt (SEl), which is good, but at the end of

the patch it enables the inter
rupt (CLI) even if the interrupt
was originally disabled, which is
bad. The idea is to restore the
interrupt flag to its original
value. This technique can be used
on any 6809 routine that needs an
interrupt disabled but does not
want to change the interrupt flag

when it is finished." Joe is absolutely right. We should have caught that one—
and didn't. Terry comments that while the problem noted won't happen very often,
it will happen. Use the patch above. Ah, well; another uuunk for the boobook.
A LENGTH PROBLEM IN RELATIVE FILES Jerry W. Carroll of 21735 Ybarra Road,

Woodland Hills, CA 91346, notes a problem
when you amend a record taken from a relative file and put it back into the disk
file. Suppose we have a fixed file of 10 bytes (very small, but it saves space

here). If we try to store ten periods in record 1, we
1234567890 Byte count find that the 10th is shoved into record 2, as shown
........ Record 1 at left. Why? Jerry and ye ed puzzled over this, and

Record 2 concluded that you must leave room in the disk file
for the 10th character, which is a CR. The interpret

er in microBASIC shoves a CR in at position 10 whether you like it or not, and
then prints the 10th character in record 2. record 2 happens to have a record
in it, kiss it goodbye, for the 11th character again is a CR, which wipes out
record 2. You'll not see this if you send your records to disk in numerical or
der, since Record 2, when written, overwrites the "lapped-over" character from
Record 1. But you will see it if you write Record 2 first, and then write 1.

With that background, ask what happens if you linput a short a$ ('John') from
record 2, change a$ to 'Joan' , and refile a$ to record 2. Will it work? Sorry.

safe bank switch equ *
pshs cc •

f Save copy, interrupt flag
sei •* Disable regular interrupt
stb $0220 •» Change 'bank in progress'
stb $effc • Change actual bank used
puls cc 5 RESTORE INTERRUPT FLAG!!!
rts

SuperPET Gazette, Vol. I, No. 14 -248 June/July 1984

Though 'John' is only four bytes long, the record from disk with 'John' in it
will be the fixed length of ten bytes. If you then replace 'John' by writing, in
program, "a$(l:4)=lJoan1, and print the revised a$ to record 2, you erase record
3! Why? Gee, you added a CR to a ten-byte string. If you follow the example in
the first paragraph, you'll see why. The solution sent by Jerry: truncate a$ to
one byte less than the record length, and refile a$(l:9). You can be shrewd and
clever and make 'Joan' into a$(l:5)— which also works.

LINPUT and INPUT bring in two different strings from any record. Assume we have
no commas in the strings above. LINPUT brings in 'John', five spaces, and a CR,
for a total length of 10 characters. INPUT 'John', and string length is 4. If we
should make a$ equal to 35 X's and LINPUT it, the string length will be 35, but
only 34 X's will be in that record plus the CR.

In short, LINPUT brings in the string, any spaces, and the CR at end-of-record.
INPUT brings in only the string— minus terminal spaces and minus any CR. Bear
the difference in mind when you form and revise REL records. The program below,
taken from one of Jerry's, will demonstrate all this if you modify and run it.
To illustrate what we said in issue 9, p. 134 about using TERMINAL to test REL
files, this one is set up so you can see what happens in the file on screen. If
you'd rather have the file on disk, change line 130. You'll have to hit RETURN
on the INPUT or LINPUT lines of the program if you use the terminal as the file.

100 ! reldemo:bd. A demo of a string length problem in relative files.
110 ! PRINT STRING INTO RECORDS 1 THROUGH 3
130 print chr$(l2) : open #2, "(f:35)terminal", inout
140 for i=1 to 3
150 print #2, rec =i, "John" ! Try "if i<>2" and string "rpt$('.',35)"
160 next i
170 call printt ("First Pass, ") ! Print the file to screen as a REL file.
180 ! MODIFY RECORD 2
190 linput #2, rec =2, a$
200 a$(l:4) = "Joan" ! Substitute a$(l:5) and see what happens.
210 print iff2 , rec =2, a$(l:34) ! Remove the (1 :34) and use plain a$.
220 call printt ("Second Pass, ") ! You must hit RETURN to input the lines
230 close #2 ! from the Terminal screen.
240
250 proc printt(file$)
260 for i=1 to 3
270 linput #2, rec =i, a$
280 x=cursor(801+n) : print file$; "Record";i;"= ";a$;" length =";len(a$)
285 n=n+80
290 next i
300 endproc

A COnunon Business Oriented Language [Ed. Mike is a professional programmer,
by Michael R. Cook and an old hand at COBOL. We asked him

2045 Cambridge Drive B-21 to send a short introduction to the lan-
Lexington, Kentucky 40504 guage and to stand by for questions. He

(606) 252 0917 says the Waterloo manual on COBOL is so
complete you can learn the language with

no other references. Considering its thickness, we're glad to hear it!]
COBOL was created primarily for three reasons; 1) Portability, 2) Maintenance,
and 3) Productivity. The development group consisted of computer manufacturers,

SuperPET Gazette, Vol. I, No. 14 -249- June/July 1984

major business users and the U.S. Dept, of Defense (the primary user of the fin
ished product). Portability would benefit all users as conversion costs would be
minimized, and in this COBOL has been reasonably successful. The expectations of
productivity and ease of maintenance were naive, however. It is well known that
data processing shops across the country are looking for ways to increase pro
ductivity and that maintenance of programs consumes over 70% of a typical shop's
programming resources. In recent years, the benefits of structured programing
(as taught by Paul Noll or Edward Yourdon) in increasing productivity have been
proven.

Self-documenting code is considered by many as COBOL's main strength, but the
fact is (as in any language) that this depends on the programmer's abilities.
In hands of experience, COBOL can be highly readable and understandable, while
the novice may produce code that rivals APL's cryptic nature. The primary weak
ness of the language is not its verbosity but that it allows an obscure style of
coding (e.g.; GO TO, ALTER) to be used, unlike PASCAL, which doesn't support
such statements. Experience also helps you to eliminate unnecessary coding that
only confuses the subject (e.g.; ' = ', not 'is equal to') and create meaningful
data names (1ws-line-counter1, not 'ln-ctr'). The mCOBOL manual does an excell
ent job of introducing the novice to a clear coding style, so follow it!
File processing and reporting are COBOL's true calling and its primary use (un
less you are programming real-time applications) and so most ISPUGers may well
wonder of what use the mCOBOL interpreter will be. Suggestion: Let mBASIC handle
the user interface in your applications (its true calling) and write some re
ports and file maintenance programs in mCOBOL, and learn a new language! Using
mCOBOL will give you a better idea of the differences between languages, their
strong and weak points (all have them!) and knowledge of a language that still
commands a strong position in the job market.
COBOL is celebrating its 25th anniversary and is the D.P. industry's most common
language and favorite whipping boy. I suspect that until the true fourth gener
ation languages appear (and radically change D.P. in the process), COBOL will
continue in its role as the Rodney Dangerfield of languages (no respect!), keep
ing the tapes and disks spinning and the financial reports on the desk of the
director of finance.

I hope that this has given you an interest in exploring the language and not the
desire to scratch the COBOL PRG file from your language disk! I welcome any sug
gestions that you may have for future articles.

