
Assuming you want to move up to a computer with
more capability than SuperPET, what do you propose
to move up to? Commodore, at the moment, offers no
alternatives. Then you ask: why Commodore? We think

there are five good answers when you look elsewhere: 1) unhandy to downright aw
ful screen editors, 2) complex and very unfriendly operating systems, 3) ridicu
lous limits on the length of disk filenames, 4) word-processing systems rendered
woefully complex by the demands of the operating system, and, 5) limits on disk
drive capacity and employment. The editor started out on a CP/M machine and sold
it after it took six weeks to train one secretary to use CP/M and a second quit
rather than cope with it. CP/M (and MS DOS and PC DOS and their ilk) are splen
did for dedicated computerists, but abyssally bad for those who simply want to
use a computer. In contrast, the editor has, in a week, trained secretaries to
usefully use Commodore machines. The'difference lies in Commodore's invisible,
unitary, ROM-based operating system, to which you speak English. In CP/M, you
must learn Assyrian cuneiform, and switch (in those hieroglyphics) between pro
grams to write, run, and edit, and to handle your disks.

With that original CP/M machine, the word-processing program was WordStar. When
we tried to train a good word-processing operator (she’d used dedicated machi-
es) on WordStar, she quit. We don't blame her; the command structure forced on
WordStar by CP/M is so complex the screen must be globbed with menus (you can
hardly see the text). Turn off the menus and you're lost. And you cannot change
disks whilst editing; you get automatic backups (we don't want 'em), and auto
matic overwrites of old files (God, no!). And— you would not believe ED, the
CP/M editor. If you've never tried it, do. Then go somewhere and weep. The edit
or in MS DOS is not much better.

Filenames are limited to eight characters. Can you imagine trying to find the
file you want among 6000 different files, all indexed in eight characters? The
eight-character limit still applies to CP/M variants and to MS DOS and PC DOS.
Want a system with that sorry limitation in the age of megabyte memories?

We switched to Commodore. But— in a few years, Commodore machines will be Model
T's. As with people who switched from horses to Henry's horseless carriage, we
are happy to have them— they're simple and they work. But remember what happened
to Henry. In 1920, he dominated the automobile market. By 1930, he was almost
out of business. People traded up. Commodore may think it "makes computers for
the masses, not the classes," but the masses acquire class tastes, as Henry
found out. If Commodore expects to stay in computers, it must build something
better than Model T's. We hope it does, having notions of trading up ourselves.
<>>Cx><XX>

ARE YOU REDMARKED?

Look at the mailing label on this issue. If, underlined in red, you find a note
that your membership has expired, this is your last issue. Please renew now if
you're going to renew at all. Procrastination holds no pain for you, but ye ed
just had the pleasure of re-entering by hand some 200 names and addresses of
members whose renewals were late. Our mailing list program had deleted them all
when dues were three months overdue.

Since we're not paid to edit or to redo mailing lists, our labor is clearly in
voluntary servitude and contrary to three Constitutional amendments we can think
of and a whole bunch of statutes. If this keeps up, we'll sick the Feds on you.

SuperPET Gazette, Vol. I, No. 12 — 180— February/March 1984

ONCE OVER LIGHTLY If you want to print APL on DIABLO 630 (Commodore 8300P),
Miscellany don’t buy XEROX'S metal wheel (9R 21135); the set of char

acters used is, here and there, wrong. The DIABLO plastic
wheel (38150 01, APL 10) matches and prints the screen character set. We learned
of the difference only after this issue was typed (and had to print it again).

While on wheels: a lot of DIABLO wheels substitute the degree mark for the apos
trophe on the keyboard (SHIFT 7), including PRESTIGE ELITE, and are useless. Two
wheels match the keyboard nicely: DIABLO's COURIER 72 (38107-01), 10-pitch; and
ELITE 12 (38103-02) in 12-pitch. The latter prints the Gazette. You can inter
change these two wheels and print the same characters (except for pitch). Both
handle all printable program characters in any language but APL. For text work,
using WordPro or ’CLIP, the DIABLO wheel COURIER LEGAL 10A provides a versatile
character set, including the degree-, paragraph-, and section- signs. It's one
of the few which lets you print almost anything printable if you master the key-
substitution method in 'CLIP and WordPro. We tried over 20 wheels before we set
tled on the ones above.

If you're thinking about Commodore's new lettery-quality printer, suggest you
wait a while. A couple of dealers report a lot of returns and a lot of problems.
W e’ve used QUME, SPINWRITER, and DIABLO. DIABLO is built like a Mack truck and
has run for 2.5 years without any problem. Can't say as much for the others.

SHAME ON MICRO! MICRO magazine in issue 68 joined in the ongoing massacre
of the English language. In an otherwise fine article on Networks (read it), the
author talks of "routines that handle data compaction, encrytionation...." Ye
Gods! Poor Will S. must now roll over in his grave again. Rotationation? Such
polysyllabic crap is designed to impress others, but draws only laughter from
anyone literate. In plain English, the polymush above translates to: "routines
that compact and encrypt data..." We note the same article "collects together"
every page or so. Ever hear of "collecting untogether?"

SASE PLEASE! Last month, we got over 300 letters needing reply, and two re
turn envelopes. We enjoy your letters, but we don't enjoy addressing the replies
or licking the stamps. Please be thoughtful; send a self-addressed postpaid en
velope. (Associate editors, please ignore.) And do send envelopes big enough for
a reply, not those tiny things sold to midgets for mailing recipes. Canadians:
slip in a couple of those spendable dimes. (The Feds will probably get us...)

PET-COM Ph.D. Associates, Inc. of Toronto has forwarded a manual and disk so
we can test PET-COM, a telecom package recommended by our members in TPUG. We'll
try to have a software review next issue.

OP SYSTEM DISASSEMBLY Some time back, we got a pretty well commented dis
and mED REASSEMBLY assembly of the SuperPET operating system from John

Toebes of Raleigh, and made copies for those we knew
would be interested. The disassembly is over 200 pages long, and useful only for
those who understand assembly language well. Anyone who wants a copy can get it
on TPUG disk ST8, or from the editor at P0 Box 411, Hatteras, N.C. 27943, for
$6.00 in 8050, or $12.00 in 4040 (takes three disks in 4040). John also disass
embled the microEDITOR and reassembled it (except for a few glitches). We sent
a copy to TPUG, and Bill Dutfield called to say h e’d removed the bugs and the
package now assembles properly. His disk is here. Those who want to add some
features to the mED (how about word-wrap and text move?) now have a clean base

SuperPET Gazette, Vol. I, No. 12 — 181— February/March 1984

from which to start. If you want a copy, send $6.00 for 4040 or 8050. Postpaid.
State your format. No SASE required. Yes, the reassembled mED works.

TOO SOON OLD, TOO LATE OBSERVANT For two years we've printed selected lines
from the mED by entering the line numbers, as in 1200,1208 p ieee4. We finally
got through our thick head the notion that there must be an easier way, and then
tried: .,+8 p ieee4— which, of course, puts all text from the current line (.)
through 8 following lines to our printer. (The current line is the one the
screen cursor's on.) Ah, well. Care to guess what happens with: .,-8 p ieee4?

DOSbug IN MICROPOLIS 8050s TOO: Martin Goebel of St. John's, Newfoundland,
writes that the DOSbug which sometimes keeps Tandon 8050 drives from reading or
writing at power-up also afflicts his Micropolis 8050. Martin cures the problem
in BASIC 4.0. with the: HEADER ''x",Dd command. To reduce the bangs and crunches
of no disk at all, he puts a blank disk in the drive called, though it is not
necessary— the purpose being to move the R/W head, not to HEADER a disk.

