
If we are going to get compilers for the SuperPET
languages, it seems obvious we're going to have to
write them ourselves. So, let's be about it. John
Toebes, resident genius, has offered to start with

a compiler for microBASIC— if he can get some help in disassembling microBASIC
first. He could do that by himself, but it will take too much time. So we ask
those of you who can handle assembly language to pitch in and help. Send your
name to the Editor, at PO Box 411 » Hatteras, N.C. 27943- We'll put John in touch
with you, and arrange to break the job up into small pieces, so no one is over
loaded. The rest of the story goes like this: no volunteers, no dissassembly, no
compiler. (See separate note, this issue, on a PASCAL compiler.)
<xx>c<><xxxxxxxxxxx>

ARE YOU REDMARKED?
Look at the mailing label on this issue. If, underlined in red, you find a note
that your membership has expired, this is your last issue. Please renew now if
you're going to renew at all. Check the 'renew' block on the form, last page,
and either mail the form with your address label or send us a copy.
0<XXXXXXXXXXXXX><>C><XXXXXX>0<XXXXXXXXXXXXX><X><C><>CxX>00><XXXXX><XX>
JACKPOT!! APL CHARACTER SET Some 30% of all ISPUGgers use the 8023, and we
FOR COMMODORE 8023 PRINTERS have long hoped that some creative genius would

develop a way.to print the APL character set on
that printer. Well, Delton P. Richardson of 4199 Old Bridge Lane, Norcross, GA,
30092, has done it. Delton reports: "I use Steve Zeller's bit-mapped graphics
method, and use the same 8x10 characters, and his support, character definition,
and dump functions. I am very pleased (with the help of the Gazette) to have an
APL printer... My only problem is that I don't know how to avoid sending a car
riage return within one function, which causes a few dots to be printed at the
very end of each line— a minor inconvenience." Printed below is a reproduction
of Delton's small character set as it comes off his 8023. We suspect his routine

might handle the 4023, but from tests we
know it will not handle the 4022. Those
who want a copy of his character set and
of all functions can get it on disk. We
have added his material to the ISPUG APL
Character Set disk announced last issue.

Order 8050 format from Editor, P0 Box 411 * Hatteras, N.C. 27943, or 4040 from
Secretary, 4782 Boston Post Road, Pelham, N.Y. 10803. Send $10 U.S. to ISPUG.
Those of you who already have the disk: send it back with return postage and a
good mailer. We'll add Delton's stuff and return the disk to you. The character
set printed above is small to save space; Delton's WS also prints a larger set.
The quality of the original is excellent; it doesn't reproduce as well above.
Gee, all we need now for the full and happy life is a spreadsheet for SuperPET
which employs all of the upper 64. Anybody up to writing one?
LATE FLASH Some folks who have the FX-80 printer and who got the ADA 1800
interface are having problems getting 5 volts from the printer to the 1800. We
have a note from Reg Beck on precisely how to do it. Send a SASE. We'll send
back a copy of Reg's note, which we've also put on the APL Character Set disk.
<xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx>o<xxxxxxxxxxxxxxxxx>
PATCHES! PATCHES! mBASIC, mFORTRAN Prof. Dr. Friedrich Stummell of Johann

Wolfgang Goethe University in Frankfurt
sent us a note about a bug in V1 .1 mFORTRAN, for which Waterloo had issued a
corrective patch; in some programs, a small array was treated as having more di-

• ■) < < = >] V A * - r , + ./<b 1 2 3 4 5 6 7 8 9 (I) x : \
- « ± 01 c _ v a \ o ’ D i T o * ? p r ~ 1 u u D t c <-•--*> -
♦ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z { - O $ * j

SuperPET Gazette, Vol I, No. 13 -207- April/May 1984

40 ! microFORTRAN patch: fort_j)atch2:bp
50 dim a#(43)
60 data 5,421,231,100,106,100,45,20,236,228
70 data 52,6,236,248,4,189,176,96,237,228
80 data 174,98,48,2,175,98,32,232,-1
90 data 69,408,29,-1,69,445,0,193,10,-1
100 data 73,250,247,-1,-1
110 open #2, "disk/1.FORTRAN,PRG", input
120 open #3, "disk/0.FORTRAN,PRG", output
130 ! End of preamble. Remainder is
140 ! same for mBASIC and mFORTRAN patches.
150 x=peek(86)*256+peek(87)+4
160 y=peek(x)*256+peek(x+1)+1
170 poke y,0,0
180 mat read a%
190 i%=0 : j%=1 : kj6=1 : 156=1
200 loop
210 for j%=j% to
220 for k%=k% to 512
230 get #2,x%
240 print #3,chr$(x%); ! SEMICOLON
250 next k%
260 k%=l%
270 next
280 x%=i.%+l%
290 for k%=k% to
300 get #2,x$
310 print #3,chr$(x%); ! SEMICOLON
320 next k%
330 i.%=\%+l%
340 loop
350 get #2,x%
360 print #3,chr$(a^(i#)); ! SEMICOLON
370
380 k%=k%+l%
390 until (a%(i#)=-l%)
400 : j%=j%+int(k#/513)
410 if k%=0 then k%=l%
420 until
430 on eof ignore
440 loop
450 get #2,x%
460 if io_status=2 then quit
470 print #3,chr$(x$); ! SEMICOLON
480 endloop
490 close #2 : close #3
500 stop

k$=mod(k$,513)

mensions than it really had; the
interpreter stopped execution and
issued an error message. We were
about to print the patch which
corrected that error when info-
WAT arrived with a new mFORTRAN
patch (see left). The new patch
not only corrects the array error
noted above but also gets rid of
the display bug noted in issue 11
on page 169 (factor of 10 error
in large decimal displays). We've
patched mFORTRAN and have tested
a bit; the bugs seem to be gone.
Below is a test program from Dr.
Stummell which shows the bug in
unpatched V1.1. The test program
runs okay after you patch.

program test_mfortran
real b(5>9)

do i=1,5
do k=1,9
b(i,k)=10*i+k

enddo
enddo
call srwrite(b(l,1),45)
end

subroutine srwrite(x,n)
real x(n)
print
do i=1 ,n
print,x(i)

enddo
end

Unpatched, V1.1 treats 'b' as
though it had 5x5 dimensions.
Please don't rush to patch,
but read on. You just might
create a horrid mess.

First, DO NOT
won' t work.

patch V1.0. It
Patch V1.1 only.

Second, V1.1 mFORTRAN, as re
cently sent to some by ISPUG,

is not patched. We shipped the disks as received, and did not have the patch at
that time. You get the pleasure of copying the patch and waiting 39 minutes for
it to run (instructions on how to patch, below). Warning: the first ten ISPUG
Utility disks shipped contain a "fort_j>atch:bp", which is the early patch issued
by Waterloo to cure the matrix problem only . If the filename on the disk shows
"fort_patch2:bp", you've got the one above. We suspect no harm'll be done if you

SuperPET Gazette, Vol I, No. 13 -208- April/May 1984

run patch2, above, after manning plain "patch", but strongly recommend you patch
straight V1 .1 mFORTRAN (and not the version you've already patched), just to
be on the safe side. Only ten of you face the problem. Last, don't scratch old
V1.1. Who knows when another patch may come along, or if we'll later find a bug?

MBASIC NOW CHAINS! The same issue of infoWAT prints a patch for mBASIC which
rids it of its inability to pass array (awright, matrix!) values when chaining.

The program, from line 150 to the
40 ! microBASIC patch: mbasic_patch3:bp end, is IDENTICAL to the mFORTRAN
50 dim a%(33) patch above (from line 150 to the
60 data 24,30,39,-1 end). In different words, delete
70 data 26,182,0,-1 lines 40-140 from the mFORTRAN
80 data 54,40,221,-1 patch above, and substitute the
90 data 55,346,158,70,48,1,18,159,72,158,72 lines at the immediate left. We
100 data 159,74,111,132,48,6,18,159,76,-1,-1 took both programs straight from
110 open #2, "disk/1.BASIC,PRG", input disk after we'd patched and had
120 open #3, "disk/0.BASIC,PRG", output tested, so there shouldn't be any
130 ! Copy mFORTRAN patch from line copy errors. Yes, mBASIC CHAINS
140 ! 150 to the end. matrix values. For a test program

see p. 122, No. 9, which we ex
panded for larger matrices and more of 'em, and sent to printer, terminal, and
to disk— all okay. But tests were limited by time, so don't scratch old V1 .1,
whether or not patched with "mbasic-patch2", until experience shows this latest
version is clean and serviceable.

Don't rush to patch; you might cause problems. Instead, sort out who has done
what, with which, to whom: First, there are three existing patches for mBASIC:

Patchl was published in Vol.1, No. 5. P* 32.
mbasic_j>atch1 Bug. Don't use. It's buggy. DO NOT USE IT. Patch2 is found
mbasic_patch2 Use alone. in Vol. I, No. 6, p. 38, and cures the prob-
mbasic_j>atch3 Use alone. lem of a CR after 79 characters. All V1 .1

disks recently sent out by ISPUG are patched
with patch2. Patch3 is the patch printed above. It may be run on straight V1 .1
microBASIC, as issued by Commodore, or on mBASIC patched with patch2. DO NOT
use any of the three patches on V1.0 mBASIC. Okay, that's not easy to follow,
so we print below a summary of what flies and what the wings come off of.

Flies: Flies: Flies: Superthud:
V1.1 as issued: V1 .1 from ISPUG V1.1 you patched Any V1.0 with
patched with: (has mbasic_jpatch2) with mbasic_patch2: any patch, or
mbasic_j?atch2 add mbasic_j>atch3 add mbasic_patch3 V1 .1 with patchl
mbasic_patch3 (mBASIC patches in about 31 minutes, mFORTRAN in 39 or so.)

Whew. In copying, WATCH THOSE SEMICOLONS! Proof carefully. Since some APL and
PASCAL types are illiterate in microBASIC, but everybody can use the mED, here
is how to enter, save, and run the patches and to how to get a new language disk
with the modified languages on it, in one pass, with one COPY operation.

First, load mBASIC; then enter the mED with: edit <RETURN>. Enter the patches.
When proofed, save 'em to a good disk with: p mbasic_patch3:bp (or whatever)
<RETURN>. The disk the patches are on we now call the PATCH disk. Take it out.

Then load in drive 1 the OLD V1 .1 language disk or a good copy; protect it with
a no-write tab. Put a new disk in drive 0; copy disk 1 to it. You have two ways:

SuperPET Gazette, Vol I, No. 13 -209- April/May 1984

1) if your drives will BACKUP with: g ieee8-15-D0=1 given at command cursor, do
it that way. But if your drives belch READ ERROR on backups, then, 2) NEW disk 0
with: g ieee8-15.NO:lan_j>atched,lp at command cursor. Then copy disk 1 to disk 0
with: g ieee8-15:C0=1. Either way, you now have a copy of the old V1.1 language
disk on drive 0— call it the NEW LANGUAGE disk. Take it out, and stick the PATCH
disk in drive 0.

Load a patch into mED in microBASIC with: g fort_patch2:bp (or whatever). Take
out the PATCH disk and stick the NEW LANGUAGE disk back in drive 0. Then hit
SHIFT/RUN. The mED will transfer control to mBASIC; the patch runs. The new,
patched version of the language will overwrite the old version in drive 0. When
the patch program is finished, repeat the process for the other language. You
now have a completely patched, new language disk in drive 0, and you haven't
had to copy any single files, one by (yawn) one— including all those neat ML
modules on your old language disk, and all those .exp files from Waterloo...

Then test the hell out of the language versions on the NEW language disk. If you
have problems, proofread the patches, correct 'em, and run 'em again. When the
patched languages run okay, backup the NEW language disk. Save old V1.1, well
and truly labelled, for who knows when we might have to go back to it.... Bugs
have more lives than cats.