AJJATOMY OF MICROBASIC [Ed. Gary wrote the original ANATOMY in one part, far
PART 2 too long for one issue. To help those who may not re-

by Gary Ratliff, Sr. member details of Part 1, we print below a commented
215 Pemberton Drive mBASIC program which shows program lines and what the

Pearl, Mississippi 39208 VARIABLE table holds, before and after a RUN. Most of
the points covered in Part 1 are so summarized. Note

the location and nature of the VARIABLE table, which resides a few bytes above
the top of the program itself.

[in the program below, find a few abbreviations: LoL indicates Length of Line in
bytes; Bptr means Back Pointer in bytes to the start of line. The simple program

at left generates the code shown below. mBASIC lines start at
10 a%=10 $0a01. Let Gary take it from here.]
20 b%=20

SuperPET Gazette, Vol. I, No. 14 -250- June/July 1984

30 a%=a%*b% Let me point out the similarity between mBASIC lines and the
method of text compression for the mED. The chain of forward

and backward pointers is similar but for the addition of a line number in mBASIC
which is not used in the mED. The lowest (and illegal) line number of 0000 shows
the start of program, while the highest and equally illegal FFFF shows the end
of program lines. A null program thus is: 04 00 00 03 04 ff ff 03, much like a
null workspace in the mED, which is 02 01 02 01. The leading byte (02 for mED)
is the byte count or length of line (LoL), which for a null mBASIC program must
become 04 for the two extra bytes in 04 00 00 03. First, the program before RUN.
Address: START of BASIC Lines

LoL Bptr | LoL Line 10 Real Var. (continued)
;0a01 04 00 00 03 I 09 00 0a 00

a at Loc. 01 — numeric 10 Bptr | LoL Line 20 (continued)
;0a09 01 95 8d • 0a 08 ! 09 00 14

Var (b) at 05 — numeric 20 Bptr |! LoL Line (continued)
;0a11 00 05 95 8d 14 08 | 0c 00

30 Var. at 01 (a) = var. a at 01 times Var. (continued)
;0a19 1e 00 01 95 00 01 96 00

b loc. at 05 Bptr
;0a21 05 0b

End of BASIC lines
04 ff ff 03

LoL A separator/pointer,
04 00 (continued)

not defined, fitted
between program and
variable table. Bptr
;0a29 00 03

START of Variable Table
Integer a, length of 1.
2 bytes reserved for val.
41 61 00 00

Integer b, length of 1,
(continued)

41 62

2 bytes reserved for
dynamic values.
;0a31 00 00

! End of Variable Table before RUN. Note that the values
of Variables 'a' and 'b' do not appear in the Variable
table. See below what happens when line 30 uses them.

To right, the variable!
table after a RUN:

;0a29 00 03

START of Variable Table:
Integer Variable a, length 1, now has
value of $c8, or dec 200 | Int. var. b, length 1, has a
41 61 00 c8 j 41 62

table val. of dec. 20
;0a31 00 14

The vertical bars above 11 j" indicate the end of an
mBASIC line or the end of a VARIABLE Table definition.

The chaining of the lines by byte count means that the forward chain may easily
be traced to the end of mBASIC, where FFFF will always be found. This suggests a
very simple program to find mBASIC end-of-program.
membeg equ $20 ; pointer to start of mBASIC forces direct addressing mode.

ldx
leax
loop

ldb , x

membeg
1 »x

load the pointer.
if raembeg_ holds OaOO, then mBASIC starts at $0a01.
get length of line byte (the first will be 04).

SuperPET Gazette, Vol. I, No. 14 -251- June/July 1984

ldy 1 ,x
cmpy #$ffff
quif eq
abx

endloop
abx
tfr x,d
addd #??
swi

; one beyond this is the line number value.
; when we find this, we're at end of mBASIC lines.
; add length byte to location to find next length byte.
add final 4 bytes to skip past 04 ff ff 03 to next xx.
take end found and transfer to D register for math,
value indicated by ?? must be inserted to find values
wanted in variable table or elsewhere.
register dump; address of desired value is in D register.
Y will contain FFFF to verify end of program.
X will contain pointer to byte immediately following the
03 backward pointer of line 04 ff ff 03.

Those who wish to pass parameters between ML modules and mBASIC programs must
investigate what happens when arrays, floating point, strings and functions are
used and learn where values or pointers to such items are to be found. To do
this, remember the following table, which summarizes the way Waterloo identifies
the variables and user-defined functions in the 1 st byte of the VARIABLE table.
Using this data, we'll generate some functions and give an example of how to
locate their addresses.
Bit Number: 7 6 5 4 3 2 1 0 Meaning:

0 0 0 Bytes 0-4 Floating Point or Real Numeric
0 0 1 reserved for length String
0 1 0 of variable name. Integer Numeric
1 0 0 5 bytes can hold a Real or Floating Point Function
1 0 1 a maximum character String Function
1 1 0 count of 31. Integer Function

You will find the values defined above in the VARIABLE tables below, after we
record the small program at left, and then RUN it. Some additional +128 tokens

in the program lines now become clear: $86 shows a numeric
10 def fna=1 value, integer or real; $84 indicates a string value; $d1
20 def fna%=1 identifies a function. We're now able to read almost every
30 def fna$="one" character in the program and in the variable table. Here

is what we see before we RUN:

Start of BASIC LoL line 10 d1 identifies function
;0a01 04 00 00 03 j 0c 00 0a d1
Reserved for ? ? at loc. 1 — Numeric 1 Bptr j
;0a09 00 00 00 01 95 8d 01 0b |

LoL Line 20 function at loc. 5 in Variable Table
;0a11 0c 00 14 d1 00 00 00 05

— Numeric 1 Bptr j LoL line 30 function
;0a19 95 8d 01 0b | Of 00 1e d1

9 ? at loc. 9 = string, len 3 "0"
;0a21 00 00 00 09 95 84 03 6f

"n" "e" Bptr | End of BASIC lines start of separator
;0a29 6e 65 Oe ! 04 ff ff 03 I 04

SuperPET Gazette, Vol. I, No. 14 -252- June/July 1984

end of separator

;0a31 00 00 03

START of Variable
Numeric fn is 100, len 0001
Binary 1000 0001 is 81.
Real Fn a reserved
81 61 00 00

3 Table
Integer fn 110 len 001
Binary 1100 0001 = $c1
Int. Function
c1

reserved
named a bytes

;0a39 61 00 00

String fn is 101, len is (
Binary 1010 0001 is $a1.

Str Fn a reserved
a1 61 00 00

)001

12 bytes in Variable
0c Table

Here is the Variable Table after a RUN. It contains the ADDRESSES at which the
functions will be found, apparently so they may be executed when called.

End of Separator { Variable Table (Note system addresses)
jNum Fn a at address Oa 05 i Integer Fn

;0a31 00 00 03 i 81 61 0a 05 i c1
a at 0a 11 j Str fn a at Oa 1d | 12 bytes in Variable

;0a39 61 Oa 11 J a1 61 Oa 1d j Oc Table

We now have a handle on some tokens, the way lines are stored, the location and
contents of the variable table, know where values or addresses can be found, and
are aware that values of variables appear both statically in lines and dynamic
ally in the variable table. We can identify both the types and lengths of all
the different types of variables, and have a program means of getting to the
variable table to find either the values or the addresses we want— at least in
part. Next issue, we'll look at dimensioned variables.

INPUT FROM WATERLOO Too late for issue 13, we received a long letter
Comments and Clarifications of comment on material in issue 12 from WATCOM

Systems. We print a summary below, referenced to
the articles in issue 12. Attend with care to the notes on SIS from language!