LOAD LANGUAGES FROM ANY DRIVE Gee, we thought you knew this: you can load
anything from a language disk from drive 0, or even from a 2031, if you simply
preface the load command, at menu, like this: disk.e (which loads the mED). You
can even load from a different device number, say device 9, with: disk9/0.e. It
works for all languages and all machine-language programs loaded from menu. We
mention it because a couple of old hands wrote that, drive 1 being out of com
mission, they were out of business in 6809. No more excuses. Back to work.

STOP DOESN'T ANY MORE In Version 1.0 microBASIC (haven't checked the other
languages for this), ASCII 3 (Stop) on a disk file indeed STOPs a disk read dead
in its tracks. To our surprise, we found out that V1.1 does not have the prob
lem. If you're converting ASCII 3 to another CONTROL before filing to disk, and
then re-translating after a disk read, you needn't bother in V1.1.

NO, YOU DON'T HAVE TO HAVE TWO SWITCHES! If you have an early 3-board SPET,
and can't get the two retrofit switches to control UD11 and UD12 ROM sockets,
you can work around the problem. You can use UD11 for WordPro, PAPERCLIP, or any
other ROM needing the $A000-AFFF address with no sweat. UD12 ($9000-$9FFF) is
the problem, for a ROM there blocks off the upper 64 in 6809— if you didn't read
the January '83 Gazette, p. 1-2. If you did, you'll know you can unload any ROM
in that socket to disk, and thereafter load and use the program from disk as
easily as you'd load any other program in 6502. Once you have unloaded the ROM,
take it out of UD12 to free up the $9000+ address range. So stop writing letters
complaining you can't get switches. Who needs 'em?

WHY SO MANY PAGES?? A year ago, we promised you 20 pages per issue every two
months, but we've done better than that. Last issue we published 27. How come??
What we earn on disk sales subsidizes printing and postage for the Gazette and
pays for our endeavors to find the 9 out of 10 missing SuperPET owners. Thought
you'd like to know. (Check the number of pages this issue...)

SMALL BUG IN G-IEEE8-15 There's an occasional bug in 'g ieee8-15' when it is
used to enter DOS commands from mED. The bug is harmless, but if you don't know
about it, you can think you've crashed. Once in a while, after you give a DOS
command, the red 'drive in operation' light doesn't go off. This happens most
often with INITIALIZE or VALIDATE commands. Should it happen to you, hit the
STOP key. The red light will go out; you will see a lot of '00, OK,00,00' lines

SuperPET Gazette, Vol. I, No. 12 -182- February/March 1984

on the screen. Delete them; neither your disk nor the screen file in mED will be
harmed. And the DOS command will have been executed.

Which reminds us the STOP key also stops any load from disk in mED. If you want
to identify a file quickly, issue the command to ’get' it, then hit STOP. Only
the first few lines of the file will load or show on the screen.
o<xxxxxxxxxxxxxxxxxxxxxxxxx>c><xxxxxxxxxxx><xx><xxxxxx><xxxxxx>
ANOTHER WAY TO READ FILES
PROPERLY IN MICROFORTRAN

by Stanley Brockman
11715 West 33rd Place
Wheat Ridge, CO 80033

[Ed. In issue 8, P.J. Rovero noted a bug in read
ing mFORTRAN data files and suggested a few ways
around it. This article shows another way.]

A third way around the bug in reading disk
files, as noted on page 93 of the Gazette, is

to use list-directed reads [e.g., 'read *, a,b,c' or 'read(35,*) a,b,c)']. List-
directed (LD) reads require that the data items in a record (either from disk or
screen) be delimited by commas and the end of the line. The comma requirement
could be considered by some (like me) to be a bug in its own right, but commas
make it possible to read all of the data on a line from 'text' files (the de
fault Waterloo type). An LD read will read whatever is between delimiters and
assign the values to the corresponding variables in the input list, converting
the values to the types (real, integer, or character) of their respective vari
ables, taking any decimal point into account, as necessary.

LD writes also exist. As stated on page 146, 'List-Directed Output' in the
mFortran manual, Chapter *F ', numerical data is written into pre-defined zones,
with a blank (carriage control) character transmitted in the first record
position. The first position of each numeric zone is reserved for the sign of
the data value and is either a blank or a minus. There is also an extra blank
padded between each of the numeric zones, although the manual does not state
this. No extra blanks are padded before or after character data prior to being
written to the file.

program list_directed
open(30,file='test.file')
do i = 1,6

a = 10 * rnd(.O)
b = 10 * rnd(a)
c = 10 * rnd(b)
if(i .le. 3) then

write(30,35)
write(6,35) a

35 format(1x,3(f11.7,a))
else

write(30,») a,',',b,'
write(6,») a ,',',b,',',c

endif
enddo
rewind(30)
print*
do i = 1,6

read(30,*) a,b,c
print*,a ,b,c

enddo
close(30)

a » » h • » (d t * »u » »
I I h » * ot t » u t * t 5-

. ' »C

The program at left demonstrates both LD and
formatted writes and LD (unformatted) reads.
We write the random numbers both to the 'test
file' and to the screen (file 6). The data we
write to the screen loses its first character
since it's interpreted as a carriage-control
character; otherwise, it duplicates what is
written to the disk file; the program writes
to disk and screen in the same manner. Note
that the first 3 records are formatted writes
while the second 3 are are LD writes. When we
rewind the file [Ed. mFORTRAN’s 'rewind' pos
itions the file so we read/write again at the
start of that file], we read the file in LD
and print it (in LD) to screen as the next
6 records. Note that LD prints, like LD wri
tes, automatically pad a blank to the begin
ning of each record; 'print' implies output
to the screen; 'write' is file-oriented (the
screen may be a file). I also pulled the disk
file into the mED (loaded alone, not in mFOR-
TRAN) and show it below, left.

SuperPET Gazette, Vol. I, No. 12 — 183— February/March 1984

stop
end

Below; Contents of Disk File:
(Asterisks added to show margin)
First 3 records formatted writes;
second 3 records, LD writes.

*** .6884766,
1.6650391,
9.8342896,

.65612793,
1.4535522,
1.4779663,

1.3150024,

2.2915649,
3.1134033,
1.2826538,
2.0800781,
2. 1044922,

2.5680542

3.5446167
3.7399292

1.9091797
2.7066040 -
2.7310181

Below, a dump of the screen after the
program has run. Asterisks added.

1) Program output written to screen:

** .6884766,
1.6650391,
9.8342896,

.65612793,
1.4535522,
1.4779663,

1.3150024,
2.2915649,
3.1134033,
1.2826538,
2.0800781,
2.1044922,

2.5680542
3.5446167
3.7399292
1.9091797
2.7066040
2.7310181

Note that I ’chained' the arguments to
the RND intrinsic function, which proba
bly is not good practice, but for this
example it did not hurt. I have noticed
that successive calls to RND as it is in
the subroutine aren't especially random;
the values of each result may appear to
be random but their differences from one
value to the next are quite likely to be
identical when RND is used with only 0.0
as an argument. [As an exercise, try a
DO loop using RND(O.O) and take success
ive differences.] Not all the differenc
es are identical, but even those depar
tures are fairly regular. This suggests
that RND(O.O) may use the internal clock
as a seed and that the randomizing algo
rithm is not very sophisticated.