Sorry for all the nitty-gritty, but we have a lot of new members out there, and
know some folks never did figure out how to run the patches published before. So
grin and bear up, you old hands.
<x><xxxxxxxxxxxxxxx>o<xxxxxxxxxx><>c><xxxxxxxxxxxxxxxxxxxxxxxx>

A TERMINAL EMULATOR Do you want terminal emulator software which can
FOR APL and GENERAL USE handle general telecommunications in SuperPET and

which is "the best APL terminal emulator available,"
in Steve Zeller's words? See Steve's column this issue. For background, we re
viewed COM-MASTER in issue 10, p. 136. You'll find more background in Zeller's
review of the Waterloo Terminal Emulator on p. 139, issue 10. When you've read
that material, see what Steve says in his column, this issue, about the capabil
ities of the current version of COM-MASTER. Apparently all the hard work put in
by Dan Jeffers (author of COM-MASTER) to give his package a full APL capability
has paid off handsomely. We owe Steve Zeller thanks for patiently evaluating the
work as it progressed. To Dan Jeffers, kudos for persistence in writing the only
telecom package we know of which will handle all SuperPET files in all SuperPET
languages. Don't overlook this software. It was good before; now it's a whiz.
<>OKXXKXXXXXXXXXXXXXXXXX>C><X><X><>C>C><XXXXXXXXXXXXXX><XXXXXXXXXX>
ONCE OVER LIGHTLY So you want to 'move text' in the microEDITOR without any

Miscellany previous save to disk, Jack? John Toebes of Raleigh, our
resident genius, told us how. First few times we tried it,

we crashed (so be warned), but after we practiced, it worked. Suppose you want
to copy this line of text to the end of this note, and the command tells you
that the last line is number 17. We copy the line above to line 18 (right after
line 17, right?) with the following steps: 1) At command cursor, enter 17 g ter
minal <RETURN>. The cursor will disappear; touch HOME to get it back. Then, 2)
Put the screen cursor on the line you want copied, 3) Hit RETURN and fast as
scat hit STOP. The line indexed by the screen cursor is duplicated as line 18.
Someone in back cries; "You said: 17 g terminal, and you duplicate on line 18!"
Just so. The command copies to the line after line 17, just as a 'get'from disk
does. The secret is to hit STOP a nanosecond after you hit RETURN (awright, a
millisecond...). You can duplicate a batch of lines if you hit RETURN a number

SuperPET Gazette, Vol I, No. 13 -210- April/May 1984

of times, and touch STOP instahootly after the last RETURN. Try it on a scratch
file. Jack be nimble, Jill be quick.

DIOGENES, STOP LOOKING Diogenes roamed the streets of ancient Athens, lamp
lit, endlessly searching for an honest man. Blow out the lamp, Diog— we found
one. A few months back, we shipped a Master Telecom disk to The Computer Shop of
Calgary, Ltd., 3515 - 18th St., S.W., Calgary, Alberta T2T 4T9. In today's mail,
with no warning, back came a check for $45, for ROYALTIES on copies made by the
Computer Shop for SPET owners. In an age of disk piracy, an honest dealer! It
restoreth our waning faith in mankind.

A RIP-OFF? Somewhere up in Canada is a highly upset ISPUGger who ordered the
V1.1 software and manual updates, and sent a check with only the bank's name on
it. Either the Secretary or the Editor lost the envelope/letter in which it came
and we haven't shipped because we don't know where to send the stuff. Peace. If
you'll identify yourself (send the name of the bank on which the check's drawn),
we111 send V1.1.

OOPS & AHEM DEPT. We lost a line from Loch Rose's article in issue 12, page
196 (line 7 is AWOL). Add line 7 to your copy: "not matter for now.) When this
is done, the variable 'dy_' will contain the val-".

Loch also notes (just after getting V1 .1 software) that some of his previously
published articles on relative files must be revised to work in V1 .1 , to wit:
p.80, top page, line 30: add comma after a$; p.171, Program 2, add commas at
end of lines 230 and 270; in Program 4, add commas at end of lines 620 and 650.
Make notes on those pages. Loch adds you may need commas on lines 60 and 70 on
page 172 as well. He has not checked. We used V1 .0 to run his programs, but ne
glected to mention the programs were in V1.0. Henceforth, on all submissions,
state VERSION so ye ed doesn't forget— again. Last, Loch notes we called the
location of memend_ as $32 on p. 187, line 10. Change it to $22! Meanwhile, we
will garrotte the proofreader— if we can manage to creep up behind ourself.

SECONDARY ADDRESSES AND EXPANDED PRINTING Nicholas Kaps of 378 Sheridan Court
in Manteo, CA 95336 told us how he transmits secondary addresses to Commodore
printers. On his 2022, you can send any of the secondary addresses in the format

at the left (where x stands for the secondary address). We already
printer4-x knew you could send secondary addresses to IEEE4 printers with the

the second line at left. Nick also notes he found a way to get ex-
ieee4-4 panded printing from his 2022 whilst in the mED: "Enter text you

want printed in expanded format pre-fixed by two different charac
ters such as 'ab', like this: ab this is a test. Go into the monitor and start a
dump at $0a00 until you find your text:

Revision: 01 01
ASCII Code in Hex: 61 62 20 74 68 69 73 20 69 73 20 61 20 74 65 73 74
Text: a b t h i s i s a t e s t

"Then change the 61 and 62 above to 01 01 (see revision line above); hit RETURN.
Leave the monitor. When you print the file, the test line will appear at printer
in expanded format. You will no longer be able to access the area of the file
preceding your change. Do not save the file to disk!" Nick sent samples to prove
it. Those who read Gary Ratliff's article on text compression in the mED last
issue will understand why a CONTROL code mucks up the mED file. Flash: see sep
arate note, this issue, on sending printer control codes from the mED!

SuperPET Gazette, Vol I, No. 13 —211— April/May 1984

A COMPILER FOR PASCAL In came a note from Barry Bogart: "Just got a product
called 'Zoom PASCAL'...although I am not an expert on PASCAL it seems about the
same functionally as our Waterloo version. At least the omissions from 'stand
ard' PASCAL are about the same, and ZOOM has some extensions from UCSD that our
PASCAL lacks. The really nice thing about it is that it accepts ASCII files! So
I can use SPET to develop and debug, and ZOOM on the C64 to compile. The PASCALS
are so close that all the ZOOM examples run on SPET and all the 'PEX' examples I
tried compile on the 6 4! The difference is that the comments found as program
parameters in the ZOOM examples must be deleted. But does it run on the 8032?
Unfortunately not. But that is probably because of very minor mapping differenc
es. If there is ever an 8032 version of it, we should have our first compiler."
Barry notes some speed differences: Waterloo interpreter using the Sieve of Era
tosthenes: 4 minutes for all primes to 1000. ZOOM compiled: 4*48 seconds. ZOOM
cost Barry $61 in Canada, and includes a P-code compiler and N-code translator.

ACCOUNTS RECEIVABLE? Anybody have an Accounts Receivable program which will
handle up to 500 accounts and will work on a SPET with an 8250 and a 4023 print
er, preferably in mCOBOL? If so, write: George Parry, 34 Bellefontaine St., in
Agincourt, Ontario, Canada M1S 1J7. Suspect he'd take it in Swahili if it works.

AGRICULTURAL SOFTWARE Phil Cameron, Director, Computer Services at Lakeland
College, Vermilion Campus, Vermilion Alberta T0B 4M0, has almost 90 SuperPETs
and much agricultural software. He sent a directory of all such software, for
all current computers (Radio Shack to Apples and the 8032). It's 37 pages long.
If you want a copy, send $5 to ye ed for copying and postage at Box 411, Hatt
eras, N.C. 27943.

PHOTOGRAPHING THE SCREEN Dr. Jakob Bennema of Bennema Agriculture Universi
ty, Wageningen, Netherlands, gets in one step a negative film (similar to a
diapositive) so he can project for instruction large images of SPET screens. On
projection, he gets black characters on a white field. His sample is bold anc1
clear. If you try this, he recommends a reflex camera with manual controls (and
notes that "if you have an automatic, buy a cheaper one!"). He says 1) use the
reflex viewer to come close enough to the screen to see the screen only; 2) re
member that the screen is not flat, so that a wide-open lens may give you too
little depth of field and an out-of-focus picture, 3) exposure is determined by
the brightness of one character, not the number of characters (which is why the
fancy automatics fail), 4) to get an idea of proper exposure, fill the screen
with reverse-field spaces (ASCII 32+128) and take test exposures. With a pan
chromatic film of 360 ASA he has the best results with a setting between f:8 and
f:10 at .5 seconds exposure (he hasn't tried other films). From our own exper
ience, we'd try high-contrast copy films (those used for microfilming).

FOR DEVICE X... We had an inquiry on how to send DOS commands to a second
set of drives (in this case, device 9). Well, if g ieee8-15. addresses device 8,
channel 15, it seems logical that g ieee9-15. will address device 9. And so it
does. Anything you can do with the first command you can do with the second.
QUICK HENRY, MORE FLIT Two more bugs found in SuperPET: 1) You cannot load a
file from disk/1 in the monitor if the filename is longer than 13 characters,
for the monitor refuses the 'load' with an 'invalid command' error. The same co
mmand, with a full 16-character filename, is accepted for drive 0; and 2) the
command to copy a directory to disk fails quite consistently on some disks which
are about half-full. Though part of the directory copies to the new disk file,

SuperPET Gazette, Vol I, No. 13 -212- April/May 1984

the BLOCKS FREE are in serious error, and from two to five files don't appear on
the new list. So, if you copy a directory with 'di disk dir', better check the
file 'dir' to make sure all the disk files are listed. The error always occurs
at the very end of the file. Tests made in V1 .1 only, on three separate disks.
We have enough bugs in SuperPET software at this point to warrant the issue of
de-bugged software. How about it, Waterloo? You, too, Commodore!
<xxxxxxxxxxxxxxxxxxxxxxxxx><>o<xxxxxxxxxxxxxxxxxxxxxxxxxxxx>
BAR GRAPHS ON DEMAND Delton B. Richardson of 4299 Old Bridge Lane, Norcross,

Georgia 30092, wrote a beautiful package which creates
bar-graphs large or small upon demand. It automatically adjusts scale to accomo
date the values entered, and uses the graphics capabilities of Commodore print
ers (or of any other printers, since you can modify the program easily) to make
attractive graphs, of which we print a sample below. Delton sent a batch; you
see one of the small ones. Ten minutes after loading this program, we printed
our own bar graphs. Delton provides a tutorial and full instructions, which we
put on the ISPUG Utility disk we define this issue. Delton also added the tut
orial and instruction to his Home Accounting package (Vol. I, page 146). This
program, like Home Accounting, is professionally done, menu-driven, and well-
explained. Yes, you can change margins, and create big graphs on wide printers
or narrow graphs with condensed printing, if you prefer.

Distance in Miles Atlanta to Other C itie s
Rand HcNally

0 100 200 3 9 6 4 0 0 5 0 0 6 0 0 7 0 0 8 8 0 9 0 0 1000
t......)------I------ •(-------1------ 1------ +------ 1------- 1..... <-------h

A tla n ta to He* Vork 854

Atlan ta to Chicago 788

♦ + + + + + + + + + +
A tlan ta to Hiaai 663
m o m

Atlan ta to Savannah 255

 1----- 1------- 1------- H------1-------1------- 1------ 1----- i-------1--------♦

It is easy to change the characters which form the bars; with one keystroke we
changed to ASCII 124 '!' on DIABLO for our own bar graphs. To save space, we
limited Delton to four bars. His program will do 27, and at widths ranging from
less than half of the graph above to the full width of an 8023's printing area.
You can form the bars from any graphics character your printer can output.
<xxxxxxx>o<xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx>o<xxxxxx>o<xxxx>
MODULO WHAT?? : ABSOLUTE CURSOR CONTROL Unlike previous Commodore machines,
MARGIN CONTROL, SPLIT SCREENS AND SUCH SuperPET provides absolute cursor

control in all languages, though at
first glance only microBASIC possesses this capability. You'll find the cursor
position reported in two bytes, starting at $122. If you look there, you'll find
the cursor value ranges from 1 (Horae position) to 2000 (end of line 25). Explore
it in the monitor, and try to define exactly what position is reported at $122.
(If you change the monitor dump to start at $120, you may get a clue.)

SuperPET Gazette, Vol I, No. 13 -213- April/May 1984

Surprisingly enough, microBASIC is the only language which uses the 1-2000 range
at $122 directly. In all the rest, the interpreters handle cursor position modu
lo 256. For example, the first time we used library function TGETCURS_ in mFOR
TRAN, we thought it'd return the cursor position by row and column, just as the
Assembler manual tells you (it says high byte is row and low byte is column).
But the first number we got was 4383— and there aren't 43 rows or 83 columns on
SuperPET's screen. Then we remembered an APL program from Jim Swift, which trea
ted the return from TGETCURS_ modulo 256, and everything clicked into place. The
value of 4383 converts to row and column right easily— modulo 256.