USE of RND in mFORTRAN In I, 184, Stan Brockman noted the pattern in RANDOM
numbers generated in mFORTRAN. Waterloo comments, "The argument to RND is a seed
which is used to generate a pseudo random number. The seed value is not updated
whenever the function is called. To generate a sequence of pseudo random numbers
successive invocations of RND should involve the previously generated number. If
you pass the same value to RND on every invocation, the sequence will not be
random. In fact, as you guessed, the only element of randomness is the time-of-
day clock. This won't be very random if the function is invoked at regularly
spaced intervals. The value returned by RND should be used as the next argument

to random. In fact, as you guessed, the only element of
randomness is the time-of-day clock. This won't be very
random if the function is invoked at regularly spaced
intervals. The value returned by RND should be used as
the next argument to RND. The following (see left. Ed.)
is an example of the correct way to use RND.

GET # FROM TERMINAL in mBASIC In I, 185, we noted the unusual behavior of a
GET from terminal in mBASIC, which is highly dissimilar to a GET from keyboard
or a plain GET in mBASIC. A GET # from terminal will accept up to 80 characters

RAND0M=SEEDVALUE
LOOP

RAND0M=RND(random)

SuperPET Gazette, Vol. I, No. 14 -253- June/July 1984

before RETURN is pressed, and will (1) return the ordinals and (2) print the
'gotten' characters to screen. Waterloo comments: "The terminal device is a buf
fered device. MicroBASIC requests the operating system to read a record from the
terminal when GET is encountered the first time (mBASIC calls the system routine
GETREC_). The operating system does not return a record until the user presses
the RETURN key. During this time, mBASIC is blocked from executing. The user can
...move about the screen and edit any line.... It is only when the RETURN key is
pressed that mBASIC resumes execution. It now has a record of up to 80 charac
ters. The GET # statement returns the first character in this record. Subsequent
executions of GET # cause the second, third, etc. characters...to be returned.
This continues until all the characters in the record have been returned....
"The keyboard device, on the other hand, is not buffered. This is the device
that a microBASIC statement such as GET A uses.... The same effect as GET A can
be achieved if the OPEN statement refers to the device "keyboard" instead of
"terminal".... You can think of the terminal as a record-oriented device and the
keyboard as a character-oriented device."
LOADING MACHINE-LANGUAGE SUBPROGRAMS In issue 12, p. 185, we showed two ways
to load ML modules for use in the languages— one from main menu; the second from
the monitor in language. The program printed indeed worked okay that way— BUT we
now know there's a booby trap a-waiting if you try it in the monitor. Waterloo
comments that the monitor alternative (loading the ML module after the language
is loaded) "will not succeed...for any interpreter except possibly microBASIC.
"To understand why, let us describe how memory is set up by the interpreters
which use the microEDITOR as the primary means of entering source text. As soon
as the interpreter is loaded into memory, it does some initialization. In par
ticular, it allocates 4 buffers at the high end of RAM (see below)...If you slip

Pointers/Buffers: Typical Address: Buffer Bytes:
HighBound =$A0 Highest address for source $7E6E (added by Ed.)

code/symbol table.
N_Buffer =$A2 Filename buffer. $7E6F 40
S_Buffer =$A4 Command save buffer. $7E97 120
Sub_Buffer=$A6 Substitution buffer. $7F0F 120
Re_Buffer =$A8 Regular expression buffer. $7F87 120
into the Monitor after loading an interpreter and dump the locations...you'11
see the five memory pointers...If you load a machine language program anywhere
in this range then you would be lucky if it survived during normal editing. When
a program is run, these memory locations (shown above) are used for other pur
poses. When return is made to the microEDITOR, after execution, these buffers
are reallocated."
We got away with monitor loading of the modules printed in issue 12 because we
did no editing. So be warned: in mPASCAL and in mFORTRAN, the methods following
are the only safe ways to load an ML module to SYS from those languages:

1. Load the ML module from main menu or from monitor at main menu; then
load the language. (Here, we assume you or the module reset MEMEND_ to protect
the module.) All necessary pointers are set when the language is loaded.

2. Alternatively, if the language has been loaded, leave it with a "bye",
and load the module from menu (monitor included); then use program RESET to

SuperPET Gazette, Vol. I, No. 14 -254- June/July 1984

We tested exhaustively, and found both methods above are reliable. Nothing else
is— including a RUN in the language— which seems to reset the pointers Waterloo
mentions, but inevitably allows the ML module to be overwritten.

*stringtest:f The comments above do not apply to microBASIC. The method
character c shown for loading ML modules in issue 13, page 219 ff*, is

reliable. Those who wish to explore the problem are advised
c=rpt('*',9000) to run the little mFORTRAN test program at left after they
end reset MEMEND_. It forms a giant string of 18,000 asterisks

(yes, 18,000— not 9,000) which inevitably overwrites memory
above MEMEND_ as reset unless you use one of the two methods above to force the
operating system to allocate and protect the memory space above MEMEND_ in mFOR—
TRAN and in mPASCAL.
DETERMINING THE START OF AN ML MODULE Both Waterloo and Loch Rose commented
on ye ed's use of the LIST (.1st) file to determine where the language portion
of an ML module starts (see p. 186, issue 12). Waterloo says "There is a less

awkward way to determine a starting address. The pro-
;previous code... grammer simply uses the XDEF statement. After linking a
zdef ml program, just peruse the ".exp" file for the label(s)
ml equ * in question (see example, left). The exports file con-
;following code... tains all externally defined symbols and their addres-
;....... ses. This would include "ml" in the above example."

We didn't do it that way for two excellent reasons: (1)
We've had a lot of questions on "what the heck is the .1st file for and what is
all that stuff in the file?" and wanted to show specifically how to use it, and,
(2) we often forget to XDEF and need addresses. If you don't know how to use the
.1st file, you'll never get them. The XDEF statement is handy once you've debug
ged your code and know what addresses you want to define and later use.

HEY, GARY, ARE YOU AWAKE?? Did you notice last year when plain Gary Ratliff
suddenly became Gary Ratliff, Sr.? Well, he has become Gary Ratliff, Sr.^; our
coding expert has successfully transmitted some DNA code, and had little sleep
after the dash to the maternity ward (five wrong turns). It's a boy. Anent his
article on text compression in the microEDITOR (Issue 12, p. 188), Waterloo says
"It may surprise you to learn that the Editor, in fact, knows absolutely nothing
about source program management (i.e., encoding of keywords, variable names,
constants, etc.). The editor and interpreter are bundled together in a cooperat
ive manner...the interpreter handles the allocation of memory and encoding for
source lines. The EDITOR requests that the interpreter decode and place in a
buffer ($400) each source line that it wishes to examine. The EDITOR expects a
string composed of 0 or more characters to be placed in this buffer. The string
is terminated with a NULL ($00)...It does not matter to the EDITOR how a line is
represented in the workspace or in a file...it deals with...the decoded string
placed in the buffer.... It is this strategy that allows us to use the exact
same editor in the four language interpreters. Each interpreter maintains its
own scheme for encoding of the source program [emphasis added] and the EDITOR
need not be aware of what it is." Okay, Gary. After you change the diapers, you
can go back to sleep.

return to language. (Again, we assume a reset of MEMEND_ at menu).