LD reads and writes are much faster than
their formatted equivalents. Yet because
you have no direct control of the format
in which data are stored, numeric pre
cision becomes less as the numbers grow
smaller. Scientific notation (E-format)
is used automatically when values become
small enough, but precision may be un
acceptable before that point. Example:

**.68847660

1.6650391
9.8342896

.65612793
1.4535522

1.4779663

2) Program output, LD read and LD
printed to screen from disk.

Try successively dividing a number such
1.3150024 2.5680542 as 1.23456789 by 10, and use an LD print
2.2915649 3.5446167 to view results. I prefer to use format-
3.1134033 3.7399292 ted writes when saving data in order to
1.2826538 1.9091797 avoid data loss because of poor repre-
2.0800781 2.7066040 sentation in the file. LD reads, on the
2.1044922 2.7310181 other hand, recover data from the files

properly, with no error (other than that
possibly arising from system errors in representing numbers in internal floating
point form).
<XXKXXXXXXXXX><XXXXXXXXXXXXXXXXXXXXXXX><C><XXXXXXXXXXXXX>C><><XX>

BUFFER PROBLEMS IN THE 2031 Very few people use the 2031 drive (really
DISK DRIVE WITH FASTERM/NEWTERM half of a 4040), but those who do are warn

ed that the buffer-handling in that drive
will cause characters sent to disk from either NEWTERM or FASTERM (from files
downloaded) to be dropped— at about 255 byte intervals. The 2K buffer in the
2031 is handled, internally, in a different way than in the 4040, 8050, or the
8250. At the end of a 255-byte segment of received characters, the 2031 fails
to send an ACKNOWLEDGE signal (saying it has received a character) until it
arranges to fill another 255-byte sector of drive memory. During this period,
any characters which come in to the serial port cannot be sent to the drive

by SuperPET (the last character hasn't been acknowledged). Result: from one to
three characters may be missing in the disk file at this point. This problem
does not exist with any other drives. Terminal programs which are interrupt-
driven (NEWTERM and FASTERM are not) do not encounter this problem. If anyone

SuperPET Gazette, Vol. I, No. 12 -184- February/March 1984

in ISPUG who registered for membership with a 2031 drive only wants to return
the ISPUG master telecom disk for this reason, we'll refund his money upon
return of the disk to the Editor, at P0 Box 411, Hatteras, N.C. 27943. We stand
behind the programs we sell, because we test 'em first. NEWTERM and FASTERM were
tested thoroughly— but not with the 2031.

<XXXXXXXXXXKXX><XXX><XXXXXXXXXXX><XXXXXXXXXX><><><X><XXXXXXXXXXX>
GET # WHAT? IS THIS How'd you like to get input both as a string and as the
HYBRID REALLY TRUE? ASCII ordinal? You can eliminate what you don't want as

input with simple commands ('if a>47 and a<58' gets rid
of all numerals); you can get an array without subscripts or the trouble of dim
ensioning one, in the exact order of entry. And you can 'get' it in a form in
which it can be erased, deleted, or revised (yes, revise a 'get'!) and then fin
ally confirmed with a RETURN (yes, use RETURN on a 'get'). We ran into it whilst

working on something else; it became cur-

100 ! 'getwhatl'. Prints char to ioser and curioser. Turns out SPET stores
105 ! screen and 'gets' ordinals. 'a' (see example, left) as an array! It
110 open #5, 'terminal', inout does not execute the loop (ary a bit) un-
115 loop til a CR is entered, whereupon all values
120 get #5,a of 'a', in sequence, are printed in the
125 if a=13 then quit loop. If you doubt that, note the print
130 print a;' '; statement FOLLOWS the quit statement, but
135 endloop it still prints. Any 'a' not confirmed by
140 reset : stop a CR is ignored. We printed 79 characters

on a line, hit RETURN, and printed all 79
ordinals (while the characters were on screen!)— characters and ordinals in one
swoop, with no conversion back and forth! Whilst everything is accepted as input
without nasty error signals, you can screen it and output only what you want. In
short, maybe we have a way to get 'trash in, jewels out'. Take a look....
<xxxxxxxxxxxxxxxxxxxxxxxxx><xxxxxxxxxxxxxxxxxxxxxxxxxxxxx><>
SYS CALLS FROM LANGUAGE We've had some inquiries on how to reset end of user

memory, load machine language modules, and use them
from the various languages, so we give a short example of how to do it, below.
There are two basic approaches: 1) run a short program from menu, which sets end
of user memory [and also loads the ML program], then load the language, or 2),
Load the language, and, before doing anything else, drop into the monitor and
load the ML module. In either case, it's easiest if the ML module is written to
perform two functions: first, to set memend_; second, to load the actual mod
ule to be used from the language. And it is easy to do. The very short program
below demonstrates how to do it from menu, before you load a language:

xref printf_, putnl_
memend_ equ $22
service_ equ $32

{Section 1 : Load Module, Return to Main Menu

main equ * ;We define the start of program as MAIN. The built-
ldd //main ;in counter in assembler/linker will assign the starting
std memend_ ;address to *. In this case, it's $7f60, the 'origin',
clr service_ ;Set this to 0 for return to main menu,
rts ;And return there after module is loaded.

;Section 2 : The Language Module

ldd //test ;This part we call from language. It is loaded with
jsr printf_ ;Section 1 from menu, but does not run because of the

SuperPET Gazette, Vol. I, No. 12 — 185— February/March 1984

rts ;RTS in section 1.

test fee "This is the test line called into language with a SYS.Jn"
feb 0
end ;The 'test* string is printed only from language,

If the program above is assembled and linked (the .cmd file is at left), it may
be printed to the screen in any SuperPET lan
guage with a SYS call to the address of the
language module (Section 2, above). How do you
get that address? Call the 'sys.1st' file, which
is created by the Assembler, into the mED. We
print part of that file below, to show what we

mean, and have annotated the material to make it clear. The 'Memory Location'
column shows locations relative to program origin. In this case, the program
origin is $7f60, so the '0000' below, added to $7f60, shows the location of
'main.' The language module starts at 0008. Add that to $7f60— and you know your

" sys "
org $7f60
include "disk/1.watlib.exp"
"sys.b09"

SYS should be made to $7f68. Simplicimus. [The .1st file

Line Memory
No.: Location: Object Code: Source Code •

•

7 0000 main equ *

8 0000 CC 00 00 ldd //main
9 0003 DD 22 std memend

10 0005 OF 32 clr service_
11 0007 39 rts

12 0008 CC 00 OF ldd tftest

13 000B BD 00 00 jsr printf_
14 00 0E 39 rts

;The language
{module.

The method above works in all SuperPET languages. It does not, however, cope
with ye ed's weak and forgetful mind. There we are, language loaded, and we
forgot to load the module from menu.... So, here's a second way to load the
module, either from the monitor at main menu, or from the monitor in any langu
age which uses the mED (after the language is loaded). The 'xrefs' and the def
inition of string 'test' are left out of 'sysmon .asm', below, to save space.

main equ * ;We load and run this in the monitor with a:
ldd #main ;>1 sysmon.mod
std memend_ ;>g 7f60
swi ;We SWI (software interrupt) in the monitor.

ldd //test
jsr printf
rts

{Again, the sys call for the language.

{Return to language requires an RTS.