Somebody moans: 'modulo what????' Moan not. It is easy. The modulus is simply
what's left over when a number is divided by another; i.e. 4 mod 2=0 (nothing is
left over). 5 mod 2=1 (one left over after first division); 100 mod 80=20, and
90 mod 80=10. Row and column on SuperPET's screen are determined first by integ
er division; then by the modulus. Let's take the value of 4383, as given above
for mFORTRAN. Integer divide it by 256. You get 17 (the row). Multiply 256 times
17. You get 4352. Subtract that from 4383, and you get 31 (the column). In a
program, you have an easier way. Every language has a function 'mod', however
stated. Use it. Column=mod(value,256). Try it with 4383; you get column 31-

After all this, you say: 'Fine. But what do I use this for?' The answer: to ob
tain extremely powerful, swift and flexible screen control. Want areas the cur
sor can't enter? Want to limit printing to part of the screen? Want to set mar
gins top, bottom, left or right? Want to sense cursor position and have events
occur at specific locations? Want split screens? You may have them all.

Before we get to examples, let's distinguish between microBASIC and the rest of
the languages. You cannot make a direct SYS call to XXXCURS_ in mBASIC. But you
don't need to. You have a separate system of cursor control which works modulo
80, not modulo 256. And that's the only difference. In mBASIC, the screen values
start at 1 (Home position), and run to 2000 (bottom right). Here are the algo
rithms for converting cursor value (x) to row and column: row=ip((x-1)/80)+1;
column=mod((x-1),80)+1. Nothing much has changed except the value of the range
(256 in all but mBASIC, 80 in mBASIC). Now for the examples.

In mFORTRAN, we had to pause screen output at any time (where's the cursor?) and
print a message at HOME, and, after interrupt, return the cursor precisely where
it was when the interrupt occurred— so we could continue to print at the exact
point we left off. TGETCURS_ and TPUTCURS_ respectively memorize cursor position
at interrupt and put the cursor back where it was, after interrupt. They work in
the same way in APL and PASCAL.

A FORTRAN DEMO: We use the hex addresses of TGETCURS_ and TPUTCURS_, as given in
watlib.exp on the language disk, so we need

*curdemo.fortran not convert to decimal (or to their negative
integer replace, row, col addresses). This routine, whenever interrup-
character message, dummy, c, D ted by pressing 'q', always puts the cursor
D=char(l0) back where it should be
message = "A demo: return cursor to old position." to continue printing af-
print, char(l2), "Enter 'q' to print message at HOME." ter an interrupt. If you
print, D, "Press RETURN to continue printing.", D,D run and modify this demo
do n = 1,10 you'll see instantly how
print, char(H), message the two library routines
read, dummy work. We include, at the
if dummy = 'q' end, a conversion of the

SuperPET Gazette, Vol I, No. 13 -214- April/May 1984

replace = sys(cnvh2i('b084')) [*TGETCURS_ line]
print, char(l),char(6),'Message at Home'
print, D, char(6), "Press RETURN to continue."
read, c
y = sys(cnvh2i('b087'), replace) [*TPUTCURS_ line]

endif
enddo
row = replace/256
col = mod(replace,256)
print, D, char(6), "Last value of TGETCURS_ is: ", replace
print, "Row is",row,". Column is",col
end

last value assigned to
TGETCURS_, to get both
row and column, as out
lined above.

Remove the comments with
[* before you enter the
program.

The method shown above is quite simple and works in all languages but mBASIC, in
which cursor control is implemented in the interpreter. There, it is easy to
write a simple little loop which you can interrupt at any time by OFF (ord 255);

then memorize cursor position with the
100 loop
110 ... ! Printing away....
120 ... ! 'x' is the OFF key
130 get x ! does user want a coke?
140 if x = 255 ! She does...
140 z = cursor(O) ! Get cursor
150 ! position. Handle the in-
160 ! terrupt anywhere on screen.
170 ! Then quit the routine with
180 z=cursor(z) ! put cursor
190 endif ! back...
200 ... ! resume printout
210 endloop

little trick Terry Peterson taught us,
z = cursor(O), which assigns the pres
ent value of cursor position to 'z'.
Next, you do whatever's needed during
the interrupt. When that's finished,
you slam cursor right back where it was

with z = cursor(z). It's far sim
pler than using TGETCUR_ et. al.,
but in languages other than mBASIC

you do not have this sweet capability.
A word of warning: the method works a
bit differently in immediate mode than
in program, when cursor returns exact
ly where it was; in immediate mode, the

position reported by z=cursor(0) is that where cursor comes to rest after the
command is issued and you hit <RETURN>— always the next row.

Here are more examples. First, we put the cursor in prison (for whatever reason)
in a cell which is 30 columns wide and 5

100 ! 'setlim.bd' sets screen limits rows deep. Try (just try!) to print any-
105 thing outside the cell. Since we've ex-
110 loop eluded TAB (chr$(9))» you cannot

escape. The cursor goes dead at
the cell walls until you press
CURSOR LEFT or CURSOR UP.

115 get char : if char=0 or char=9 then 115
120 print chr$(char);
125 x=cursor(0)
130 row=ip((x-1)/80)+1 : col=mod((x-1),80)+1
135 while row>=5 or col>=30
145 get move
150 until move=11 or move=8
155 endloop

! 11 is cursor
! up, 8 is cursor left.

You can limit the user to a cell
anywhere on screen in any lan
guage other than mBASIC by using
TGETCURS and TPUTCURS .

Some readers have complained that SuperPET does not allow the split screens of
BASIC 4.0. Well, shucks, you can define your own split screens if you use the
technique above, and can limit the user to whatever area you want whilst you
print from program to the rest of the screen. Lest you think the code to do this

must be long, we show at left four sim-
L$=chr$(8) or cursor left pie lines which irrevocably set right

margin on the screen, and which use our

SuperPET Gazette, Vol I, No. 13 -215- April/May 1984

710 x=cursor(0) : margin=40 mod(x,80) directly instead of converting
720 while mod((x-1),80)+1 => margin to column. We cannot drive the cursor
730 print L$; : x=cursor(0) past the margin set by 'margin', though
740 endloop we can pass it with the TAB key, only to

be thrown out. Last, the strange beast
shown here: z=cursor(mod(x+(80-x+1),80)) does quite well as a substitute for a
carriage return, bringing the cursor to left margin of the screen from wherever

it may be without forcing you to TAB or to use a CR.
row 18 * 256 = 46O8 In fact, it will wrap the cursor to the next line,
col 1 = +1 sans a CR or any tabbing, [in the example above, left,
call value = 4609 substitute a call to TGETCURS_ (with appropriate modu

lus) for x=cursor(0) in all languages but mBASIC.]

var At left is a program to use TPUTCURS_ in mPASCAL. We
putcurs:integer; want the cursor put on row 18, column 1. The cursor

value for the call is computed at left, above. We did
begin it manually, but you could easily write a procedure to

page; compute it for you, based on row and column. Absolute
putcurs := 45191; cursor control in all the languages
sysproc (putcurs,4609); can be had at any time, together
writeln('Here is where we put cursor'); with firm screen control. And, sure

end. r - enough, you can apply the method in
assembly language as well. Suppose

we want to read and print to the screen a directory, in two columns. We can't
use the screen tabs (they may be set anywhere by the user). We can't just space

over because directory strings are not the same length,
jsr tgetcurs_ But, it so happens the column value is returned by the
ldb #40 function TGETCURS_ as the low byte in the D register,
jsr tputcurs_ (which is the 8-bit B register). So, ignore the high

byte row value in A register, and stuff in B the actual
column value you want (see the LDB #40, above, left). Then pass the new value
to TPUTCURS_ (all the values are right there, in the D register), and— voila!
instant tab to screen column 40. Absolute screen control we have, in all langu
ages, with ease and elegance. Quod Erat Demonstratum.
<xxxx><xxxx>o<xxxxxxxxxxxxxxxxxxxxxx><xxxxxxxxxxxxxxxxxxxxxx>
A BUG IN microPASCAL FILENAME LENGTH [Ed. See Gary Ratliff's Article, the
by Robert I. Davis, Associate Editor Anatomy of MicroBASIC, this issue, for

100 Darrow Drive, Pennington, N.J 08534 a clue on variable handing in SPET.]

Waterloo microPASCAL allows two alternative variations of a more general form
of the standard PASCAL functions RESET and REWRITE (refer to Section G.6, File
I/O Considerations, on p.131 of the mPASCAL Manual). For non-PASCALiers, RESET
opens an existing file to be read from, while REWRITE opens a file to be writ
ten to and establishes a new file if necessary. There appears to be no problem
with the first variation presented in the manual, but there is, unfortunately,
a bug in the second variation which can cause very much confusion:

A filename defined as a variable of the type 'packed array of char' must have
an EVEN total number of characters! In all of the trials that I've made, an ex
tra character is added to the filename when you use RESET or REWRITE with a
filename defined as a variable of the type 'packed array of char' with an ODD
total number of characters. The extra character can be different each time; it
seems to depend on the immediately preceeding machine operations. I ran across
this bug when writing utility programs and procedures to create files which used
filenames entered at the keyboard.

SuperPET Gazette, Vol I, No. 13 -216- April/May 1984

If you wish to investigate this bug as outlined, I suggest you use a scratch
disk since you may encounter filenames containing characters which are very hard
to duplicate. This will, in turn, make the files difficult to use or to scratch.
To illustrate the bug, place a disk in drive 0 and then enter and run the pro
gram below. Afterward, the disk directory will be (with * being any character):

program tstopenfilel (output); 0 "scratch disk " zz 2c
1 "tstopenfilel.pas" SEQ
1 "odd length*" SEQconst

filenamelength = 17;
Note that a file "odd_length"

var has been opened, and an
filename : packed array[l..filenamelength] of char; extraneous asterisk has
testfile : text; been added! Next, change

filenamelength to 18 and re
vise filename to even_length,

= 'disk/O.odd_length'; and again run the program. A
testfile, filename) directory will then show:

begin
filename
rewrite

end.
(

1 "even length" SEQ

File 1even_length' is created without any extraneous character. Next, get back
the original program, change REWRITE to RESET, and run. Note in the error mess
age that the 'h' from the end of 1even_length' has been picked up and added to
'odd_length'. Enter: e writeln (filename) in debugger mode, and filename will
be shown to be correct, as disk/0.odd_length, without the extra character. (You
won’t get the error message and go into debugger mode if the original extraneous
character was h!) As a final check on this variation, change 'filenamelength'
to 18, change 'odd_length' to 'even_length', leave RESET as is, and run. This
time, the proper file, named 'even length', is opened for reading.

As noted, there appears to be no problem with the first alternative variation.
If you enter and run the following program, the whole disk directory will be:

program tstopenfile2; 0 "scratch disk " zz 2c
1 "tstopenfilel.pas" SEQ

var 1 "odd length*" SEQ
testfile : text; 1 "even length" SEQ

1 "tstopenfile2.pas" SEQ
begin 1 "odd length" SEQ
rewrite (testfile, 'disk/O.odd_length')

end.

This time the file 'odd_length', which we originally tried to establish, has
been opened without the addition of any extraneous character. Change REWRITE to
RESET and run. File 'odd_length' opens for reading without any error.

I hope that this odd-even warning will save others from the confusion and frus
tration which I encountered.
<XKXXXXXXXXXXXXXXXXXXXXXXXXXXXXX><XXX>C><XXXXXXXXXXXXXXX><XXX>
IRQ ROUTINES IN THE A few months ago, Terry Peterson and ye ed noticed that

SWITCHED BANKS Bank 15 is used only with APL and COBOL, and so decided
to stuff utility routines into Bank 15 to save on user

memory. It worked fine until Terry tried it on 'nscroll', his advanced screen

SuperPET Gazette, Vol I, No. 13 -217- April/May 1984

dump to printer or disk (which also stops screen scrolling on demand). The pro
gram worked fine until you tried to load a language/facility, whereupon SPET
crashed. It wasn't easy to find out why, or to get any interrupt routine in the
banks to work reliably. Terry Peterson finally determined both the problem and
the solution. The problem is in the operating system, which neglects to handle
interrupts in the banks. Terry comments the op system code below, to show where
the problem starts, and then provides the solution:

The Problem: Commented operating system code, as found in the system ROMs—

;Present 'banksw' ($BBF1) code to perform bank-switched call.
bankswi PULS Y,J• Pop two RTS addresses from the stack.