SuperPET Gazette, Vol. I, No. 14 -255- June/July 1984

AM OVERVIEW OF FORMAT CONTROL IN FORTRAN [Ed. Many a letter has arrived on
By Stan Brockaan format control in mFORTRAN, one of

11715 West 33rd Place the matters known best to the Cab-
Wheat Ridge, Colorado 80033 ots, Lodges, and God. We asked old

FORTRAN hand Stan Brockman for a
summary and overview on the matter, which knits the fragments into a whole.]
There are two modes of Input/Output (I/O) when using microFORTRAN (mFOR) on the
SuperPET: (1) data format under your control and (2) default format under con
trol of the interpreter [the last is called List-Directed (LD)]. The mode in
which you control format I'll call FORMATTED I/O; the default mode, LD format.
Formatted I/O is a particularly powerful feature of FORTRAN. It lets us specify
our own rules when we read, write, or print data; we needn't accept the defaults
built into mFORTRAN. Page 151 of the manual covers FORMAT statements tersely.

List-Directed Input and Output
LD READ statements specify default format and take one of two general forms:
'read,x,...' or 'read*,x,...'. (The asterisk means 'default format', or 'for
heaven's sake, don't use any FORMAT statements on this READ!'). The data type of
the variable (character, integer, real) determines how the data are stored in
the mFOR default format for that data type. You find the data type, of course,
at the start of program or subroutine, where you list variables by their type—
hence the phrase, "List Directed". See manual, p. 143-
These default, LD READs assume that data will be in fields delimited by commas
or by a CR at end-line. Let's look now at the default format which LD gives us.
Character variables are assigned all printable characters which you enter from
the keyboard, but minus any leading blanks or spaces. In short, they are left-

justified, and padded to the right with blanks— if any.
In this article, I use the carat to show blanks or
spaces in variables and in records, as at left. If you
LD print two character records (c="judge", d="meant"),
with print, c, d, you create a single mis-spelled word,
"judgemeant", which you may separate with right-padded
spaces or by concatenating with a space. If you READ

several character variables at one time, separated by commas, any blanks preced
ing commas become part of a variable, but blanks after the last entry do not; if
we READ,a,b,c and entries are: “NOW*,“THEN'',“NEVER“<CR>, the character variab
les stored are: N0W“, THEN*, and NEVER.
Numeric variables LD handles differently. It trims both leading and trailing
blanks from integer or real variables, however many spaces you may leave between
the commas in a reply to a read statement. Suppose we are asked to enter an in

teger "i" and a real "a" as at left, and respond with the two
To READ, i, a values shown. Despite the blanks we leave, the records will
we respond with: contain none. But— saints preserve us— integers and reals LD
“12“,“144.346 print on output in two entirely different ways.

Integers always print in a 7-space zone. Since 32767 is the maximum integer,
six spaces are enough for value plus sign; the additional space serves to separ
ate the records, however we print them. At left, I illustrate with integer val-

Your char, input is:
"“““What prints?“"
Record is stored as:
What prints?“

SuperPET Gazette, Vol. I, No. 14 -256- June/July 1984

(index to print zones)
123456712345671234567

2 "12345
'12345
‘-*300

"300

ues. The index line shows you the 7-space print zone;
we print three integers on the first line at the left
with "print i, j, k". If, instead, we print each as a
separate line, we get three rows, in which the tens,
hundreds, thousands, etc. are aligned by column. Such
a format is easy to read and understand. If only the
LD format for reals were compatible!

Real values are shown in a different LD format. We're limited to a maximum of
eight significant digits, a sign and decimal; one space separates all values.
We thus find an 11-space print zone when we LD print reals, whether we LD print

them in columns or in rows. The decimal points aren't aligned,
and any integer we may print looks forlorn and out of place (see** .12345678

**12.345678
“*12345.678
A A A A A 2 ̂

(* integer)

the final '12', at left). Last, we find reals of more than eight
digits are both truncated and rounded. A value of 12.3456789 is
seen as 12.345679. In sum, LD format is simple but often isn't
easy to read— especially when scientific format prints in a 16-
space zone with eight significant digits.

Formatted Input
To format input you must describe 1) where and how big the data fields are to
be, and 2) the types of data in each- field of the record. Your description is
a format specification, which is made up of a sequence of edit descriptors,
or EDs. Before we describe the EDs, remember the following:

Numeric Data: Embedded and trailing blanks are translated to zeros. Leading
blanks are ignored, as they are in LD input. It's good practice to right-justify
numeric data so that blanks aren't converted to unwanted zeros. Decimal points
aren't permitted in data sent to integers; if they're present, you get an "Input
Conversion Error." In contrast, LD input allows, but truncates at, decimals. All
decimal points are included in the count of a formatted field.
The main difference between LD and Formatted input is that a format statement—
instead of commas— subdivides the input record; it does this with edit descrip
tors (EDs) which define and describe the fields. Commas, if present, are read as
commas in alpha (character) fields, but cause errors if read in numeric fields.

I list the EDs at left. The 'A' descriptor reads
characters and stores them in the same form as the
input record. 'I' describes a numeric field whose
characters are to be translated and stored as in
teger data. 'F' describes real values; 'E' formats
reals on output to scientific format. 'X' you use
to ignore characters. See manual, pp 152-156, for
a fairly complete but terse description of EDs,
unfortunately without many examples.

ED: Used for:

A Alphabetic data
(character)

I Integer data
F Real data
E Real data,

Scientific Format
X Ignore characters
FORMAT statements can appear anywhere in a program after you have declared you"
variable types; you may use those statements throughout your program. The EDs
above, when strung together, form a format specification, which can take three
different forms— two closely related. The first form has been used the longest

and the most often; we now examine it. The READ
First Form of Format: line at left says to read a record from the key-

read 10, d,k,y board, to use format statement #10 to translate

SuperPET Gazette, Vol. I, No. 14 -257- June/July 1984

10 format(a8,1x,i5,1x,f6.3) the record, and finally to assign the resulting
♦index: 12345678 values as formatted to d, k and y. Assume that the

d = "‘‘TES'T'T" *char record to be read is "*TEST*1*,**78*,*12345". Re-
k = 780 *int member that the carats represent blanks. I've add-
y = 12.345 *real ed an 'index' line to show the character count.

FORMAT 10 is the road map; let's take it ED by ED.
"a8" says "assign the first eight characters to the character variable 'd' and
store them as characters"; "1x" says "ignore one character" (the comma); "i5"
says "translate the next five characters into an integer, store it as such, and
assign it to the integer variable 'k'"; "1x" ignores another comma; "f6.3" says
to read six values, assume a decimal point three digits left of the last value,
and to translate and store the values as real data assigned to variable 'y'.
Now consider what is assigned to the variables. The character variable "d" is
equal to the input "~TEST*1*" because— unlike an LD read— the leading blank is
not discarded. Integer "k" is zero-filled on the right while its leading blank
is stripped, hence "78*" becomes "780". Real "y" is given the value 12.345 when
read (not the value of 12345.0 as if LD read) despite the absence of an actual
decimal point— because the ED "f6.3" commands an implied decimal point three
places to the left of the rightmost, least significant digit in the entry— if
and only if there's no decimal point in the entry.