Again, if you look at the .1st file, you'll find the language portion starts at
$7f66, so that is the address for your SYS call. While the program above is very
simple, it shows how long and complex assembly-language routines can be loaded
and called from the languages. Both programs above will run in any SuperPET lan
guage if the right SYS call format is employed [In mPASCAL, sysproc(32614); in
mFORTRAN, i = sys (cnvh2i (' 7f 66') { APL, DSYS(32614){ mBASIC, sys hex (' 7f 66')— for

SuperPET Gazette, Vol. I, No. 12 -186 February/March 1984

the monitor version directly above. Be sure to not use CAPITALS in any textual
material to come back into APL.

Warning: if you load the ML module in the monitor, after your language is load
ed, be utterly sure you load the module from the monitor first thing. Do not
load a program, define strings, or do any other work before you load the module.
Example of troubles: strings are stored near top of user memory. If you should
define one before memend_ is reset, thou wilt crash. Memend_ will remain at the
set value of $7f60 until you leave 6809, or until you reset it. It's best to
CLEAR memory (reset all pointers), go into the monitor, reset memend_ ($32) to
$7fff, and then CLEAR again, to again reset pointers. Perhaps we're super care
ful, but we haven't crashed when we followed this procedure.
<>CXXXXKXXXXX>C<XXXXXX>C><X><XX><><XXX><XXXXX><><XX><XXXXXXXXXXXXXXX>
STARTER-PAK DISK AND Ever since the price of SuperPET dropped to $995 by

MANUAL AVAILABLE mail order, letters flood in from schools and owners
asking how SuperPET works and complaining the manuals

don't tell you much. We can't cope with that amount of mail, so we wrote a man
ual which distills into 28 pages the essential things you must know when first
you open the box and plug SuperPET in— handling the DOS 6809-side, talking to
disks and printer, what those external switches do, how to load languages from
one drive, printing directories, handling files, the ASCII codes that control
SuperPET's operations, and such— in short,- the basic things we've learned from
two years of using SuperPET. We kept it informal and full of examples. The com
panion disk illustrates the manual and gets into more details in all the langu-
agues but COBOL (don't speak Swahili, either).

Included are eight Reference Sheets which summarize everything from use of ASCII
codes in SuperPET, through 6809 DOS Commands, to search/replace in the mED. We
asked Steve Zeller for an APL WS to handle input/output to and from disks, from
screen to printers, and from disks to screen and printer; Steve came up with a
simple jewel for the disk. Jim Swift's alphabetizing LOADER for APL is included,
along with Reg Beck's DOS.SUPPORT (APL DOS work from a menu), as well as two
ready-to-use versions of UDUMP (no assembly, no linking) which'11 load either
from menu or in the monitor— plus an alphanumeric directory sort which puts two
columns to screen and/or disk and printer. We added a program from P.J. Rovero
which gives a two-column disk directory from main menu. If you can't use SPET
after going through this stuff, best swap for an abacus. Schools may copy both
manual and disk as often as they wish.

Programs and tutorial on disk fill a 4040. The disk is available in 4040 or 8050
format, with the manual, for $15 U.S. If you want it, send a check made out to
ISPUG to the Editor at PO Box 411, Hatteras, N.C., 279^3. State format. We're
happy to say every program is commented, and that there's a six-page index to
programs which explains the purpose of each. Every program is filenamed to show
the language or facility where it runs or can be read. Documented, by gum!
<XXXXXXXX><X>C>C<><XX>CKXX><XXXXXXXX>C><XXXXXXXXXX><X><XXXXX>C><XXX>C><>
ANATOMY I : EXPLORATIONS A few months ago, we received a copy of a note from

IN SUPERPET Dr. H.O. Pritchard of York University about editing
data files which contained CONTROL codes (ASCII 0

through ASCII 31), and, later, that inveterate explorer, Gary Ratliff, submitted
his findings on text compression in the microEDITOR. Ah, serendipity! The two
problems, apparently unrelated, finally fitted together as do pieces of a jig
saw puzzle. Then, CompuServe's 140-character strings got into the act, and we
finally solved the mystery of why 80-character lines from a disk file print to
screen double-spaced in the languages, and yet are single-spaced in the mED.

SuperPET Gazette, Vol. I, No. 12 — 187— February/March 1984

We start with the fact that the CONTROLS from 1 through 13 control SuperPET—
and if read directly from a disk file, perform their function when sent to the
screen. If ASCII 12 is in a file, for example, it clears screen and homes the
cursor. Waterloo therefore strips the CONTROL codes from 1 through 31 from any
file loaded into the mED, and substitutes for it a space— ASCII 32.

Second, we must carefully distinguish between NAUGHT (or ") and NUL (ASCII 0);
they are not equivalent. A careful test in any language, or in the mED, demon
strates this quickly, as we'll show. NUL (ASCII 0) is a special case. Waterloo
apparently employs it as a token for end-of-line or Carriage Return (ASCII 13)»
and you can plainly see it if you enter the monitor from the mED, and dump the
text buffer at $400-$450. Note that all lines end with 00, not with $0d, the
carriage return. In addition, in any language, the blank spaces following the
last printable character on a line are '', and neither NUL nor ASCII 32.

Third, the languages and the microEDITOR do not print long strings in the same
manner. You can demonstate this easily if you create a string of over 80 char
acters in language and then put it to disk. If retrieved from disk in language
and printed to screen, the 81st and subsequent characters print on the next
screen line. In the microEDITOR, that same disk file will print only the first
80 characters. If you delete those first 80 characters with a search/replace
command, the remainder of the string will then appear. (The delete key will
not perform this trick.) Why the difference? Let's sort this out, fact by fact,
and later weave it into a useful pattern.

We demonstrate the effect of NUL (ASCII 0) by creating a disk file of a$, as is
shown at left, with NUL in the middle. We open and

a$="Start"+chr$(0)+"end" print the file to screen in language, and see the
second line at left; NUL prints as a small square.

Startoend [in language] Then leave language, and pull the file into the mED,
loaded alone, and surprise, suprise: you'll see the

Start [in mED] third line at left. Neither ASCII 0 nor the last half
of the string will print. The reason: ASCII 0 (NUL)

demarcates end-of-line, as we said. Repeat the exeriment with NAUGHT ('') sub
stituted for NUL, and the whole string prints in both language and in mED. Note
that you can search the strings above for a terminal NUL (or for ASCII 13) and
never find one. It seems a NUL not only deletes what follows but also deletes
itself. And the same thing is true in Assembly language; 00 marks end-string.

What of disk files? We block-read the files above (SEQ), and found end-line and
EOF marked by carriage returns, not by NULs. SuperPET obviously converts those
NULs we see in the text buffer to CRs for disk files, and then reconverts them
when it recovers the files from disk. Most curiously, the mED does not store any
NULs in the files it creates for its own use, as Gary Ratliff shows below.

At this point, we can reach two conclusions: 1) Never use NUL in a disk file to
be read in the mED. It can destroy part or all of a line, and 2) we still don't
know fully what is going on. So, let's turn to Gary Ratliff for part of the an
swer. We'll weave the threads together at the end.

*

ANATOMY 2 : The Structure and Method of I'm one of the vanishing breed of
Text Compression in the MicroEDITOR hackers who has a computer primar-

by Gary L. Ratliff, Sr. ily to explore how it functions. In
this article, we'll see how text

f?.les are stored in the microEDITOR. You'll have to use the V1.1 microEDITOR,

SuperPET Gazette, Vol. I, No. 12 — 188— February/March 1984

which supports a MONITOR call from the mED (V1.0 does not).