PSHS D Save D accumulator.
LDB ,X+ Get bank number (and point to in-bank address)
LDX ,X Get address
CMPB $0220 Same as current bank?
IF NE No, so

LDA $0220 ;Save current bank number, stored in $0220
PSHU Y,A ;on user stack.

***** STB $0220 ;Mark switch and store in bank pointer.
***** STB $effc ;Then latch and make the switch.

PULS D {Restore D accumulator.
JSR , x ;Go do your subroutine.

. PSHS D ;Save D again (only).
PULU Y,B ;Get back orig. bank & caller's address.

***** STB $0220 ;Put it back in $0220 for reference, and
***** STB $effc ;latch and switch.

LDD , S++ ;Restore D (& set Zero flag) & pop SP back
JMP ,Y ;Back to caller

ENDIF
PULS D No need to switch banks.
PSHS Y Restore RTS address.
JMP ,X Go to subroutine.

; Present 'bankinit ' code:
bankinit LDU #$02ff Start user stack pointer at $02ff

LDB #$00 & with bank #0
***** STB $0220 Put the pointer in.
***** STB $effc and do it.

RTS
***** These lines of code MUST be replaced by the following in order to

allow IRQ routines to reside in SPET bank-switched memory! Any other
references to $0220 and $EFFC must likewise be so replaced.

bsr safe_bank_switch ; Substitute this line for ***** lines, above,
; which calls the subroutine below:

The following subroutine is employed in order to avoid the disaster that occurs
when an IRQ-generated call to a routine in bank-switched memory happens between
the first and second lines marked '*****', above, when there are other routines
in the same bank as the IRQ routine.

SuperPET Gazette, Vol I, No. 13 -218 April/May 1984

safe_bank_switch equ *

sei ;SET INTERRUPT MASK to disable regular interrupts!
stb $220 ;N0W, change pointer
stb $EFFC ;and set bank-select latch (for sure),
cli ;and THEN clear the interrupt mask....
rts

Since the operating system bug is embalmed in ROM hardware, you must work around
it. Terry wrote two programs, 'hello' and 'gscroll', which patch the bug. If you
load 'hello' from menu first thing, it gives you a chance to set time and date,
which you can bypass, and then loads 'gscroll,' a multi-purpose dump which re
sides in banks 15 and 14, out of user memory. With 'gscroll' you can keep the
screen from scrolling at any time by pressing SHIFT OFF, and resume it with the
same key, whilst you dump screen to printer with SHIFT OFF TAB, or to disk with
SHIFT OFF LEFT-ARROW. The program obligingly either opens a file called 'screen
dump', or appends your data to that file if the file already exists. The R/W
switch must stay in PRG position throughout your session. You can load any lan
guage/facility in SuperPET except COBOL or APL under this arrangement. Terry has
also revised the keypad for some instant keywords— such as PF3, which gives you
p ieee4 in one stroke— and you have the alternative of going back to the stand
ard keypad arrangement with PF1 . Both 'hello' and 'gscroll' are on the ISPUG
Utility disk defined in this issue, with'full source code.
<xxxx><xx><>
TO KILL A MOCKINGBIRD... Last issue, we showed two simple ways to load a

machine language module for use in the languages,
but said nothing about loading one from language because every attempt resulted
in loud cackles from the mockingbird. Though the other DOS commands work in pro
gram, the old "L0:filename" routine won't, and we couldn't find any other way to
load an ML module from program at the right address. So we asked Terry Peterson
for help. Back came a routine which loads a module from language. It must be the
first part of a program (and don't define ANY variables before you RUN it!). Be
fore you read further, take a look at the loader below.

We sent an early version of the loader to Loch Rose, and he pointed out that in
a cold start with mBASIC, a giant a$ [rpt$('*',9000)], generated either in imm
ediate mode or in program, would overwrite the ML module just loaded. Obviously,
there's a pointer to top-of-strings in microBASIC which is reset at a CLEAR or
on a call to the mED, but which is not automatically reset by a mere poke of
memend_ itself, down at $22. After you poke a new memend_, you must somehow re
set that darned top-of-strings pointer.... Well, we did it with a dump of the
keyboard buffer, an automatic call to EDIT, and an automatic RUN therefter, with
thanks to Frank Brewster (Vol. I, p. 122 ff). His trick indeed resets the top-
of-string pointer (any call to mED resets all pointers and closes all files).
(Warning on the first ten copies of the ISPUG utility disk: file ml.loader:bp
must be modified to conform to the example below.)

Second secret: 'chain' the machine-language module. SuperPET then thinks that
a new mBASIC program has been loaded which overlays and wipes out the old. So
it begins execution at the lowest line number in what it thinks is the new pro
gram. But there isn't any 'new' program— SPET just re-executes the old one. On
the first pass, before chaining, variable 'loaded' is 0; the ML module CHAINs
in. The value of 'loaded' (now 1) is passed to the 'new' program by the command
to chain 'names' at line 130. On the next pass, SuperPET executes the 'else'
clause, resets memend , DELETES the loader lines, calls EDIT to reset the darn

SuperPET Gazette, Vol I, No. 13 -219 April/May 1984

pointers, and gives itself a RUN which starts at line 200. The entire process is
Rube Goldberg at his finest, but it works— automatically.

We hope the PASCAL and FORTRAN folks pick up on this and find a way to load from
those languages. APL maybe will be less of a problem. Send in your solutions!

100 if loaded=0 ! ml.loader:bp
110 loaded=1
120 poke (hex('22')),hex('7f'),hex('ff') ! Set meraend_ to $7fff
130 chain "alphasys:6000/6,prg",names ! Load the ML module.
140 else
150 poke hex('22'),hex('60'), 00 ! Reset memend_ to $6000
160 open #4 0, "keyboard", output
170 print #40,"delete 100-190,:+chr$(l3) + "edit"+chr$(l3) + "run"+chr$(l3)
180 endif
190 stop ! STOP dumps the keyboard buffer, which sends commands
200 a $ = r p t $ (,9000) ! to delete lines 100-190, to call EDIT (reset pointers)
210 print a$(l:5) ! and then to RUN from the first remaining line, 200.
220 sys hex(’6006*) ! SYS any time. ! This ain’t elegant, but it works.

This program resets memend_ (found at $22 and $23) to $7fff on all runs. Without
the reset, you'll crash if you again try to load the ML module or if you've set
memend_ lower than $7fff in a previous program. Suggest you again reset memend_
to $7fff by a POKE at the end of program, so you get back all of user memory.

Note the filename for the ML module: alphasys:6000/6. The first number is the
'memend_' set, the second is the 'SYS' address. With such filenames on directory
you have all data needed to write a program with the right ML module addresses.
The reason for the two different addresses should be clear if you read the first
few lines of alphasys:6000/6, below:

Program: Addresses: Comment:
start ldd #start $6000 This section is designed to set raemend_

std memend_ $6003 if loaded from the monitor. Since it
swi $6005 never gets run if loaded from language,

memend_ must be set from your program,
stu ustack $6006 The language module starts here.

<xxxxxxxxxxxx>o<xxxxxxxxxx>c><xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx>
AS SIMPLE AS INVENTING THE WHEEL We hereby award James Sweeny of 15A Mohonk

Ave., New Paltz, N.Y. 12561 , ISPUG's Pat
Pending Cup (in memory of that inventive genius). Follow this: "I found a way to
set up my printer from the mED. You create a disk file for each command; the co
mmand contains only one line— the character sequence to be sent. Any time you
want to change the printer, just use the COPY command from the mED. For example,
on the PROWRITER the command for proportional spacing is ESCAPE P, or chr$(27);
chr$(80). My file "P proportion" contains this sequence. To use it, I type: copy
"P proportion" to ieee4, and my printer is set. Anything in the mED is left un
unchanged." So we tried Jim's method on our printer, and, by golly, we can make
the darned thing dance the hornpipe— from the mED. Find below a couple of sample
programs which create printer command files on disk. Are the rest of you ISPUGg-
ers as thickheaded as ye ed in not figuring this out long since?
10 open #3, 'P proportion', output ! File holds ESCAPE P to set PROWRITER
20 print #3, chr$(27); chr$(80) ! to proportional spacing mode.
30 close #3 '• From Jim Sweeny

SuperPET Gazette, Vol I, No. 13 -220- April/May 1984

10 open #3, 'setmargin', output ! File sends 56 spaces, ESC 9
20 print #3, rpt$(' 1,56);chr$(27);chr$(57) ! to set DIABLO left margin
30 close #3 ! at 56. Works well for ye ed.
o<x>o<c>oo<xxxxxxxxxxxxxxxxxxx><x><c><c><>cxxxxxxxxxxxxxxxx><xxxxxxx>
A SUPERPET FILENAME CONVENTION Few of us are patient enough to load and try

each of the sixteen languages or facilities
SuperPET can use when a disk arrives with unidentified files. Where does a PRG
file run? Where should a SEQ file be read or used? Without a filename conven
tion, the disk might as well be written in Sanskrit.

MicroPIP, Waterloo's beautiful program for file-handling (Vol. I, No. 9), gave
us a way to sort, copy, and rename files by function, language, and filetype—
but only if files are named in a systematic way.

We've therefore put together the scheme below, which has been tested, modified,
and retested for five months. We've coordinated it with TPUG; Bill Dutfield, who
is the SuperPET disk librarian, suggested several excellent changes. From here
on out, ISPUG and TPUG will use the system to identify files. All ISPUG disks
of recent vintage use it, so you can tell in what language or facility every
program runs, and the purpose or type of the file.

(1) We distinguish 6809 files by using the colon or the ' ' between the
filename and the language/facility identifier, as in: filename:bd "(which identi
fies a demo file in microBASIC (the colon won't work in mPASCAL). Files in 6502
are identified by a period as a suffix separator. If all filenames on a disk are
in CAPITAL letters, the colon or '_' are the only way to tell which files run in
6809 and which in 6502.

(2) Language or Facility Suffixes:
6809 6502

:b microBASIC :a microAPL .B BASIC 4-0 .PC Paperclip
:f microFORTRAN _p microPASCAL .WP WordPro .M 6502 ML
:c microCOBOL :e microEDITOR .wc WordCraft .C COMAL
:fo forth (6809) .BC Compiled 4*0 .F0 Forth (6502)
(We have FORTH coming, pun intended) ,R4 RTC 4 .SS SuperScript

Development (Assembler) files are already distinctly identified in 6809, ex
cept for load modules from which '.mod' has been stripped. Such PRG modules can
run either from main menu, or from the monitor. Since you never know which:

:'go' or load address designates such modules for the monitor, and
:men designates modules designed to be loaded from menu.

(3) Capitals and Lower Case: Preferably, 6809 files are in lower case and
6502 files in lower case in 6502 (which puts them in upper case in 6809). This
leaves no doubt at all on which side of SuperPET they run. In 6502, you can read
only those filenames which will run there— highly desirable unless you still
can't handle the DOS in 6809 (shame!). This convention distinguishes 6809 and
6502 files even if all filenames are in capital letters.

(4) Type of File Designators: Useful 2nd and 3rd character suffixes, which
identify the file by type, function, and status.