On input, both the "E" and "F" EDs operate in the same way: both describe the
width of the field to be read and both emplace a decimal point if none is pres
ent in the field read. Yet, if a decimal is present, it takes precedence over
that implied by the ED. If either "f5.4" or "e5.4" is used to read a field of
"12345", the result is the same: "1.2345" is stored and assigned to the associ
ated variable. The same EDs, if used to read the field "123.4"> will store and
assign the value "123.4"•
Now, a word of caution. The actual length of the last field of an input record
should be equal to or greater than the field width specified in the ED. MFOR
inflexibly insists that it receive all the characters it was told to expect, and
if it doesn't get them after a couple of tries, it will pout, sulk, and then an
nounce an error, "Specified field width is too big," and quit. With that warning
I end the discussion of the first form of FORMAT statements.
The second form of format specification uses character variables to contain the
format EDs. You must define the character variable with an appropriate string
of EDs. You may then use it with any input or output statement elsewhere in the
program. Note the character variable "fmtl" in the demo program below and its
assigned ED values. They're identical to the format spec we use in #10, above.
We can use "fmtl" as shown below. This is the second form of FORMAT statement.

It performs exactly as does format #10, and
Definition of character var. in "Second Form", left, reads from the ter-
fmtl = 1(a8,1x,i5,1x,f6.3)1 minal (default unit 5) or from the keyboard.

At this point, examples 23-26 in the manual
Second Form of Format: should be easier to understand. You can use
read(5,fmt1) d,k,y the manual examples (Third Form) if you wish
read fmtl, d,k,y but the third form is clumsy and cannot be

re-used elsewhere in your program, while the
Third Form of Format: first two forms can be employed as you wish.
read(5,'(a8,1x,i5,1x,f6.3)1) d,k,y
read '(a8,1x,i5,1x,f6.3)1, d»k,y You find another advantage when you handle

format with a character variable; you can

SuperPET Gazette, Vol. I, No. 14 -258- June/July 1984

substitute one such variable for another as format changes. The character varia
ble "how", for example, may in one place equate to "fmtl", in another to "fmt2",
and in a third to "fmt3", etc. READ, WRITE, and PRINT statements employing "how"
may thus handle a number of different formats.

Odds and Ends in Output
Next, we look at some of the seemingly mad things which occur on output in mFOR,
and at a few output odds and ends we haven't discussed.

For starters, let's output the character variable achar = '12345' to the screen.
If you say 'print, achar' or 1 print*,achar' or 'write(6,*) achar', five charac
ters appear on screen. But— if you say "print 'a5', achar" or print 'a', achar",
you clear the screen and print only '2345'! What goes on??? What happens to the
1? Why does the screen clear? Well, hey! you've just run into a Carriage Control
Character (CCC)! That missing '1' is a CCC to clear screen and home the cursor,
and we printed it on column 1, the only column of the screen where CCC's have
any effect. Hurry, read the manual, p. 147. You'll find five leading characters
which control screen output in column 1. You can avoid unwanted output surprises
by printing a space " " at the beginning of a formatted output; the space says
"print this record where the cursor is." If we say: print ',a5", achar, we no
longer lose the character 1 and we don't clear the screen. Each output line or
record needs its own CCC (remember that a blank— " "— is a CCC).

You should use the Carriage Control Characters (CCCs) only with formatted out
put, where you can control the first character of a record. CCCs work only with
the SPET screen, for most printers don't respond and simply print them as normal
characters. Now that you know what the first character can do, you'll understand
why all LD output prints a blank or space as the first character of any output
record. If LD didn't do this, every 1, 0, + or - you send could muck up output.
LD format automatically insures that you get single-spaced screen output.

Don’t overlook the slashbar '/'. When inserted in a format statement, it causes
a CR on output and substitutes for a comma where used in the format statement.

You can be trapped by the width of the output field demanded on the "E" ED. That
field must be at least the sum of 7 plus the number of digits which will appear
after the decimal point in the field. Example: suppose the number "-123.45" is
to be output in "E" format and that all five digits are to appear in the output.
The width of the field must therefore be 12 (7+5); the ED must be "E12.5". You
will print "-0.12345E+03".

A couple of final notes about formatted output: 1) The EDs may specify field
sizes that are larger than required; you thus easily make sure that the space is
large enough for an unexpectedly large value and you separate data values with
"white space" (of course, the 'X' ED will do that, too). 2) You can specify the
number of times a given ED (or a group of EDs within parens) is to be used with
what the manual calls a "repetition factor," the effects of which the manual ne
glects to explain. Shown at left, below, is an example of a "repetition factor".

It prints data values on the same line or
character b(3), fmtl record for the number of repetitions called
fmt1="(' ' ,3a7)" for in the format spec. The "3" at left, in
do i=1,3 "3a7", is the repetition factor. If we take

b(i)="Char u//cnvi2c(i) the "3" out, we find each "Char n" prints on
enddo a separate line or record, not in one row.

SuperPET Gazette, Vol. I, No. 14 -259- June/July 1984

print fmtl, b You must use repetition factors with the 'x'
♦printout shows below: ED. While 1x ignores one space and 3* ignor-
Char 1 Char 2 Char 3 es three spaces, x alone will not work.
There's a shorthand way to output character data. You may employ the "a" ED by
itself, with no explicit statement of width of field. For character variables
only, this "a" shorthand accepts an output field exactly as long as the string
itself— no more, no less. It is an LD character output, of sorts. Under certain
circumstances, "a" may be used as an ED on input, too, but the problems in doing
so seem to me greater than the advantages, and I don't recommend it.
I've neglected the "T" formats (p. 156, manual), but I suspect that by this time
you understand the fundamentals and can easily find out how to use them.

EVERYTHING YOU WANTED TO KNOW ABOUT THE SERIAL PORT... and were afraid to
ask is found in a new WATCOM Technical Note, The SuperPET Serial Port, written
by Jack Scheuler. We just got our copy, and are delighted. It's typeset, written
clearly, and covers everything from the 6551 ACIA and its registers through the
vagaries of wiring the RS232C for modems and printers and other computers. You
will find an example of how to set and employ the ACIA and port in language, a
demo of how to handle interrupts, and a set of assembly language routines you
may use as building blocks to write a device driver or terminal emulator. Excel
lent reference work. $20 U.S. or Canadian. From WATCOM, 415 Phillip St., Water
loo, Ontario, Canada N2L 3X2.
TO BE OR NOT TO BE : REVISED LANGUAGES Those who previously got infoWAT or

A NEW OPERATING SYSTEM? its sister publication WATNEWS, since
replaced by one publication, WATCOM

News, have seen the survey sent out by WATCOM Systems, which asks if you're in
terested in Version 2.0 of the various SuperPET languages, and how much you'd be
willing to pay. So far, WATCOM has mailed about 1000 copies of the survey, and
has received 90 replies— a near-fatal record of indifference, since WATCOM is a
commercial enterprise which must pay its own way, having no income from the Uni
versity and no subsidy from government.
Though we bought SuperPET with software bundled into the price, Commodore isn't
involved in V2.0. WATCOM's payback must come from us. We've seen different fig
ures on the cost to develop a V2.0 language, ranging from $50,000 on up. A total
of 29 people have said they'd buy V2.0 mBASIC at $250 per copy. Gee; WATCOM's
return would amount to $7250. Anyone for charity?

So, with this issue we make one last grab for V2.0. A survey form is attached.
Fill it out and send it back to WATCOM. If enough of you respond, we might get
one or more V2.0 languages. If not, well... Before you can respond, however, you
should know what V2.0 will do that V1.1 software won't; see the summary in the
pages which follow. Last, consider compilers. We understand that compilers for
WATCOM BASIC and mPASCAL may soon be available on the IBM PC (versions of those
which run on IBM VM/CMS and VAX/VMS); but clearly we won't see compilers on SPET
until or unless V2.0 languages become available, because WATCOM won't attempt to
support two different sets of compilers, one for V2.0, and another for V1 .1 .