Load the mED alone, from menu, and immediately enter the monitor; at the prompt
enter: >d 0a00.20 to dump the first 32 bytes of user memory. You should see the

line at left. We may safely conclude that 02 01
OaOO 02 01 02 01 aa aa aa aa marks the start and end of the file. Quit the

monitor and enter a single ’a' at left margin,
between <beginning of file> and <end of file>; then return to the monitor, and
dump again. You should see the line below. We gain a further insight into the

02 01 pairs; obviously the $61 is the ASCII code
OaOO 02 01 03 61 02 02 01 for 'a*. But what does the '03' in the third byte

mean? And why the '02' after $61 (our 'a')? For
the next experiment, we'll use a sequence of a's, as shown below. I've commented
the code to the right of the a's to show what happens:

Bytes in line: Characters: Back Pointer:

<beginning of file>
i

02
i
01 Start file.

a 03 61 02
aa 04 61 61 03
aaa 04 03 61's 03
aaaa 04 04 61's 03
<end of file> 02 01 End file.

>d OaOO. 18 To the left is the monitor dump from
;OaOO 02 01 03 61 02 04 61 61 * • • •a ••aa which the table above was construct-
;0a08 03 04 03 61 03 04 04 61 » ed.
;0a10 03 02 01 aa aa aa aa aa «

It seems to be clear . The beginning 02 01 and terminal 02 01 mark the start and
the end of the file. The 02 defines the number of bytes in the starting line,
and the 01 points back to the 02 as the start of the line. Nothing being between
them, the line is blank. We notice also that as soon as there are more than two
"a's", the number of repeated characters is shown by the preceding CONTROL code!
But are we sure of our conclusions? Let's try another experiment, with a blank
line between text lines, and full 80-character lines, as shown below:
xx

xx
>d OaOO. 18
;0a00 02 01 08 1f 78 1f 78 12 *....x.x. This is the monitor dump for the
;0a08 78 07 02 01 08 1f 78 1f *x.....x. three lines shown immediately above.
;0a10 78 12 78 07 02 01 aa aa *x.x..... Data in hex. ASCII $78='x'

Comments on the code:
Start of file: 02 01

Line of 80 x 's :
(in hex)

Comment:
(in decimal)

08 1f 78 1f 78 12
I_______________back pointer is 7 bytes______

31 x's + 31 x's + 18
8 bytes in the line.

78 07

x's = 80 x's

Blank line:
Comment:

02 01
Bytes in Back
line. pointer.

Since nothing appears between the pointers,
the line is blank.

SuperPET Gazette, Vol. I, No. 12 -189- February/March 1984

Second line: Same as first. End of File shown by terminal 02 01.

Why is the limit on repetitions of a character 31 (as it is above)? Why not use
the exact number, which is 80 ($50)? Modify the code and try it. If you get a
'P', don't be surprised. The ASCII code for 'P' is $50. Waterloo very obviously
uses the CONTROL codes from 1-31 in the microEDITOR for counting since they are
easy to recognize and cannot be printed.

With the coding scheme shown above, finding lines in the mED is simple. The 1st
byte at start-of-file (02) points to the start of the line of 80 x's, and that
line starts with a pointer of 08 bytes, which points to the next line, and so on
down the file. It's a simple chain, either additive or subtractive, and shows
why the mED finds lines so easily. If the search/replace method in mED were to
ignore lines shorter than the search string, or the remainder of a string when
the remainder was shorter than the search string, searches for long strings just
might be faster than those for short ones— a nice project for somebody.

You may ask, "What is practical about all this?" First, because you understand
how text is compressed, you'll realize that structured programming and proper
indentation do not waste precious memory (some word-processing programs indicate
a blank line with 80 spaces). Tabs and other identations use memory sparingly;

as an example, the line at left* indented four spaces, uses only five
a bytes: 05 04 20 61 04, and of those five, only two are used to show

the indentation (04 20— $20 being ASCII 32, or a space). One program
mer I know took out most of the indentations in his program to save memory. If
he indented only 1 space, he saved 1 byte per line. Otherwise, he saved nothing.
That knowledge is practical indeed. Second, we now can interpret text files in
the monitor with some understanding of what we see. Third, we better understand
the search/replace process and why it might be possible to speed it up. Fourth,
we now know why it was so simple for Waterloo to give us the ability to insert
blank lines in the mED, and to delete entire lines. Fifth, we've defined the
framework within which a programmer must work to modify mED for word-wrap or for
text-move. Since we now have all the code for the mED, I hope someone does it.

Last, if comfort is practical, we are comforted by having explored and, I hope
you agree, conquered, another aspect of SuperPET.

» « *

USE OF THE LESSONS We're now able to apply the information above to several
SPET problems. While writing this, we got a note from

Don Momberg, of Green Brook, N.J., saying that COMPUSERVE had a nasty habit of
sending him strings up to 140 characters long; his terminal program printed them
to screen okay, but the file saved to disk and recalled into mED showed only the
first 80 characters of such lines. He asked why. Isn't it now obvious? The mED
does not print a new line to screen until it reaches the end-of-line defined by

that first pointer of bytes-per-line.
... ! line$ is original file line The solution is simple: amend the file
150 transfer$=line$: long=len(line$) by program: stuff in a CR at position
160 if long > 80 81 on long lines, and make the excess
170 transfer$=line$(1:80) characters (those beyond 80) a follow-
180 excess$=line$(81:long) ing line. We wrote and tested such a
190 end if program in ten minutes. Key lines are
200 print #12, transfer$ at the left. Anyone
210 if excess$ > " then print #“12, excess$: excess$='' having trouble with

long lines received
in disk files from CompuServe or anyone else now has a solution.

SuperPET Gazette, Vol. I, No. 12 — 190— February/March 1984

Second, there's a problem betwixt the languages and mED on 80-character lines.
If a disk file holds 80-character lines, those lines are double-spaced on output
to screen from any printfile program in language, and from the 'type' command in
microBASIC. Yet the same lines, if put to printer with a printfile program, or
read on-screen in the mED, are single-spaced. On screen, in language, you never
can tell a double-spaced line from an 80-character artifact. The cause: all the
languages automatically CR and linefeed at screen column 80, and then encounter
the terminating CR (or NUL), which sends another linefeed and double-spaces the
lines to screen. Since the mED does not linefeed until it gets to the end of a
line (however long), mED single-spaces those same lines.

Solve the problem in languages (screen output) by sensing an 80-character line;
then print to screen an ASCII 11 without a CR before you print the next line. A
... disk file so handled will give
110 print line$! ASCII 11 is up-cursor. consistent and true output to a
120 if len(line$) => 80 then print chr$(11); printer, to screen from a print-
... ! Semicolon on line 120 essential. file program, and in mED. The

two lines at left are in every
printfile program we use to solve the puzzle of "is that text really double
spaced, or is it an 80-character artifact?"