SuperPET Gazette, Vol I, No. 13 -221- April/May 1984

t Text File i Index File z
p Run File (a program) u Utility File 1
ws APL workspace r Reference File d
fn APL Function X Executive (driver) s
in Instruction file (it is an index file as well) dd

Not debugged
Library file
Demonstration prg
Subroutine (slave)

(5) Examples, Various Languages:

APL A workspace, 'EXAMPLE'
APL A revised version of 'EXAMPLE'

APL A text seq file 'STATS'

APL A utility to list to printer
APL Same utility, not debugged

mBASIC Utility Program 'tabset'

mBASIC driver program, 'jewel'; loads
and runs sub-programs/routines

1st routine used by jewel:bx

mBASIC library procedure, used in
many programs to print to printer

mFORTRAN program, buggy, 'calc_yield'
mFORTRAN program to run, 'calc_yield'
The first modification to the above
The second modification to the above

mCOBOL utility, sorts lists

microEDITOR text file, instructions
Instructions for COMAL, in COMAL
Instructions for APL, in APL

UDUMP load module, menu
UDUMP load module, monitor

Filename:

example:aws
examplel:aws

[in APL, a paren will
appear, not a colon.]

stats:at [SEQ filetype on Directory]

list:au
list:auz

tabset:bu

jewel:bx

jewell:bs or jewel.1:bs

printit:bl

calc_yield:fpz
calc_yield:fp
calc_yield1:fp or calc_yield.1:fp
calc_yield2:fp or calc_yield.2:fp

sortlist:cu

instruct:e or describe:ein
DESCRIBE.CIN
describe:ain

u:men
u:7e60

Note that we use the 'go' address of monitor files to designate such files. You
must know that address to give the 'go', and putting it on directory is a simple
way to find and remember it— as well as a signal that it does not run from main
menu. Last, the 'z' identifier clearly tells you that you have a buggy program
which isn't safe to use. If you have several program versions, it's handy.

If you send material to TPUG or to the Gazette, please use this scheme. We'll
return the favor on all disks issued for SuperPET from ISPUG and TPUG.
nnn

(C) 1984 000 THE APL EXCHANGE OCO STEVE ZELLER
uuu
In Vol.I, p. 136, Dick Barnes reviewed a new terminal emulator called COM-MASTER
(CM). Since then, I have been working with its author, Dan Jeffers, on the APL
side of CM. The result is very rewarding. Of particular interest to APL users is
the representation (in either direction) of A-Z "underbar" characters as A-Z

SuperPET Gazette, Vol I, No. 13 -222- April/May 1984

"reversed". This feature is extremely useful (I can now read all variable and
function names on IP Sharp). This feature alone sets out CM as the best APL ter-
final emulator available. But there's more!

CM employs a command language to set its various parameters and these commands
can be collected in a text file and edited with Waterloo's editor. This allows
movement between mainframes simply by loading a new setup file while in CM's
main menu. The shifted numeric pad functions as a set of ten program function
keys (PF.,PFO,...,PF9) and these can be assigned character strings. Their use
in APL is a little tricky, however, since the right paren, ')', in APL is a
quote "" in ASCII, and CM uses the quote as a delimiter in command strings.
Thus, setting up PF7 to be the APL string ')VARS' requires the command: PF7=
"""vars". ASCII control characters may also be included in the string. This cap
ability has numerous possibilities. During the initial setup, for example, the
PF keys can be configured to send autodial messages to the modem and to send the
logon sequence to the host. Next, another command file can be read in to recon
figure the PF keys for APL programming and system commands. If you must contin
ually edit a function on the host, you can set up a PF key to open the function
for editing and then finish the line with the line number you wish to edit be-
before you hit <CR>. It saves an enormous amount of time.

The upload/download capabilities are well thought out. Filenames are shown on
screen at all times and in "reverse" when active. The <LF> characters can be
stripped out of files during downloading so that they conform to the Commodore
file convention. When uploading files to the host, CM will either: (1) send a
stream of characters continuously, (2) pause for a specified time interval be
fore sending the next record, or (3) wait for the receipt of a specified charac
ter. This last feature, alone, justifies having CM. An APL system sending a
<BELL> as a prompt is ideal for this feature. Files can be uploaded quickly,
with little danger of losing characters.

The result is an excellent terminal package with APL features that are very
useful and not available in any other package. The terminal emulator is avail
able from Quality Data Services, 2847 Waialae Avenue, #104, Honolulu, Hawaii,
USA 96826 for $95 (US). [Ed. This package also is a general-purpose terminal
emulator useful for all SuperPET telecommunications.]

In this issue, I examine the several approaches to generating menus in APL.
Menus are very useful in applications used by those who lack experience in APL
or in programs used infrequently. A menu essentially embeds instructions in a
program itself and allows that program to control entry at crucial stages in its
execution. While menus are widely believed to be "user friendly," I find that
too many menus as actually written have the opposite effect.

The natural way to represent a menu in APL is by a character matrix with the
rows of the matrix corresponding to the choices available. You can use the func
tion below to construct matrices for this purpose. All the examples shown here
assume a menu that fits nicely on one screen.

MENUl+BUILD_MENU
ENTER: NO. OF ROWS AND COLS IN MENU MATRIX
□ :

5 1 0 | - - ..-- ..
ENTER ROW 1 I

SuperPET Gazette, Vol I, No. 13 -223- April/May 1984

CHOICE 1 I 1BUILD MENULU^V
ENTER ROW 2 \ [0] R *«- BUILD MENU \N',I
CHOICE 2 | C l] nBUILDS MATRIX FOR USE IN MENU ROUTINES
ENTER ROW 3 I C 2] 5 1 ENTER: NO. OF ROWS AND COLS IN MENU
CHOICE 3 | C 3] -K2*pAK])/51
ENTER ROW 4 | [•*] R*-Np' ', iT-K)
CHOICE 4 | [5] S2'.REVERSE •ENTER ROW »,▼!•*■ J+1
ENTER ROW 5 | C 6] /?[! ;]-<-#[2]+(!]
CHOICE 5 1 [7] -Kff[l]>I)/52
DONE | [8] •DONE'

The first method of presenting a menu is METH0D1, shown below. I simply clear
the screen, add numbers to the menu matrix and wait for a response. The selec
tion is edited by GET_ANSWER, which checks to see if the response is numeric and
if it falls within the prescribed range. METH0D1 then returns the choice to the
calling program.

VMETHODlWV
0] R «■ TITLE METHOD! MENU iN;ANS \
1] nTHIS IS THE FIRST METHOD OF MENU CONTROL \ 6MSGLENGTH+- 25
2] 6TCFF, (CENTER REVERSE TITLE) ,VTCNL \ ATCNL+arC[DlO+6]
3] N+(l\pMENU)+R*-0 I ATCFF+arccaio+n]
*+] (i+ 0v(N,l)p\N) ,MENU |-
5] &TCNL.REVERSE 1ENTER CHOICE (OR <CR> TO QUIT*
6] R*-GET_ANSWER N

VGET ANSWERIN'*
0] R ̂ GET ANSWER N lANS
1] nGETS RESPONSE TO MENU
2] Sl-M0=pANS+W)/R<-0
3] -KA/zMSe’0123456789')/0K
*+] (2pQZY7[DTO+3]) .REVERSE tMSG LENGTH +'BAD ENTRY, TRY AGAIN»
5] -S1
6] 0K:-+((R+-tANS)eiN)/0
7] (2PDTCCDT0+3]) ,mSGLENGTH\REVERSE »OUT OF RANGE, TRY AGAIN'
8] ->51

VREVERSEZQlV
0] R «- REVERSE S
1] i M W C 128+047 i5]

VCENTERZDlV
0] R CENTER MSG
1] *CENTERS TEXT STRING ON SCREEN
2] R *-l9 t ((L (7 9 - p M 5 G) * 2) p * ') J i S G

VUNREVERSEltn?
0] R «- UN REV ERSE S
1] R*UAVL~128+0AV\S1

THESE ROUTINES ARE USEFUL WHEN
DISPLAYING MENU CHOICES AND
TITLES. NO CHECKING IS DONE,
HOWEVER. HENCE, A STRING TO BE
REVERSED" MUST BE IN THE LOWER
HALF OF QAV WHILE A STRING TO BE
"UNREVERSED' MUST BE IN THE UPPER
HALF. SIMILARLY, THE STRING "TITLE"
IS ASSUMED TO BE LESS THAN 79 CHARS

The second approach allows the user to verify the selection. METH0D2 treats the
screen as a relative file. After the user enters a selection, the relevant rec
ord is rewritten with the choice reversed. A message at the bottom of the screen

SuperPET Gazette, Vol I, No. 13 -224- April/May 1984

then asks for confirmation. Display is somewhat slower with this approach be
cause of the looping, but it provides a way to ensure correct responses.

VMETHODHniV
[0] R « - TITLE METHOD2 MENU \N\I
Z 1] nTHIS IS THE SECOND METHOD OF MENU CONTROL
[2] *TERMINAL« 07REATE 1
C 3] LTCFF,\R<-0
[i+] QSEEK 1 , 0
[5] (CENTER REVERSE TITLE) □PUT 1
[6] N<-(lipMENU)+I*-0
Z 7] Sl'.DSEEK 1 , 2 + I « - I + 1
[8] ((4 O t I) , » - » , M E 7 W [I ;]) D P O T 1
[9] -*(tf>I)/Sl
[1 0] S2:[]SEEK 1 , 2 2
[11] (REVERSE bMSGLENGTH*1ENTER CHOICE’) DPOT 1
[12] -K0=R*-GET_ANSWER N)/END
[13] EXIT'.USEE K 1,2+/?
[1 4] ((4 O T i ?) ,»-».REVERSE MENUZR\1) UPUT 1
[1 5] S 3 : Q S £ £ K 1 , 2 2[16] (REVERSE tMSGLENGTH\'0K? (Y / N) ') □PUT 1[17] H 'Y '= l+ \$) /E N D[18] -*-51[19] END-.UUNTIE 1

The final technique presents the menu as a horizontal bar (Note: you need to
be sure that the menu will fit on one line). This has the obvious advantage of
not using up the entire screen. The first row of the menu is the default choice,
and a quick <CR> selects it. Other selections are also shown in reverse. The use
of <CR>, without typing a choice, is different from the previous two examples.
In both METH0D1 and METH0D2, just a <CR> results in zero being returned to the
main calling program. This allows one to "back out" of a menu. Here, <CR> signi
fies choice. Consequently, an option to "exit" or "quit" may be needed on the
menu bar.

VMETHODZZtnv
0] R + LINE METH0D3 MENU ;N;I;SPACE
1] "THIRD METHOD OF MENU DISPLAY
2] N+pMENU
3] SPACE*-0 | L (79- x /tf) [l]
4] BAR+MENU, (N[1],SPACE)p1 '
5] 'TERMINAL' ZJCREATE R*-1
6] SUBARUil+REVERSE BARZl+R\ 1
7] QSEEK l.LINE
8] (,BAR) □PUT 1
9] BARZlil+UNREVERSE BARZl‘,1
10] REVERSE MSG LENGTH*'ENTER CHOICE’
11] -*■(0XR+-GET ANSWER tf[l])/Sl
12] EXIT'.UUNTIE 1
13] R*-I

Armed with an imposing array of menus, are we ready to compete with the visual
interface in Apple's Macintosh? The "Mac" goes well beyond most other micros
by providing very fast, "pull down" menus and mouse-driven selection. I think
this is the way to go but we'll never be able to pursue it on the SPET.

SuperPET Gazette, Vol I, No. 13 -225- April/May 1984

Dick Werner (Elkhart, Indiana) contributed an APL function to convert a mea
sure in inches to one in feet and inches (it's a lot easier in centimeters!).

0]
1]
2]
3]
4]
5]
6]
7]

vm#[Q]v
R + FT IN X ;T1;T2
nCONVERTS X REAL INCHES TO a, FEET AND INCHES (BY MIKE WERNER)
Tl+pX
T2HTl,2)p$> 0 12 TX
272-«-(2’l ,4) p((2*n) ,2) + (?((2xjT1) ,l)pT2) flCRUNCHES AND STRIPS THE BLANKS
T2+1 10 1 1 0 0\T2
^2[;3>^2[;6>2,2[;7>,,,,
R+-T2

s jF T J T O JN CQ]V
0] R «- F T _ T 0 _ IN X ;N
1] R<-(N,1 0) + ((N<-p,X) , 8) p 4 0 T $ 0 1 2 T *
2] /?[s5 9 lO]+tMr[DT0+75]

EXAMPLE:
F T IN 5 4 9 8 1 5 6 |

4 ' 6 " I
8' 2*' I

1 3 ' 0 " I

X IS A SAMPLE VECTOR WITH TWO OR
ELEMENTS, NONE OF WHICH CAN EXCEED
1199.

HERE IS MY VERSION OF MIKE'S FN.