Schools comprise the single largest group of SuperPET users; one with 40 SPETs
can't afford to buy 40 copies of one V2.0 language, let alone 40 copies of all.

SuperPET Gazette, Vol. I, No. 14 -260- June/July 1984

First Column:
First Year Fee BASIC

COBOL
FORTRAN

Right Column:
Fee in Subsequent
Years

WATCOM offers a solution
to IBM PC users (the data
at left is representative
but details may well dif
fer for SuperPET). For the
fees shown, you get 1) one
copy of software and a li
cense to run on a certain
number of machines for one
year, 2) updates of soft
ware, 3) WATCOM support by
hotline or letter, 4) man
ual updates, and 5) WATCOM
news. You get one manual,
and can buy more. If you
figure cost per machine
per year, you'll find that
it runs from $35 per PC
per year with 10 machines
to $16 per PC if you have
100 and use APL. The other

languages cost less. It may cost more to scrape bubble gum off the chairs. If
you need more information, write WATCOM Systems, Inc., 415 Phillip Street, Wat
erloo, Ontario, Canada N2L 3X2.

Quantity APL Pascal WATFILE

10 1350 350 1100 300 1300 350
20 2150 550 1700 400 2000 500
30 2800 700 2200 600 2600 650
40 3450 900 2700 700 3150 800
50 4000 1000 3100 800 3650 900
100 6500 1600 4800 1200 5700- 1400
200 10600 2600 7400 1800 8800 2200
300 14100 3600 9600 2400 11400 3000
400 17200 4400 11600 2800 13600 3600
500 20500 5000 13500 3500 16000 4000
1000 34000 9000 21000 5000 25000 6000
2000 58000 14000 30000 8000 38000 10000
3000 78000 21000 42000 12000 51000 12000

You have the essential facts in hand. Please fill out and mail the survey form.
* * *

OS-9 : A UNIX-TYPE OPERATING SYSTEM We recently had a call from Gerry Gold
of Toronto, the head of the SuperPET Chapter in TPUG, about making the OS-9 op
erating system available for SuperPET. OS-9 was written by Microware Systems
Corporation in collaboration with Motorola, to give the 6809 an operating system
which takes full advantage of the chip's capabilities and instruction set. It
never really caught on because manufacturers jumped to the 16- and 32-bit micro
processors which came along about the same time.

OS-9 nevertheless has a good reputation. MICRO magazine for June and July, 1983*
carries an excellent two-part article on it by Stephen Childress; and another
in November, 1983. While OS-9 seems flexible and powerful, and a fair amount of
software is available (it runs on the Radio Shack C0C0), we don't know how much
of it might run on SPET, how the software would be converted to Commodore disk
format, or what hardware/software changes will be involved.

To implement OS-9 on SuperPET, our Toronto friends must 1) obtain permission and
license from Microware, probably for a fee, and 2) write the code which adapts
it to SuperPET. The effort will not be worthwhile unless the work can be sold
to SuperPET users. Gerry guessed that a sale of at least 200 copies of OS-9, as
adapted, would be necessary to defray costs. We won't say more until we have
more facts.

* * *
SUMMARY OF V2.0 CAPABILITY We compress below the major features of the V2.0
languages, as they run on the IBM PC and certain mainframes. Understand that any
V2.0 for SPET, if released, will be limited by SPET's architecture. APL: Random
array file system similar to Sharp's. Quad FMT for report formatting from Sharp;
extended string search/substitution; verification of input numerics with Quad VI

SuperPET Gazette, Vol. I, No. 14 -261- June/July 1984

SuperPET Q uestionaire

Version 2.0 of the WATCOM languages, APL, BASIC, COBOL, FORTRAN and Pascal
have been produced for other computer systems. We would like to get some feedback
from SuperPET users on whether or not a SuperPET version of WATCOM languages is
desired, and if so, which of the languages would be most useful in this context.

As part of our commitment to support SuperPET users of our languages, we would
like to be able to offer new and exciting programming tools. However, it is important to
know how many people would like which products and at what price. Recent products
such as the 6502 Development System, PIP and the Terminal Emulator have had low
response and we have not recovered the costs of development. That's why feedback is so
important. We need to know what you want and how many of you want it.

By filling out this form, you will help us in determining the future of WATCOM
product development for the SuperPET. Thank you.

1. Have you filled out and returned this form before?______________________________________

2. Do you personally own one or more SuperPETs? How many? ___________________________

3. Do you currently employ one or more SuperPETs at an educational institution or
other facility? How many?___

4. Do you use the SuperPET for business (_____), education (_____), or development (_____)
(check applicable ones)?

5. How often do you use the following WATCOM products?

APL

BASIC

COBOL

FORTRAN

Pascal

Editor

6809 Development System

6502 Development System

PIP (disk/file utilities)

Terminal Emulator

Often Seldom Never Don t Have It

V I .1

V I.1

V1.0

V I.1

V l. l

V I .1

V l.l

6. Would you be willing to purchase version 2.0 of:

Yes No Reason__________________________________

A PL (U.S. $ 2 5 0) ____________________ ______________ ____________________________

BASIC (U.S. $ 2 5 0) ____________________ __

COBOL (U.S. $250) ___

FORTRAN (U.S. $ 2 2 5) __________________________________

Pascal (U.S. $ 2 2 5) ___

Editor (U.S. $ 1 2 5) __

The prices quoted above are typical for quantity 1. New documentation is included
with the software.

7. Would you be interested in multiple-copy licence and maintenance contracts for any
of the above? (See details below)__

8. We are considering producing a User's Guide specific to the SuperPET. What sort of
information do you think would be most useful? ___

9. What other products or enhancements would you like to see from WATCOM? (Please
describe) ___ ______

10. What are your comments on the WATCOM products to date? (a) Software, (b)
Documentation, (c) Support

11. Please send me more information on:

Name: ___ Please mail this form to:
Title: ___ WATCOM Products Inc.,
C o m p a n y :___ 415 Phillip Street,
Address: ___ Waterloo, Ontario,

C A N A D A N2L 3X2

Attn: Jack Schueler

nnd forming of characters strings to numerics, Quad FI; error trap and handling
with alternates, events, event messages, and event simulation (from APL2); work
space transfer fuctions; automatic workspace loading for applications in which
the user has no knowledge of APL; multiple statements on one line; user-defined
collating sequences to sort char arrays by different char sets; user can lock
defined functions; major increase in speed of execution of primitive and user-
defined functions; boolean, integer, and floating point numeric types with more
efficient use of workspace; Quad MEMALLOC lets user allocate memory for PEEK,
POKE, SYS. Quad CURSOR provides absolute control of cursor and senses location.
■BASIC: Formatted I/O with INPUT USING and PRINT USING with debit/credit/float
ing dollar, asterisk fill; free format structured control (for...next loop on
one line— Yetch!); block labels on structure statements to quit from more than
one level without flag (YAY!); short and long precision floating point; settable
print zones; renumbering and move of subset of a program; optional traceoff and
traceon in debugging; logging of terminal I/O to a file; LIST displays workspace
time, date, name; LOCAL variables and arrays within functions and procedures;
new matrix functions for sorting; mat inverse added; new trig functions COSH and
L0G10; lower/uppercase translation; string replacement and translation.