So, a little work on anatomy indeed has practical results. And more next issue.
O
BROTHER JOHN, BROTHER JOHN Marvin Cox, of 4900 W. 96th St., Oak Lawn, IL

60453, stimulated by Gary Ratliff's notes on mu
sic in SuperPET, sent in the following microPASCAL program, which repeats the
nursery rhyme, "Brother John", in right smart fashion. If somebody knows how to

turn up the volume, please write. We
program music_pd(output); had to borrow a stethescope from a
var doctor (who thinks we're bonkers) to

n:integer; hear it. Note how easily Marv passes
procedure u(pitch,duration :integer); parms to procedure u, and those clear,

var readable but long variable names. Next
lengthofnote:integer; issue, we'll hear from Gary Ratliff on

begin why they run as fast as short variable
for lengthofnote :=0 to duration do names in SuperPET. Waterloo found a

poke(59464,pitch) clever way to do it.
end;

begin
poke(59467,16); {to activate, poke 16 into hex e84b}
n:=15;
repeat

poke(59466,n); {poke in any integer from 1 to 254 to change tone.}
u(90,10);u(81,10);u(72,10);u(90,10);
u (180,10);u(162,10);u(144,10);u(180,10);
u(72,10);u(68,10);u(60,20);
u (144,10) ;u(135,10);u(121,20);
u(60,04);u(55,04);u(60,04);u(68,04);u(72,12);u(90,12);
u (121,04);u(110,04);u(121,04);u(135,04);u(144,12);u(180,12);
u(90,10);u(120,10);u(90,20);
u (180,10);u(239,10);u(180,20);
n:=n+35;

until n>=254;
poke(59467,1) {to inactivate, poke in any integer except 16}

end.,

SuperPET Gazette, Vol. I, No. 12 -191- February/March 1984

<x>o<c>o<xxx>
EXTENDED MONITORS Gary Ratliff's EXMON finally arrived; we have it on disk
and OTHER GOODIES with Terry Peterson's beautiful SPMON, an extended monitor

which lets you slowstep through a program, disassemble it,
skip or run through subroutines, handle the DOS, save memory modules, and much
more. By April 15, we'll have a bunch of assembled and linked assembly-language
utility routines, fully commented, on the same disk. A few examples: pdir, which
gives you a two-column directory from main menu, and optionally sends two-column
directories to printer; four screen dumps, ready to go, which handle ANY printer
and load either from menu or in the monitor (pick the one for your printer), and
also optionally dump to disk; one that sends any SEQ file to printer from menu,
an alphabetical sort, a machine-language program to change disk addresses from
menu...and a bunch more. After April 15, you can get the disk in either 4040 or
8050 format (it fills a 4040) for $10 U.S. Write the Editor, and state format.
<xx>
IF EQ, IF NE, IF GT WHAT?? Ever moan 'Strike 3!' when reading assembly lang-
A Definition : CC Register uage source code, when you see: 'if eq, if gt, or

if It,' etc., and find no previous comparison to
tell you what is equal to, greater than, or less than what? Does the example

at the left leave you wondering what is eq to what? Peace. During
loop 'Ida ,y+' the 6809 checks dutifully to see if the result in the A

Ida ,y+ register is a zero. In the loop at left, we might be loading some
until eq values ending in a null byte (00). When that null loads, the Zero

Flag of the Condition Code (CC) register is set to 1, which sat
isfies the program condition 'until eq.' The Waterloo Assembler manual defines
all the Flags of the CC register clearly on page 93. It is in the CC register
that you'll find a number of specific conditions reported. But— this leaves us
with two questions: 1) How do you sense or use the conditions reported by the CC
register, and, 2) How do you read the blamed CC register, anyway?

On question 1): You sense the CC conditions using the excellent listing of con
dition codes on page 150 of the Waterloo Assembler manual. Then read Gary Rat
liff's column, this issue, on when and how to use those codes. Next, you'll find
that each operation of the 6809, as defined from page 102 of the manual forward,
clearly tells you what happens down in the CC register if you use that instruc
tion. Take our loop example, above. On p. 120 of the manual, you are told that a
LD (load) for an 8-bit register will handle the CC flags as shown at left. Note

we can expect the Zero flag (Z) to be
N - Set IFF bit 7 of data is set set to 1 if all data bits are zeroes.
Z - Set IFF all bits of data are clear So, when we said 'until eq' in the ex-
V - Cleared ample at the top left of this page, we

meant: 'until the zero flag is set.'

With all this in hand, you know both what conditions you can set as tests, and
what each 6809 operation will do to the CC register. But— now you face the sec
ond question: How the §*! do I easily read the CC register to find out what con

ditions are reported and what they mean? Peep into the monitor, and note
CC that the CC register is reported in two hex digits, as in the example at
c9 the left. Use the short table below to convert $C9 to its binary equiva

lent. See how we distribute the binary values to define the status of
each flag in the CC register in the line immediately below the table.

SuperPET Gazette, Vol. I, No. 12 — 192— February/March 1984

Handy-Dandy Conversion Table : Hex to Binary
Hex Binary Hex Binary Hex Binary Hex Binary
0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

$C $9
$C9 allocated: 1 1 0 0 1 0 0 1

Flag ID: E F H I N Z V C
Bit Number: 7 6 5 4 3 2 1 0

Full Flag Entire FIRQ Half IRQ Sign Zero Over Carry
name: State mask carry mask Flag Flag flow Flag

Flag bit Flag bit Flag

Logic operations affect? No Yes Yes Yes No

Flags do not change until the processor executes an instruction which requires a
change. Any bit can be changed by ORing or ANDing. OR CC with 1 will set flag
if not set; AND CC with 0 will clear a flag if set.
<xxxxxxxxxxxxxxxxxxxxxxxx>c><xxxx><xxxxxxxx><xxxxxxxxxxxxxxxx>

B I T S B Y T E S & B HIKES s by Gary Ratliff, Sr.
215 Pemberton Drive, Pearl, Mississippi 39208

The major feature which distinquishes a computer from other equipment is its de
cision-making capability. In the 6809, you find enough types of decision-making
branch instructions to confuse the unwary. Some are designed to test two's com
plement numbers and others test unsigned numbers. In this issue, we'll concen
trate on how to select the branch instruction which will conduct the exact test
you want.

First, exactly what is the difference between a two's complement number and an
unsigned number? In an 8-bit computer we have that many bits to represent a num
ber, identified from right to left as bits 0 through 7. Bit 0, on the right, is
the least significant (LSB); bit 7 is the most significant (MSB). With this num
bering scheme, the bit position represents the power of 2 to which a bit in that
position is raised, as shown in the example below. This works well for unsigned

numbers. But how do we
discriminate between a
positive and a negative
value? The convention is

that the MSB repre
sents the sign of a
number. If bit 7 is

0, the number is positive; if 1, the number is negative. When the MSB is a sign
bit, numbers are in two's complement form. How are they expressed?

I convert 3 to -3, as two's complement, below. Step 1 changes all 0's to 1's and
vice-versa. Then we add 1. The result is the

3, unsigned: 00000011 two's complement, and the expression of -3 in
3, one's complement: 11111100 binary. This is no fun and people detest hav-

add 1 1 ing to do it. The instruction set of the 6809
-3, two's complement: 11111101 will do it for you. To get the one's comple

ment of the value in A register, use COMA, To

Value of Bit, if Set: 128 64 32 16 8 4 2 1
Bit (and power of 2): 7 6 5 4 3 2 1 0

Sample binary number: 0 1 0 1 0 1 0 1
64 + 16 + 4 + 1=85

SuperPET Gazette, Vol. I, No. 12 -193- February/March 1984

get the two's complement, use NEGA. The 6502 doesn't have native instructions to
do this; we get the one's complement with: EOR #$ff, and the two's complement by
using CLC EOR #$ff ADC . Here, writers who came to the 6502 from the 8080, the
Z80 or 6800 usually say 'unfortunately, the 6502 lacks the complement instruc
tion.' They fail to mention that (fortunately, with pipelining), the 6502 often
executes the instructions above faster than chips with a built-in 'complement',
so don't be surprised if you find a Z80 running at 8 MHz so that it can keep up
with a 6502 executing at 1 MHz. (I admit to a little bias....)