4*
8'
13*

FTJOJN 54 98
6”
2 . t

0”

156

Finally, there are two books that are full of interesting APL functions. The
first is by Francis Anscombe, a professor in statistics at Yale, entitled:
"Computing in Statistical Science through APL" (Sprlnger-Verlag, 1981). The
Appendix presents the statistical package used throughout the book. A disk con
taining these functions was recently contributed to TPUG (available as TPUG T7
in the SuperPET series). TPUG sent it to ISPUG. You can get the disk by sending
$10 U.S. to the Editor, P0 Box 411 » Hatteras, N.C. 27943 in 8050 format, or to
the Secretary, 4782 Boston Post Road, Pelham, N.Y. 10803 in 4040. I highly reco
mmend the book (around $25) and disk. [Ed. Order the "Anscombe" disk.]

Another academic, Prof. Ulf Grenander of Brown University, has written "Mathe
matical Experiments on the Computer" (Academic Press, 1982). The title notwith
standing, it is full of APL functions to do algebra, analysis, arithmetic, asy
mptotics, geometry, graphs, probability and statistics. This volume is somewhat
more expensive than Anscombe's (around $40) but is definitely worth looking at.
nnnnnnnnnnnnnnnnrinn

6425 31ST ST., N.W., WASHINGTON, D.C. 20015 U.S.A.
uuu
ANATOMY OF MICROBASIC This article introduces you to the memory management

Part 1 methods of Waterloo microBASIC and contrasts them with
by Gary L. Ratliff, Sr. the well-documented methods of Commodore BASIC. Some

details are similar; many are different. To save on
space, I will identify Commodore BASIC as cBASIC, and microBASIC as mBASIC.

Part A: Simple Variables.
Both languages allow long variable names in program, but a long name is truncat
ed by cBASIC to the first two letters; cBASIC further doesn't allow keywords in
a variable name (FORTRAN is disallowed, for example) while this practice is not
at all discouraged in mBASIC (fortran is perfectly acceptable). Why? A variable
name is never entered within the tokenized line of mBASIC! In contrast, cBASIC
has the variable name within the line, and its 'crunch token' routine will find
any 'for' or 'to' you might include in a variable name and will convert it to a
token. Let's contrast the two methods:

SuperPET Gazette, Vol I, No. 13 -226- April/May 1984

10 a=1 cBASIC will convert the line at left 1) into the ASCII code for 'a',
2) the token for and 3) the ASCII code for '1'. mBASIC instead

1) translates the variable name 'a' into a pointer to the variable storage area,
2) converts ' = ' to a token, and 3) if the value (here '1') is small, makes an
integer of it; if it is large, converts the value into a token for a string with
a given length, in the form of ASCII codes for the string.

Waterloo avoids conflict between keywords and variable names by never having the
variable name appear within the tokenized line! 'a' could as well be 'absol' or
even 'absolute_value_of_variable_one' (up to 31 characters), and as the first
variable named in the program, would be seen as 00 01 (a pointer to the first
variable in the variable storage area). You may observe this by using the mon
itor from mBASIC. The command: SYS 61631 will take you into the monitor; don't
enter the monitor from the raicroEDITOR in mBASIC, for this converts the program
from its tokenized form into â different form for the mED! The two forms are
not the same.

By experiment we've discovered that the length of a simple variable name is al
ways odd, as we'll show with the examples below. As you follow them, remember

that the ASCII codes are in hex ('a'=$6l, 'b'=$62, 'c'
=$63, and 'd'=$64). The first byte in the assignment of
each line is the length of the variable name. Thus, line
10 of Program 1 .becomes: 01 61 (one byte, variable name
is 'a'). The full assignment for the first 3 lines of
program 1 follows, with xx indicating space for values.
Below is what you see in the variable storage area (The

values of the variables are not set down, because they are in excess 128 nota-
I do not want to obscure this article with that! Instead, I show the
xx xx xx, etc. The excess 128 notation is used only for floating-

Program 1 Program 2
10 a=1 10 aa=1
20 b=2 20 bb=2
30 c=3 30 cc=3
40 d=3 40 dd=4

tion, and
values as
point values)

Byte No.(hex)
Value:

Example 1_
1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15

01 61 X X X X XX XX XX 01 62 X X XX X X XX XX 01 63 X X X X X X X X X X

Variable
Pointer:

00 01
(to variable a)

00 08
(to variable b)

00 Of
(to variable c)

I also show the values in the variable pointer table. You can see how the lo
cation of each variable is stored (note the byte number on line 1). Now, let us
see what happens with program 2 (remember $20 is ASCII 32 decimal— a space):

Example _2
Byte No.(hex) 1 2 3 4 5 6 7 8 9 a b c c e f 10 11 12 13 14 15 16
Value: 03 20 61 61 xx xx xx xx xx 03 20 62 62 xx xx xx xx xx 03 20 63 63

Variable
Pointer:

00 01
(to variable aa)

00 0a
(to variable bb)

00 13
(to var. cc)

Note how a variable name of even length has a space prefixed (see the '— ' under
each $20 in the 'Value' line, above— to always make the length of the variable
an odd number. Why the insistence on an odd number? Let us come back to this
question later. Meanwhile, note that any floating point variable value creates
the following storage requirements: 5 bytes for the numerical value (note the
vacant five bytes in the tables above), plus one byte for the length pointer or
token at the start, plus one byte for each character in the variable name, plus
an optional byte for the odd-making space.

SuperPET Gazette, Vol I, No. 13 -227- April/May 1984

Now, if we change the program from floating-point values (default) to integer
values, see what happens (convert Program 1, above, to read a%=1, etc.):

Example 3.
Byte No. (hex) 1 2 3 4 5 6 7 8 9 a b c d e f 1 0
Value: 41 61 00 01 41 62 00 02 41 63 00 03 41 64 00 04

Variable 00 01 00 05 00 09 00 Od
Pointer: (to a%) (to b%) (to c%) (to d%)

[Note: Here we use positive values, and they appear as such. If we used negative
integers, however, they would appear as two's complement. $7fff is the highest
integer you may use (decimal 32 76 7); $8000 is the lowest negative in two's com
plement form, at -32768 decimal.]

You might think $41 ('A') identifies integers— but wait till later. The ASCII
code for the variable name follows, suffixed and terminated by 0 0, and then we
find the value of the variable. We begin to understand why programs using in
tegers in mBASIC are so much faster than those using floating-point values. But
before we draw any firm conclusions, let us look at string storage for the four
strings following: a$="one", b$='two", c$="three", and d$="four". Here is what
we find in the variable storage area:

Example 4
Byte No.(hex) 1 2 3 4 5 6 7 ' 8 9 a b c d e f 1 0
Value: 21 61 7f xx 21 62 7f yy 21 63 7f zz 21 64 7f zx

Comment: a$ found at 7fxx, b$ at 7fyy, c$ at 7fzz, d$ at 7fzx, where the letters
after 7f stand for the actual low byte of the address.

Note the difference: the variable storage area does not contain the string, as
the variable storage area does for integers and floating point values. Instead,
it contains a pointer to high user memory (note the $7f xx, etc., above). And,
indeed, if we look in high user memory at those addresses, we find the strings.
(Note the warning in the last issue of the Gazette about setting end of user
memory [memend_, at $22] before loading or using an mBASIC program when you wish
to SYS from it to a machine-language module in high user memory.]

We can conclude as follows: the type of simple variables is encoded in mBASIC
in one byte, whose format is: tttlllll. If the high three bits (ttt)=000, then
the type is floating-point. If ttt=010 then the type is integer; and if ttt=001,
the type is string. The format of 11111 is xxxxl , as this value is always an
odd number. These five lower bits represent the length of the variable name. We
therefore can parse that first byte in all the examples above to see how it is
generated and to make our anlysis clear:

Example Value of Composition of Slimmed Value Parsed Meaning
Number: 1st byte 1st byte (binary) of 1st byte Type of Length of

(hex) ttt 11111 (hex) Variable: Var. Name:

1 01 000 00001 Float. Pt. 1 character
OR 00001 (length of variable name)

Final Value: 000 00001 $01 (binary 0000 0001)

SuperPET Gazette, Vol I, No. 13 -228 April/May 1984

2 03
OR

000 00001
00010

Float. Pt.
(length of variable name)

2 characters

Final Value: 000 00011 $03 (binary 0000 0011)

3 41
OR

010 00001
00001

Integer
(length of variable name)

1 character

Final Value: 010 00001 $41 (binary 0100 0001)
Ex.
(Theory)

43
OR

010 00001 Integer
00010 (length of variable name)

2 characters

Final Value: 010 00011 $43 (binary 0100 0011)

4 21
OR

001 00001
00001

String
(length of variable name)

1 character

Final Value: 001 00001 $21 (binary 0010 0001)

With the table above, we see how that first byte is constructed, and the reason
for the odd number in the variable storage area— the length of the variable name
being OR'd with 00001, which inevitably- causes an odd number. Because of this,
Waterloo is forced to stuff in a space if the variable name is composed of an
even number of characters. Next issue, we'll delve deeper into the construction
of microBASIC.
<xxxxxxxxxxxxxxxxxxxxxxxxxxx><xx>c><>c<xxxxxxxxxxxxxxxx>c><xxxx>

PETCOM 1.2 s A SOFTWARE REVIEW Ph.D. Associates, Inc., Suite 200, Kins-
by John D. Frost man Bldg., 4700 Keele Street, Downsview,

Associate Editor, Telecommunications Ontario, Canada M3J 1P3, kindly arranged
7722 Fauntleroy Way, S.W.
Seattle, Washington 98136

a "loan for review" of its telecommuni
cations software for SuperPET, which is
called PETCOM 1.2— a professionally-done

package for the 6809 side of SuperPET. It provides full upload/download capabil
ities for both SEQ and PRG (I can them binary) files, lets you use DOS commands
while in the program, is menu-driven and very user-friendly, and gives you the
bonus of an exceptionally well-written manual of 84 pages.

PETCOM is written for the user who wants to communicate with a variety of host
computers (mainframes, minis, or micros) either with a modem or a direct con
nection. It emphasizes the larger scientific mainframes and higher baud rates,
but is equally at home working with a local bulletin board, a school mainframe,
another SuperPET, or with a commercial database like CompuServe. PETCOM can co-
reside with the mED and with three of the five Waterloo languages (mBASIC, mFOR
TRAN and mPASCAL); it supports a JSR (jump to subroutine) machine-language call.

Apparently the author of PETCOM has "done it all" and is eager to share his ex
perience. The PETCOM manual is a tutorial on the communications process, and
guides you in detail thru every aspect of a telecom connection, with good exam
ples and good diagnostics when that first attempt doesn't quite ring true.

Significantly, you can use the various DOS commands while running PETCOM without
having to load or use the mED. The program adds to the usual DOS offerings of
Directory, Rename, Scratch, etc., a way to manipulate the COPY capability so you

SuperPET Gazette, Vol I, No. 13 -229- April/May 1984

can list portions of previously downloaded files to the screen or print files to
either a Commodore or ASCII printer. You can copy part of a file, extract por
tions of large files and copy them into smaller files, single step a listing to
the screen, and execute other useful COPY instructions.

PETCOM arrived configured to communicate with a DEC-10 computer, with defaults
set to an 8-bit data word, a baud rate of 1200 and all CAPS from the keyboard.
The manual clearly tells you how to reconfigure the program for your particular
host and for your needs; you'll find that manual a fine tutorial on the reasons
for such changes. You can't help but learn as you configure the program to the
system of your choice with a few quick keystrokes in response to menu prompts.
You need only reconfigure once, as PETCOM gives you a way to save a "user-optim
ised" version of the program to disk. You can save a whole family of such PETCOM
programs, each tailored for a specific communication partner.

I was able to configure PETCOM to communicate and upload/download to a company
mainframe and to an IBM PC, at both 300 and 1200 baud, using a Hayes Smartmodem.
PETCOM easily supported a connection with CompuServe and with the local Commo
dore Bulletin board at 300 baud. But— the up/downloading protocols of a Punter
(Commodore) bulletin board and the Vidtex protocols of CompuServe are not sup
ported by PETCOM. I had difficulty transferring binary (PRG) files as I was
unable to configure the host to receive binary format. My impression was that
PETCOM had sucessfully retrieved the PRG file from SuperPET's disk drive and was
transmitting properly but my host just wasn't receptive to the format.

Some noteworthy features of PETCOM set it apart from previous telecom packages.
You select ASCII CONTROL characters one of two ways: 1) The primary method re
assigns the SHIFT key as the CONTROL key, and sets the keyboard to a "caps lock
ed" condition. You transmit any CONTROL character by holding down SHIFT while
you press the selected character key, but you cannot enter lower-case characters
from the keyboard; 2) In the secondary system ("caps unlocked") you're allowed
both upper and lower case letters from the keyboard, but CONTROL characters are
available only from the SHIFTED keypad. In this mode, the CONTROLS are limited
to C,D,N,0,Q,S,T,U,V,Z and <BREAK>.