COBOL: Supports most of ANS COBOL ('74)» level 1 of modules Nucleus, Seq I/O,
Relative I/O, Table Handling; parts of level 2 in above modules; plus full sup
port of PERFORM, STRING, and UNSTRING verbs; improvements in speed and diagnos
tics; bugs fixed. No extensive new features.
FORTRAN: More closely adheres to FORTRAN 77. COMMON and DIMENSION statements
added; char, support to FOR 77 standard; REAL and ATAN2 added; variable defini
tion check optional; subprogram recursion no longer allowed; "A" format code re
vised to FOR 77 standard; char variables of fixed size, declared with length at
tribute. Existing programs affected by last item.
PASCAL: Faster. Proc and function names can pass as parms to other proc and fn.
File random access improved, UPDATE opens for both I and 0; SETNEXT sets next
file element used; APPEND proc appends to previous file; "else" clause added for
default in CASE operations; pseudo-random number generation.
MicroEDITOR: Line split; line join; new metachar "%#" substitutes for line num
ber, allowing line numbering in workspace; "exit" substituted for "bye" (YAY!);
get and put no longer change current filename (YAY!); current filename on the
screen. We assume without confirmation that revised mED runs in all languages,
nnn

(C) 1984 000 THE APL EXCHANGE 000 STEVE ZELLER
uuu
Late last year, I described how difficult it was to interact with a host compu
ter from APL via the serial port (Vol. I No. 11, p. 163). I could see various
applications that would enhance the usefulness of APL, but was frustrated in
carrying them out. I concluded that only a ML routine would be fast enough to do
the job. Loch Rose agrees. He has developed and is using (from mBASIC) some
nifty code to do it! He kindly sent along his routines, documentation, and some
examples in APL. I altered the APL code a bit and used Loch's ML routines, with
the results described below (see the separate article, this issue).
Loch's strategy is built around two ML routines and a 2K buffer that live at the
top of the APL workspace. The first sends a character string (80 characters or

SuperPET Gazette, Vol. I, No. 14 -262- June/July 1984

less, followed by a <CR>) to the serial port. The routine then "listens" until
it either detects an incoming character or the waiting time exceeds a limit you
have specified. The APL cover function for this is PUT_SERIAL, shown below. If
the waiting time (time-out) parameter has been exceeded, you can assume that you
have a problem at the serial port (properly initialized, modem turned on, etc.).
A fairly long waiting time, such as 20 seconds, works well for some commands;
a host computer typically takes its time to consider your request before sending
characters back. When the host does respond, characters arriving at the serial
port are placed in the buffer.
Loch's second ML routine extracts characterts from the buffer under three condi
tions: (1) the buffer is full, (2) you have received "Return" characters (up to
five can be specified at one time), and (3) the wait time exceeds a maximum you
specify. (You may PEEK to determine the cause.) The APL cover function for this
ML routine is found below as GET_SERIAL. We initialize the serial port (at 1200
baud in this example) with INIT; SET_PR0MPT may be used to set the return char
acters used by GET_SERIAL. Loch also provides a terminal facility which is not
described here but is available in the sample WS.

SERIAL W A IT \ t hUAIT2
1200 96 0 20 1

VISITED]V VPUT S E R IA L W V
C 0] R «- I N I T P0RTPARMS ;X C o] R ^ PUT SERIAL MSG ;□10 iN
c l] -K 3*N*-pP0RTPARMS) / ERR C 13 QIO+Q
C 2] OpPORTPARMS 0SYS 29952 c 2] MSG<-((N*-80lpMSG)*MSG) ,QW[13
C 3] SET_PR0MPT Q A V tU lO + lO] [3] MSG □POKE 1 2p30M47+0,N+1
[-*■ 1+./?♦-1 [*+] R*-&WAIT1 QSYS 30363
[5] ERR:'WRONG NO. OF PARAMS1 VGET S E R IA L IU ^
[6] R*-0 [0] R •*- GET SERIAL \N

VSET P R O M P T L Y [1] R<-\Q
c 0] SET_PROMPT CHARS iQ lO ;N\PROM PTSl 2] -K0=N +W A IT2 QSYS 30087)/0
c 1] aich-o [3] R+OPEEK 1 2p30529+0 tN - l
c 2] AM-p,CHARS
[3] PR0MPTS*-5p0AV[0]
[*+] (P R O M P T S l , C H A R S) □ POKE 1 2p30197 30201

I decided to use these routines to accomplish two tasks: 1) to log onto a host
computer automatically, and 2) to interactively bring data directly into the APL
WS from the host. In the first task, I specify: a) the message to be sent out
the serial port, b) the message (or part of it) expected back from the host, and
c) the number of time to look for the correct return message before you decide
that something has gone wrong. An APL routine to prompt for this information
is shown below. It stores the logon procedure in three global variables. To save
space, I use character strings rather than matrices.

VBUILD PROCLUlV
L 0] BUILD PROC lANS
[1] n BUILDS A "PROC" FOR LOGGING ON A MAINFRAME
[2] bMESSAGE+LREPLY*-''
[3] LTRIES+-\0
C *+] S I : ' E N T E R : MESSAGE TO SEND TO HOST'
[5] MESSAGE+tMESSAGE .0, ATCNL
[6] 52:*ENTER: DESIRED REPLY TO MESSAGE*
C 7] AR E P L Y + L R E P L Y ATCNL

SuperPET Gazette, Vol. I, No. 14 -263- June/July 1984

C 8] S 3 '.'ENTER: NO. OF TR IES TO FIND REPLY'[9] tTRIES+ATRIES,U
[10] S4 :'MORE (Y / N) ? '
[11] ■ + (~ A / (A N S + E)e 'Y N ')/ S *
[12] +('Y'=UANS)/S1
[13] 'DONE'

To represent the sequence of commands, consider the following hypothetical table
as an example:

Message to Send Response No. of Tries
AT OK 2
AT E0 OK 2
AT DT9991234 CONNECT 10

LOGON 10
logon me . PASSWORD 5
cryptic DONE 5

The first three commands are modem-specific (HAYES). After checking to see if
the modem is turned on, the commands turn off the local echo and initiate auto
dialing. If the modem responds with "CONNECT" then the host computer is on-line.
This example assumes an ASCII system which requires a <CR> to get things start
ed. These initial steps can be slow on some systems, so the APL program looks up
to ten times for the proper response. Next in the table is a logon command, fol
lowed by an entry password. The character used to determine the end of a message
in the buffer is a <CR>. Since the host may send a empty line or two before any
message, or a line containing a message we do not expect, the number of tries is
set to five. I don't completely search each response string from the host; in
APL it simply takes too long. Instead, I just check to see if each character of
the correct reply is in the response (the order could be entirely different).
(For this reason, take some care in choosing replies.)
Once you have initialized the serial port and your procedure has been built, you
may employ DIALUP to log on the host automatically. The relevant messages and
replies are pulled out of their respective strings with the help of NEXTLOC, and
CHECK_SERIAL loops for the correct response.