Now that you have the idea that numbers are represented in unsigned form if con
sidered to be positive and in two's complement form when considered negative,
let's explore how we can test numbers and make branch decisions in 6809.

I have created a table which expresses test conditions; it also shows which of
the tests is best for our use. In all examples, I use > to mean greater than, =>
to mean equal to or greater than, =< to mean equal to or less than, < for less
than, <> to mean not equal, and = to mean equal to. BR means 'branch.'

UNSIGNED TESTS:

Condition: 6809 Branch Mnemonic: Structured Form:

Register = Memory BEQ (BR if Equal) ' if eq
Register <> Memory BNE (BR if Not Equal) if ne
R => M BCC or BHS if cc or if hs

(BR if Carry Clear, if Higher or Same)

R > M BHI (BR if Higher) if hi
R =< M BLS (BR if Lower or Same) if Is
R < M BCS or BL0 if cs or if lo

(BR if Carry Set, if Lower)

M = R BEQ (BR if Equal) if eq
M <> R BNE (BR if Not Equal) if ne
M => R BLS (BR if Lower or Same) if Is
M > R BCS or BLO if cs or if lo

(BR if Carry Set, if Lower)

M =< R BCC or BHS if cc or if hs
(BR if Carry Clear, if Higher or Same)

M < R BHI (BR if Higher) if hi

SIGNED (TWO'S COMPLEMENT) TESTS

Condition : 6809 Branch Mnemonic : Structured Form;

R = M BEQ if eq
R O M BNE if ne
R => M BGE if ge
R > M BGT if gt
R =< M BLE (BR if Less than or Equal to 0) if le
R < M BLT (BR if Less lhan 0) if It
M = R BEQ if eq

SuperPET Gazette, Vol. I, No. 12 -194- February/March 1984

M <> R
M => R
M > R
M =< R
M < R

BNE
BLE
BLT
BGE
BGT

if ne
if le
if It

if ge
if gt

MISCELLANEOUS CONDITIONS
Condition : 6809 Branch Mnenomic ; Structured Form:

IF N BIT SET BMI (BR on Minus) if mi
IF N BIT CLEAR BPL (BR on Plus) if pi
IF V BIT SET BVS (BR on Overflow Set) if vs
IF V BIT CLEAR BVC (BR on.Overflow Clear) if vc
ALWAYS BRANCH BRA (BR Always) n/a
NEVER BRANCH BRN (BR Never) n/a
SUBROUTINE BSR (BR to Sub-Routine) n/a

Structured programming statements and branching provide powerful means to make
decisions. The tables above should let you perform the correct test for the val
ues you compare, whether they be signed or unsigned, or when you are interested
in a value at a specific memory location or in the value of a register.
<xxxx><xxxxxxxxxx>c<xxxx><>c><xxxx><xxxxxxxxxxxxxxxxxxxxxxxxxxx>
A WAY TO LOCATE RECORDS Some of those who read my first article may have
IN RELATIVE FILES BY DATE wondered where the "speed and ease" of using rela

tive files comes in, since you have to know the
record number to access the record. Here's a function which calculates record
numbers for you, intended for files in which there's a record for each weekday.
It can be modified to be usable if there is a record for every day. Give it a
date; it gives you the corresponding record number.

800 def fn_reccalc (date_$, origin, wkday) ! works for 20th century only
810 y_=1900+value(date_$(7:8)) :m_=value(date_$(1:2)) :d_=value(date_$(4:5))
820 wkday = 6 - wkday : weekend_ = 0
830 if int(m_)>2
840 m_=m_+1
850 else
860 y_= y_-1: m_=m_ + 13
870 endif
880 dy_=int(365.25*y_)+int(30.6*m_)+d_-694038 ! dy_=# days, 01/01/00-date_$
890 nday_ = dy_ - origin : if nday_<0 then print"Date before origin" : stop
900 if (nday_-wkday)/7 - int((nday_-wkday)/7) < 0.2 then weekend_ = 1
910 if nday_ < wkday ! nday_ = // days from first date in file to date_$
920 fn_reccalc = nday_ + 1
930 else
940 fn_reccalc = nday_ - 2 * (1+int((nday_-wkday)/7)) + 1
950 endif
960 fnend

The heart of the function lies in lines 830-880, which calculate the number of
days from Jan 1st, 1900 to the date, 'date_$', which you supply. The second par
ameter, 'origin', is the number of days from Jan 1, 1900 to the first day in the
file. The third parameter, 'wkday', is the day of the week on which the first
day in the file falls (1=Monday, 2=Tuesday, etc.).

SuperPET Gazette, Vol. I, No. 12 -195- February/March 1984

When you set up a file, you must determine 'wkday1 from a calendar and then cal
culate 'origin'. You can do the latter by using the function itself. Suppose the
the first day in your file is 6/11/82. Type the line shown left, below, in imm

ediate mode. Note the format of the date, which
x=fn_reccalc("06/11/82",0,1) MUST be expressed as an 8-character string, in

the form MM/DD/YY. (The other two parameters do
ue of 'origin', so type 'print dy_' in immdiate mode. You'll get 30112 as the
value of 'origin' (the number of days since Jan 1, 1900). And, since 6/11/82 was
a Friday, wkday=5.

Now let's put 'origin', date, and 'wkday' to work. Suppose you need to determine
the record in which to put data for 12/7/82. Enter the immediate mode line shown

at left, and you will be told to put the
print fn_reccalc("12/07/82",30112,5) data in record 128. Obviously, 'origin'

and 'wkday' are constants for a particu
lar file, so I usually store them in record //0, which is not used for data. In
cidentally, if you accidentally specify a weekend date, the variable 'weekend_'
is set to 1 (true).

As written, the function works for this century only. If modified slightly, it
should be usable until Feb. 28, 2100, though I have not checked it beyond 1999.
To use the function for dates after 1999, you have to supply dates as a 10-char
acter string ("MM/DD/YYYY") and alter line 810 to read:

810 y_=value(date_$(7:10)):m_=value(date_$(1:2)):d_=value(date_$(4:5))

If you need to store data for every day of the week, not just weekdays, modify
the program as shown below. Example: let the first day be 8/5/82. So type your

call: x=fn_reccalc("08/05/82",0), and print
Delete lines 900-950 and line 820 'dy_' for 'orig-
Modify line 800 to read '800 def fn_reccalc(date_$, origin)' in', which turns
Add '900 fn_reccalc = nday_ + 1' out to be 30167.

Then type:
'print fn_reccalc("12/31/82",30167)' to learn that data for 12/31/82 should be
placed in record //149.
o<xxxxxx><xxxx><xxxxxxxx>o<xxxxxxxxxxxxxxxxxxxxxxxxxxx>o<><><>c><>
APL CHARACTER SET FOR The three articles following show how to print the APL

EPSON PRINTERS character set to Epson printers. They use two distinct
methods to create the character at printer after the

character set is defined. In the first, the dot-matrix pattern for the character
is transmitted for each character printed. In the second, the character set is
downloaded to printer RAM and the characters are called with their normal ASCII
code. Terry Peterson uses method 1 on the MX-80, to which you cannot download a
character set. Reginald Beck uses method 2 to download a set to the FX-80. Steve
Zeller does it both ways. All have created character sets which should work, if
properly employed, with any Epson printer. Those who own Commodore printers will
find in all articles clues on how to approach the problem.