After you open a download file, you can start and stop the actual filing to disk
by toggling the RVS key, and so literally pick and choose the material you com
mit to disk as you browse thru a long data base.

PETCOM lets you use a different set of handshaking parameters for uploading than
you use for terminal mode. This permits you to specify different End of File
(EOF) characters for the upload, to screen out embedded line feeds that really
don't need to be transmitted, to control a time-out function for which you're
willing to wait for a host response, and to specify SuperPET's response to the
host prompt 'send next record' if one is available. These features are very de
sirable at high baud rates and when you transfer binary files.

Most usefully, you may send a one-line command to a host as the "first" line of
an upload from a SuperPET disk file. You might, for example, command "create
jdf.txt" at the start of the uploaded file, so you don't have to send the same
message in terminal mode.

In the three weeks I had to familiarize myself with the package, I became quite
attached to PETCOM's menus and general ease of operation, and very appreciative

SuperPET Gazette, Vol I, No. 13 -230- April/May 1984

of the accompanying instruction manual. The menu-driven selection screens are
efficient, especially when you're experimenting with a variety of telecom hosts.

I was (and still am) bothered by the SHIFT key as a CONTROL key, since I am
well-accustomed to the RVS key for that function in WordPro, in NEWTERM and in
most other software packages. I am likewise spoiled by NEWTERM, which gives you
direct access to, and the capability to change any or all of, the incoming/out-
going translate tables. If those tables were accessible in PETCOM, I'd certainly
change them to get some CONTROL characters which are not now available (one of
my databases calls for a CONTROL K, which I can't get in PETCOM from the shifted
keypad). And I'd like to be able to translate any incoming or outgoing character
to assure compatibility between SuperPET and any telecom partner.

In summary, I can recommend the PETCOM package to those who'd like to explore
SuperPET's communication capabilities fully. You'll learn a great deal about our
machine in the process from a very good program and fine documentation. [Ed: the
last price we've seen on PETCOM is $98.95 Canadian. Write Ph.D. Associates at
the address given in this article, or call 416 667 3808. The disk is available
in both 4040 and 8050 format. VISA, check, or money order accepted.]
<xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx><x><xxxxxxxxxxxxxxxxxx>

BITS B Y T E S & B I G S by Gary Ratliff, Sr.
215 Pemberton Drive, Pearl, Mississippi 39208

What is the problem with the following assembly language segment? If you didn't
notice that it contains an unneccessary test then you are ready
for our tutorial on the uses and abuses of the structured lan
guage constructs allowed by the Waterloo Assemblers for both
6502 and 6809 code. The cmpd #0 is redundant because the con
dition is tested by the 'if eq' construction automatically.

In this installment we'll examine closely the structured pro
gramming statements allowed by the 6809 assembler in an effort

to understand just how these structures assemble code. I hope this'll keep you
from creating redundant code because you recognize the branches and tests which
the Waterloo Assembler generates automatically.

In all examples, the LABELS to the left of the code are added by me so you can
follow how the assembler converts the easy-to-write structured code of SPET'S
assembly language to 6809 mnemonic code, To appreciate what the assembler does,
refer to the much-cited Software Engineering for Micros by Ted Lewis. There he
shows the code you would have to write to create a structured program in assem
bly language— if Waterloo had not provided the structure for us.

In the examples, I use capital letters and lower case interchangeably. The CAPS
are for emphasis. My text follows the order in which the manuals discuss con
cepts, found on pp. 145-152, 6809 Assembler Manual, and pp. 129-135, 6502 As
sembler Manual. In addition, I show the names of subroutines to make it easy to
follow the material. The real assembler code would use hex addresses.

Throughout this discussion, -c will represent a condition not c. Thus if the
test condition is 'eq' then -c means 'not equal', and if the condition is 'cs',
then -c means carry clear.

First, let us explore the construct: if/endif. How this appears in source code
is shown in the left column, and how it is assembled is noted in the right col-

ldd text
cmpd #0
if eq
ldd #error
jsr printf

endif

SuperPET Gazette, Vol I, No. 13 -231- April/May 1984

umn. I'll use the same method throughout this article. Remember that 'putnl '
does a carriage return and a linefeed to the screen, so when we encounter a CR
in the string we manipulate, we call the system routine which prints one.

Ida char
cmpa #13
if eq
jsr putnl

endif
Ida #12

LDA CHAR
CMPA #13
BNE skip
JSR PUTNL_

skip LDA #12

;Note that the source code 'if eq' is
;revised by the assembler to BNE, or
;BRANCH IF NOT EQUAL, to the label SKIP
;under condition -c. I show the location of
;the psuedo-label SKIP for clarity.

Here we see that the 'if eq' structured language construct generates code which
branches on the opposite condition to an artifical or psuedo-label called SKIP.
SKIP is attached to the instruction which follows the 'endif' construction. The
'endif' by itself generates no code. It merely serves as a point of reference
for the artifical label 'skip'. This label attaches to the instruction following
'endif.' Next, let's look at the if/else/endif constructs

Ida char
cmpa #13
if eq
jsr putnl_

else
jsr putchar_

endif
Ida bhar

LDA CHAR
CMPA #13
BNE skip
JSR putnl_
BRA exit

skip JSR PUTCHAR_

exit LDA BHAR

;if condition -c, go to label SKIP
;otherwise, execute the code in-line,
;in the sequence shown.

Here we see that the assembler code uses two locations, labelled SKIP and EXIT.
Skip is defined as the location immediately following the 'else' clause, which
generates a BRA in 6809, or in the 6502 a JMP instruction to the instruction im
mediately following the 'endif.' The condition (BNE) is again the opposite of
that of our source code test. At this point, I suspect beginners understand why
it is so much easier to write code in Waterloo's structured assembly language
than to write direct assembly-language code.

Let me point out that if in writing our program we define labels which will be
generated automatically by the assembler, we create redundant code. The example
below shows what can happen. We've written in one label, EX1, and the assembler
in effect creates a second, EXIT. Our EX1 label is totally redundant.

if eq BNE EXIT ;1st BRANCH instruction
jsr putnl_ JSR putnl_
bra ex1 BRA ex1 ;2nd BRANCH instruction

endif
ex1 Ida #12 EXIT EX1 LDA #12

Now you get the idea. Structured programming statements take the risk of error
out of programming. Those who are used to writing assembly language code may be
more prone to duplicate the efforts of the assembler; old hands beware!

The next construct is 'loop-endloop', which is easier to follow than the guess/
admit/endguess structure. Consider the example following:

SuperPET Gazette, Vol I, No. 13 -232- April/May 1984

loop
Ida ,x+
quif eq
jsr putchar_

endloop
Ida test

START LDA ,X+
BEQ exit
JSR putchar_
BRA start

EXIT LDA TEST

;BRANCH IF EQUAL— if c is met— to exit.
;The 'quif' condition is met when the
;value loaded in A register is 00.

The loop construct creates an artificial label START, defined as the next loca
tion after the loop instruction. An EXIT label is also defined, and found as the
instruction following the endloop construct. The endloop construct likewise gen
erates a 'BRA Start' instruction. Thus a loop/endloop structure without any in
ternal 'quif' or a valid 'quif' can create an infinite loop— which will not only
anger system operators but also create a monstrous connect-time bill when you
are online with a mainframe. [Note also that a 'quif' instruction generates code
to branch on condition rather than a branch on 'not' condition, which an 'if eq'
in structured code would generate.] Next, we try a loop/until construct:

loop
Ida char

until eq
ldb test

START LDA char
BNE start

EXIT LDB test
{BRANCH IF NOT EQUAL on -c; loop to start.
;We load A register until it gets 00

Here, the 'until' condition translates into a BRANCH ON NOT condition to label
START. The artificial label EXIT is reached only when the condition tested for
is found to be true (when we load 00 in A register).

Last, let us look at the forms 'guess/endguess' and 'guess/admit/endguess.'

guess ;The guess/endguess structure by
Ida test LDA TEST ;itself generates only inline code.

endguess

guess
cmpb #test CMPB #test
quif ne BNE EXIT ;if -c, leave the structure for the FIRST
Ida #nota LDA #nota ;code line following endguess. Note that end'

endguess ;guess writes no code.
Ids ,x EXIT LDS ,X

An artificial label of EXIT is attached to the instruction following the ' end-
guess' construct. The 'quif ne' generates a BRANCH ON NOT to EXIT. Again, note
that 'quif' generates the the same conditional branch in assembly code as in the
structured code, while 'if cond' generates code to BRANCH ON NOT condition.

guess
ldb test
cmpb #1
quif ne
Ida #5

admit
cmpb #2
quif ne
Ida #6

admit

a label

LDB test
CMPB #1
BNE a_label
LDA #5
BRA EXIT
CMPB #2
BNE b_label
LDA #6
BRA EXIT

In this example, we use a CASE structure
to determine what value will end up in A
register. We compare the value in varia
ble TEST with 1, 2, 3« If we don't find a
1, 2, or 3, we default to a value of -1
in the A register. But— if we find a 1 in
TEST, we put a value of 5 in A register;
if we find 2 in TEST, we load A with 6;
if we find a 3 in TEST, we load A with 7.
Note that if any ADMIT clause is found to

SuperPET Gazette, Vol I, No. 13 -233- April/May 1984

cmpb #3
quif ne
Ida #7

admit
Ida #-1

endguess
sta vary

b label

c label

EXIT

CMPB #3
BNE c_label
LDA #7
BRA EXIT
LDA #-1

STA vary

be true, we EXIT guess/endguess at the
next line of code. Guess/endguess gener
ates a BRA, or in 6502 a JMP, to the line
following the the endguess. This line is
assigned an artificial label EXIT. Each
of the 'quif' instructions generates a
BRANCH ON NOT CONDITION to the next ADMIT
statement, identified in the example as
a label, b label, and c label.

Guess/admit/endguess is a multi-choice test. We could have presented a menu with
several valid choices. The guess/admit/endguess lets us see if the value in TEST
is valid, and implement it, or set a -1, so we can correct whatever is wrong.

You should now understand exactly what code will be generated by the assembler
when you use structured programming statements— and this knowledge should enable
you not to duplicate the effect of these statements in your own code.
o<xxxxxxxxxxxxxxxxxxxx>c><xx>c><xxxxx><xxxxxxxxxxxxxxxxxxx>c><xx>
COPYING... (YAWN.. .BZZZZ) Having a lot of copying to do from disk to disk,
we got curious (yawn) about why it took so long and ran a test or two. The re

sults startled us. We copied the same APL
program file from disk to disk five times
and averaged the results. Even the mBASIC
program written to copy WCS PRG files was
faster than the mED 'copy' command. The time
difference to copy SEQ files was similar. If
you sleep whilst at the keyboard, you know

how to get it. We prefer to copy with g ieee8-15 and to sleep in bed.

Copy Method;
mED copy command
mBASIC program copy
microPIP copy cmd.
g ieee8-15* copy cmd.

Time (sec):
43
33
19
14

We stumbled into this while learning to convert Waterloo PRG files into print
able files we could read in mED. The program below copies PRG files exactly, and
as string values, with the LINPUT statement. Yes, the copied files run. Obvious
ly you can parse a$, convert it to ordinals, and read the PRG file in either hex
or decimal— in the mED. Which is what we were after. It beats a GET hollow.

100 ! copyas$:bd
110 on eof ignore
120 endd$=rpt$(chr$(0),4)+chr$(2)+chr$(0) !
130 open #20, "filename,prg", input ; 1%=1
140 open #30, "disk/1.filename,prg", output
150 loop

linput #20, a$
if idx(a$,endd$) then flag%=l$

160
170
172
180
190
200
210
220
230

Ends all assembly language modules.

if io_status<>0 then flag%=l$
if flag$
print #30, a$;

else
print #30, a$

endif
if flag% then quit

240 endloop
250 reset ; stop

! Ends all other 6809/6502 PRG files.

[Note; we don't know what Waterloo did with
the COPY command in mED, but the code must
get to the barn by going around a couple of
mountains first. We suspect there's a lot of
checking and acknowledgement going on.]