VDIALUPLtnv
[0] DIALUP ihIliI2iNliN2
[1] ftROUTINE TO DIAL UP HOST COMPUTER AND "LOGON"
[2] I'*-I1'*-I2+Q
[3] S1'M0=N1-I1 NEXTLOC MESSAGE)/0
[*+] -K0-PUT_SERIAL £MESSAGElIl+\~l+Nll)/ERRl
[5] I1+I1+N1
[6] S2:-*-{0-N2-*-I2 NEXTLOC &REPLY)/0
[7] -K0 = A27?I£S[I+-I+1] CHECK_SERIAL A R E PLY lI2+\~ l+N 2])/E R R 2
[8] 0 OpGET_SERIAL
[9] I2 + I2 + N 2
[10] -*-51
[11] ERRl:'MODEM/HOST O FFLIN E1
[12] -+R*-0
[13] ERR2:'ERROR ENCOUNTERED DURING LOGON'
[14] R<-0

SuperPET Gazette, Vol. I, No. 14 -264- June/July 1984

VCHECK_SERIALIEN
[0] R + NTRY CHECK_SERIAL MSG
C l] r CHECKS SERIAL PORT FOR MESSAGE
[2] I + l
[3] ShW*-RESP*-GET_SERIAL
[4] HR<-*/MSGeRESP)/0K
C 5] - (N T R Y > I+ I+ 1)/ S 1
[6] OK:

VNEXTLOCtUW
[0] R <- START NEXTLOC MESSAGE
[1] nGETS LENGTH TO NEXT LOCATION OF <CR> IN STRING
[2] R+-1* ((STARTMESSAGE) eb lC N L) /1 pSTART MESSAGE

Note that a great deal of looping goes on: programs written in other languages
probably would result in better performance. APL, however, is well-suited for
the next task— in which we bring data from the host into the WS in a simple,
flexible way. Now that we're logged on, assume that a host program gives us ac
cess to the data. Next, assume that this program prompts for more input with an
ASCII "?". Finally, assume that the host software allows us to print a series
[in this example, GNP, when we give the command: P GNP (in uppercase ASCII)].
The host then responds with the series name and with the data. Our strategy is
to send a command to the host and then to collect all the characters returned
until the next prompt. This function is performed in APL by TALK, which employs
PUT_SERIAL, GET_SERIAL and REASON. The latter checks to see if the last return
from GET_SERIAL is caused by the receipt of a prompt. If not, we collect more
data from the serial port. We remove nonnumeric characters from the response
with CLEAN; and the result is returned as a numeric vector.

vm£[Q]v
[0] RESP «- TALK MSG
[1] RESP*- \0
[2] -*■(0-PUTJ5ERIAL MSG)/NOANS
[3] 51: RESP*-RESP tGET_SERIAL
[4] HO=REASON-Q IO)/S1
[5] -K)[6] NOANS: 'NO RESPONSE'

1REAS0NIU]V
[0] R «- REASON ;□10
[1] R+QAV\UPEEK 30205+DTO-0

VCLEANLQlV
[0] R *■ CLEAN DATA
[1] rREMOVES UNWANTED CHARS FROM STRING BEFORE CONVERSION
[2] DATA+-(DATAe' .0123456789') /DATA
[3] R*-tDATA
Are we ready? The sample session below shows how to converse with the host from
the APL WS. After we first get the prompt, the ASCII command to print a series
is sent to the host and 61 characters return. CLEAN converts them to floating
point data and stores them in the APL variable, GNP. Matters are not always so
simple, however. For example, a valid variable name may contain numbers (e.g.,
GNP72), or two data points may be separated by a <CR>. (Loch's routine strips
out linefeeds.) But it's a start!

REASON RETURNS ONE OF THREE VALUES
0 - BUFFER I S FULL
255 - TIME OUT
1 - EOT CHARACTER RECEIVED

SuperPET Gazette, Vol. I, No. 14 -265- June/July 1984

UAVxQMARK

SET_PROMPI QMARK
pDATA+TALK ' * VT*»

* V T *
61

DATA

VT* 3,171.500 3,272.000 3,362.200 3,436.200 3,550.100

pGNP*-CLEAN DATA
5

GNP
3171.5 3272 3362.2 3436.2 3550.1
nnn

6425 31ST S T . , N . W . , WASHINGTON, D. C . 20015 U . S . A .
uuu
FASTER BT AN ORDER OF MAGNITUDE... In issue 13, p. 234» we printed a note
about handling PRG files with LINPUT, and said it beat a GET hollow. Associate
Editor Terry Peterson went to work and rewrote the Waterloo patch for mBASIC we
published last issue, which ran in 31 minutes. Terry's rewrite runs in 2.5 min
utes, using LINPUT. Meanwhile, ye ed did it a different way with LINPUT, and got
a patch which runs in 133+ seconds (2.2 minutes). Please observe that a straight
copy of the mBASIC interpreter from disk to disk, using the mED's COPY command,
requires 3 minutes 23 seconds— without patching. When we said LINPUT handles PRG
files with dispatch, we meant it. Those who want a copy of both revised patches,
please send a self-addressed stamped envelope to the editor. Curious, Waterloo?

64

REACHING WATCOM : Goodbye infoWAT & WATNEWS And hello WATCOM News, which re
places both former publications above. Those who subscribed will receive WATCOM
News instead; subscription is $10 U.S. in the U.S. or Canadian in Canada, for
one year; send checks or money order, not cash, to WATCOM News, 415 Phillip St.
Waterloo, Ontario, Canada N2L 3X2. Address any communication regarding Waterloo
software to WATCOM Products, Inc. at the address above. Note change from the old
address on University Avenue. Do not write the University of Waterloo!
Prices, back copies, Vol. 1 (Postpaid), $ U.S. : Vol. 1, No. 1 not available.
No. 2; $1.25 No. 5: $1.25 No. 8: $2.50 No. 11: $3.50 No. 14: $3-75
No. 3: $1.25 No. 6: $3-75 No. 9: $2.75 No. 12: $3.50
No. 4: $1.25 No. 7: $2.50 No. 10:$2.50 No. 13: $3.75
Send check to the Editor, P0 Box 411, Hatteras, N.C. 27943. Add 30% to prices
above to cover additional postage if outside North America. Make checks to ISPUG

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$
APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP

(A non-profit organization of SuperPET Users)

Name: Disk Drive: Printer:

Address:__
Street, P0 Box City or Town State/Province/Country Postal ID#

[] Check if you're renewing; clip and mail this form with address label, please.
For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check payable
to ISPUG iji jjLS. Dollars. DUES ELSEWHERE: $25 U.S. Mail to: Paul V. Skipski,

Secretary, ISPUG, P0 Box 411, Hatteras, N.C. 27943, USA.
SCHOOLS: Send check with Purchase Order. We do not voucher or send bills.

SuperPET Gazette, Vol. I, No. 14 -266- June/July 1984

This journal is published by the International SuperPET Users Group (ISPUG), a
non-profit association; purpose, interchange of useful data. Offices at PO Box
411, Hatteras, N.C. 27943- Secretary, ISPUG: Paul V. Skipski. Editor, SuperPET
Gazette, Dick Barnes. Send membership applications/dues to the attention of Mr.
Skipski; newsletter material to the attention of Dick Barnes, Editor. Super
PET is a trademark of Commodore Business Machines, Inc.; WordPro a trademark of
Professional Software, Inc. Contents of this issue copyrighted by ISPUG, 1984,
except as otherwise shown; excerpts may be reprinted for review or information
if the source is quoted. Members of ISPUG are authorized to copy the material;
TPUG may copy and reprint any material so long as the source is quoted. If you
send inquiries, enclose a self-addressed, postpaid envelope (4 x 9.5 inches,
please). If you submit material for the Gazette, enclose a suitable return/reply
envelope, postpaid. Canadians: enclose Canadian dimes for postage. See enclosed
application form for membership dues. The Gazette comes with membership.

For all outside the U.S.: All nations members of the Postal Union offer
certificates good in the postage of any other country for a small charge. The
Union includes most nations of the world.

FIRST CLASS MAIL

SuperPET Gazette
PO Box 411
Hatteras, N.C. 27943
U.S.A.

First-Class Mail
in U.S. and Canada