SuperPET Gazette, Vol I, No. 13 -234- April/May 1984

<CXXXXXXXXXXXXXXXXXKXXXXXXXXXXX><XXXXXXXXXXXXXXXXXXXXXXXXXX>
KING KONG, GODZILLA, AND NOW: Ye ed crept into the monitor and spent about
THE MONSTER FROM THE MONITOR a month in that often lightless cavern, in

dark pursuit of an assembly language alpha
numeric sort for the 6809— and emerged with 1) a sort, 2) a long, hairy coat
of green monitor mold, and 3) 10 pounds lighter (long overdue). We've pleaded
for six months for some talented bit-twiddler to write such a sort, but nobody
volunteered (for reasons which soon became obvious). On the Utility disk which
we define this issue, you'll find 3 versions of ALPHA (better we should call it
NEMESIS): one which uses all of SuperPET's memory, and will sort 1585 strings
into alphanumeric order in 20-25 seconds, and a short version, which you can SYS
from language, which will sort 300 strings in 2 seconds. The third is a 300-
string version which runs in the monitor. So far as we know, this is the first
6809 assembly-language sort to become available (and the last we'll write for a
while). It puts capital and lower case letters in the same alphabetical order
(MICRO and micro are equivalent); gets the list to sort from disk and files the
sorted list to another disk file.

* * *

SPM0N and EXM0N Terry Peterson employs the phrase 'bit-twiddler' to distin
guish those of us who indeed twiddle bits in assembler.

SuperPET's structured assembly language is a delight to use, but debugging and
analysis of pieces of your programs is slow going in the standard Waterloo mon
itor. On the ISPUG utility disk we have two ex-tended monitors: SPM0N and EXM0N,
the first written by the grand sachem of our tribe, Terry Peterson, who wrote
HESM0N for the VIC; and EXM0N, written by our own Redoubtable Gary Ratliff. It
is fortunate that they extend the monitor in two different ways. SPM0N is a
powerful program, which loads from main menu. You can execute all DOS commands
from it; load and save program modules, slowstep or quickstep through a pro
gram, compare any program with any other (or part of memory); set breakpoints;
calculate in hex, decimal, or binary, load a program off disk anywhere into
memory (including the banks); 'hunt' for a phrase or number, and much more. We
would have spent many months writing ALPHA were it not for SPM0N.

EXM0N takes a different approach. While it will load and save modules, and exe
cutes all Waterloo monitor commands as-is, it also provides both 1) a number of
extensions similar to Terry's, and 2) the 'hooks' for you, the programmer, to
add features you want. Gary included Avygdor Moishe's 'linker', so you have a
built-in way to add code (Avy is a talented bit-twiddler from TPUG who wrote
PET-C0M, a TC program for SuperPET, and some of the other goodies on the util
ity disk). Dedicated bit-twiddlers will love this one. Gary added a RESTRICTED
level to EXM0N, which you cannot enter until you crack the code for entry— using
EXM0N, of course.

* * *

FOR NON-BIT-TWIDDLERS Lest you think the entire utility disk is devoted to
bit-twiddler specials, be advised it is not. The re

mainder of the programs are utilities useful for novice and expert alike.

Some have asked why so many ISPUG disks are offered in recent issues. Simple:
we have more stuff available than ever we can cram into the Gazette, and there
is no other way to make it available to you. When you read the partial directory
below, you'll see what we mean. We've kept our promise to document disks, too!

All source files are on disk, though many are not shown below to save space. In
addition, all disks include programs not shown, again to save space here. The
partial directory below will give you an idea of what our members have put to

SuperPET Gazette, Vol I, No. 13 -235- April/May 1984

gether. Everything on disk works. Since all source files are available, you can
modify any to your own wishes. For those who don't know assembly language: most
programs adapt to any printer as is. Where they won't because of printer differ
ences, you can change ONE line; the change is explained. After you've made it,
if you can still 1) breathe and 2) type, follow the procedure on page 143, Vol.I
of the Gazette to reassemble and relink. It's simple. We add that the 4040 ver-
sion (2 disks) we had to crarri in, and the 8050 has about 100 blocks free.

116 "contents:e" SEQ Instructions on programs; table of contents.
21 "spmon:men" PRG Extended monitor; loads at $6000. T. Peterson.
21 "spmonlo:men" PRG Same extended monitor; loads at $2000.
42 "spmon.docO:e" SEQ Instructions thereon.
18 "hello:men" PRG A modification to SuperPET's operating system,
plus supporting programs which lets an interrupt-driven routine reside
and all source files. in the switched banks. HELLO loads GSCROLL,
hello and gscroll in bank 15— a dump to disk or printer, and a
by Terry Peterson. routine to stop screen scrolling at any time.

GSCROLL also provides 'instant phrases' on the
7 "gscroll" PRG shifted keypad (you can turn them off or on).
17 "A000 AFFF" PRG ROM images of all ROMS 6809-side.
17 "B000 BFFF" PRG These have been cross-checked on 4 machines. If
17 "C000 CFFF" PRG you suspecrt problems in ROM, compare your ROMs
17 "D000 DFFF" PRG with 'chese'images, using SPM0N. Instructions on
9 "E000 E7FF" PRG how are included in: spmon.docO:e
17 "F000_FFFF" PRG

66 "xmon6809" PRG Gary Ratliff's extended monitor,
80 "instruct exraon:e" SEQ and the instructions.
3 "graph index:e" SEQ
19 "bar graph:e" SEQ Delton P. Richardson's bar-graph program, tutorial
26 "bg tutorial:e" SEQ and programs. See graph index:e for details.
74 "bgmenu:bp" PRG Some supporting programs and examples not shown.
8 "all cmd files:~" SEQ All .cmd files for all programs on this disk.
3 "adump.mod" PRG Print any SEQ file to printer from main menu—

recent revision allows use of any printer, and gives an optional linefeed.

3 "alpha:6000" PRG ML sort for 300 or fewer strings. Monitor version.
17 "alphabig:0a00" PRG Same sort, but for up to 1585 strings. Monitor.
7 "alphasys:6000/6" PRG Same sort. SYS from any SuperPET language.

2 "chgadrs.mod" PRG Change device number on disk drives from menu.
11 "ddisk.asm" SEQ A do-it-yourself package; conditional assembly.
1 "diablo.mod" PRG Margin set, main menu, DIABLO or COMMODORE 8300P.
19 "loader:au" PRG Jim Swift's alphabetizing APL loader.
40 "mdir.asm" SEQ Send 2 column directories to screen/printer. For
4 "mdir:f9000" PRG all printers; optional linefeed. Monitor version.
24 "nscroll.asm" SEQ A dump to disk/printer. Also stops scrolling at
2 "nscroll.mod" PRG at any time. Great in PIP and in APL.
39 "pdir.asm" SEQ Sends 2 column directories to screen/printer from
4 "pdir:men" PRG main menu. All printers; optional extra linefeed.
1 "reset:men" PRG Resets from main menu to whatever is in upper 6 4.
1 "retrieve:men" PRG Recovers lost programs and languages.
21 "save.my.text.asm" SEQ Saves text in memory after an accidental exit from
2 "save.my.text:men" PRG language, to disk or to printer.

SuperPET Gazette, Vol I, No. 13 -236- April/May 1984

2 "udumlf:men" PRG Menu loaded UDUMP; all printers; extra linefeed.
2 "udump:men" PRG " " " ; all printers, without linefeed
2 "ulfmon:7e60" PRG UDUMP loaded from monitor, with extra linefeed.
2 "umon:7ef0" PRG " " " " , no extra linefeed.
19 "when.asm" SEQ Time and date set from main menu; you may bypass
2 "when:men" PRG one and set the other or correct errors.
8 "COPIER.8050.BP" PRG Gets data from bad disks. (4040 version on 4040)
34 "med v1.3" PRG A Toebes special. Version 1.3 of mED. FAST!!!!
3 "ml.loader:bp" PRG Program to load an ML module from mBASIC.
7 "TRANSLATE.BP" PRG Translates 6809 SEQ files for WordPro.

Those who want a copy of the ISPUG Utility Disk: send $10 U.S. for the 8050 ver
sion, or $16.00 U.S. total for two 4040 disks. Get 8050 from the Editor, P0 Box
411 , Hatteras, N.C. 27943— or 4040 from the Secretary, 4782 Boston Post Road,
Pelham, N.Y. 10803. Make checks to ISPUG. Postpaid. Overseas, add $2 U.S. for
additional postage.
<xxx><xxxxxxxxxxxxxxxxxxxxx><xxx>o<x><xxx>c><xxx>o<xxxxxxxxxxxxx>
PRINTERS AND DRIVES From data on the membership application forms we can re

port the distribution of printers and disk drives. We do
wish everybody had reported; we need the information to guide us on what gets
printed. On drives, the 8050 is the clear favorite: 70.2% of members own it;
4040 is second with 24.5%; the rest are 2031 and 8250. Some 31% of members use
the 8023 printer; 20% the 4022; 17*5% the' MX8G. The letter-quality printers (DI
ABLO, 8300P, Spinwriter, etc.) are owned by 13.1%; the rest of the printers are
not found in large numbers.
oo<xx>
A SPEEDY MED John Toebes and his talented fiance, Mary Ellen Kelley (also

an assembly-language programmer) have rewritten the V1.1 mED.
Their version 1.3 is on the ISPUG Utility disk. We haven't used Waterloo's V1.1
since V1 .3 arrived, and we can find no bugs in it. The new mED is so fast it
could qualify for the first row at Indianapolis.. .and John and Mary are now at
work on V1.4» which removes the old V1.1 bugs and adds some bells and whistles.
<xxxxxxxxxxxxxxxxxxxxxxxx>o<xxxxxxxxxxxxxxxxxxxxxxxxxx><xxx>
Prices, back copies, Vol. 1 (Postpaid), $ U.S. : Vol. 1, No. 1 not available.
No. 2: $1.25 No. 5: $1.25 No. 8: $2.50 No. 11: $3.50
No. 3: $1.25 No. 6: $3.75 No. 9: $2.75 No. 12: $3-50
No. 4 : $1.25 No. 7: $2.50 No. 10:$2.50 No. 13: $3.75
Send check to the Editor, P0 Box 411 * Hatteras, N.C. 27943. Add 30% to prices
above to cover additional postage if outside North America. Make checks to ISPUG

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$
APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP

(A non-profit organization of SuperPET Users)

Name: Disk Drive: Printer:

Address:____________________________________ _____________________________
Street, P0 Box City or Town State/Province/Country Postal ID#

[] Check if you're renewing; clip and mail this form with address label, please.
For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check payable
to ISPUG in U.S. Dollars. DUES ELSEWHERE: $25 U.S. Mail to: Paul V. Skipski,

Secretary, ISPUG, P0 Box 411, Hatteras, N.C. 27943, USA.
SCHOOLS: Send check with Purchase Order. We do not voucher or send bills.

SuperPET Gazette, Vol I, No. 13 -237- April/May 1984

This journal is published by the International SuperPET Users Group (ISPUG), a
non-profit association; purpose, interchange of useful data. Offices at PO Box
411, Hatteras, N.C. 27943. Secretary, ISPUG: Paul V. Skipski. Editor, SuperPET
Gazette, Dick Barnes. Send membership applications/dues to the attention of Mr.
Skipski; newsletter material to the attention of Dick Barnes, Editor. Super
PET is a trademark of Commodore Business Machines, Inc.; WordPro a trademark of
Professional Software, Inc. Contents of this issue copyrighted by ISPUG, 1984,
except as otherwise shown; excerpts may be reprinted for review or information
if the source is quoted. Members of ISPUG are authorized to copy the material;
TPUG may copy and reprint any material so long as the source is quoted. If you
send inquiries, enclose a self-addressed, postpaid envelope (4 x 9.5 inches,
please). If you submit material for the Gazette, enclose a suitable return/reply
envelope, postpaid. Canadians: enclose Canadian dimes for postage. See enclosed
application form for membership dues. The Gazette comes with membership.

For all outside the U.S.: All nations members of the Postal Union offer
certificates good in the postage of any other country for a small charge. The
Union includes most nations of the world.

FIRST CLASS MAIL

SuperPET Gazette
PO Box 411
Hatteras, N.C. 27943
U.S.A.

First-Class Mail
in U.S. and Canada