All programs and all character sets in the next three articles are on disk (in
cluding the character sets or their representations), so that you need not de

sign your own unless you care to. See end of articles on how to get the disk.

All characters sent to Epson printers are defined as the position of dots in 11
vertical slices of an 8—by—11 matrix, as shown at the left, below. There, we de-

Super PET Gazette, Vol. I, No. 12 — 196— February/March 1984

define the character 'T' as an example.
Column Value The columns (vertical slices) are each

Row 1 2 3 ^ 5 6 7 8 9 0 1 of Col defined by a power of 2, assigned to
1 • «

2
3
4

5
6
7
8

* * 128 the rows of the column. Column 6, for
* 64 example, is the sum of all the digits in

32 the column ’Value.1 Column 1 is 0; col-
16 umn 2 is 128+64 = 192; column 4 is 128.
8 By using powers of 2, each sura sent is
4 utterly unique, and can be parsed as one
2 and only one column pattern. If you de-
1 fine your own set, this is how and where

you start. Note: watch out for Q I O . In
both Terry’s and Steve's listings, ASCII 0 is defined as 1 in the character set,
with D I O set to 1. You must subtract 1 from the ASCII code and 1 from the col
umn totals in the listings to convert to the matrix, values above. Example: col.
2, above, will show a value of 193 in listings, when its base 0 value is 192.

Last, note that while dots may be adjacent in columns, some Epson manuals say to
leave a space in rows, as we've done above. Both Terry and Steve intentionally
ignored this, and report no problems. Suggest you check on your printer before
you cram dots together in each column of one row. (Reg Beck left row space.)
<xxxx>o<xxxxxxxxxxxxxxxxxxx><x>c><c><xxxxxxxxx>oo<xxxxxx><xxxxxxx>
[Ed. Terry's work below was done in V1.0 of APL. If you want to use the method
in V1.1, the programs must be revised. We publish the article because it shows
one way to solve the problem of printing the APL character set. Basically, Terry
uses the dot-matrices of the SuperPET character generator ROM. He unloads that
character generator, and converts the matrices to generate the set at printer.
The final character set is available on disk.]

LISTING MICROAPL TEXT USING DOT-MATRIX PRINTER "BIT-GRAPHICS"
by Terry Peterson, 8628 Edgehill Court, El Cerrito, CA 94530

Printing APL listings is a perennial problem. Every new APL user has to find a
way to get hard copies of nonstandard-character APL text. Typically this problem
has been solved by using a special, dedicated-to-APL printer or, with the advent
of removable print elements, by fitting one's printer with a special APL print
ing element. The existence of dot-matrix printers with programmable characters
or 'bit-graphics’ makes possible a new solution to this problem for the APL pro
grammer. This article describes the procedure I used to obtain a data represen
tation of the SuperPET's microAPL character set suitable for use in printing APL
listings on an Epson MX-80 with Graphtrax 80 or Graphtrax+. It also presents the
resulting data set and the APL functions I wrote to produce APL listings. One
should be able to use this procedure and these APL functions, with little modi
fication, to produce APL hardcopy on any dot-matrix printer having dot-program-
mable printing capability.

The characters of any character set on a dot-matrix printer or CRT are made up
of arrays of dots. In the case of the SuperPET each CRT character is composed of

an 8-by-8 matrix of black or green
Listing 1 dots. Each dot location is called

a 'pixel.' To form a given charac-
[0] CHAR.XFORM ;A;Z;OIO ter, a pattern made from the 64
[i] a pixels in that character location
[2] b THIS FUNCTION READS THE 'PROGRAM' FILE is projected on the screen under
[3] « NAHED 'S.P.CHROM' (IN ASCII UPPERCASE) the direction of an integrated

SuperPET Gazette, Vol. I, No. 12 -197- February/March 1984

[4] a THAT HAS 'SAVED1 FROM THE PET M.L. MONITOR

[5] A AND WHICH CONTAINS AN IMAGE OF THE SUPERPET

£ 63 a CHAR. GEN. ROM. IT FIRST SKIPS OVER THE

[73 a TWO CBM AND THE ASCII CHARACTER SETS,

t 8] a THEN IT READS THE FOURTH SET IN 8-BYTE (ONE

I 9] a CHAR.) CHUNKS, TRANSPOSES ROWS AND COLUMNS,

C103 a AND WRITES THE TRANSPOSED BVTES TO THE FILE

til] A 'APLCHRS' FOR USE IN ’MX.BYTES1.

[12] A

[13] OIO<-0

[14] 'DISK/l.r.a.ruPol,*P*' DTIE 99

[151 •» <8*P0STATUS 99)/0

[16] 'APLCHRS1 OCREATE 98

[17] Z «• DGET 99,2+(3x1024)

[18] LOOP: Z <- DGET 99 8

[19] D <- A «■ *(8P2)tOAViZ

[20] (0AV[2iA]) DPUT 98

[21] •» (8=PQSTATUS 99)/L00P

[22] DUNTIE 99

[231 DUNTIE 98

circuit called a CRT controller
(CRTC). The characters that are to
be displayed are in turn read by
the CRTC from an area of memory
called screen RAM. A complete de
scription of arbitrary dot pat
terns in the 64 pixels of the 2000
character locations on the Super
PET screen would require at least
16,000 bytes of RAM— a rather huge

aOPEN 'i:S.P.CHR0M,PRG'

a QUIT IF NOT FOUND

a FILE FOR TRANSFORMED BVTES

aSKIP LOAD ADDRS + 1ST 3 SETS

aGET 8 BVTES = ONE CHAR

a TRANSFORM + DISPLAV

a WRITE XFORMED BVTES

aLOOP UNTIL DONE

amount of memory to dedicate to a display (but that’s what the IBM PC and Victor
computers, etc., do for graphics only). If, however, we restrict ourselves (as
does the SuperPET) to a description of 2000 characters selected from a set of no
more than 256 characters, the minimum size of the screen RAM may be reduced to
equal the number of characters.

This economy is accomplished by having the CRTC ’look u p’ the actual 8-by-8 pix
el pattern for each character in a ’table’ of patterns contained in a ’character
generator’ ROM. The ROM can contain a complete description of a 256-character

set in 2K bytes. An addit-
Listing 2

[0] BVTE.GEH

[1] DIO <• 1

[2] a THE FOLLOWING DEFINES A VECTOR 'B* TO CONTAIN THE MX88

[3] A EQUIVALENTS OF THE COLUMNS OF DOTS SHOWN ON THE SUPERPET

[4] a SCREEN BV THE CHARACTER GENERATOR ROH. 'B' IS THEN WRITTEN

[5] a TO THE DISK AS A 'BARE' SEQUENTIAL FILE FOR LATER USE BV

[6] a THE FUNCTION 'MX.CHARS'.

[7] A

[8] B<- i i 16 16 16 16 16 1 1 1 1 256 1 1 i 1

[9] B<-B, 17 17 17 17 17 17 17 17 17 17 17 241 1 1 1 1

[10] B*B, 1 1 1 241 17 17 17 17 1 1 1 32 17 17 17 17

[11] B<-B, 17 17 17 32 1 1 1 1 17 17 17 241 17 17 17 17

[Ed. We do not print all of this listing,
since it is on disk and would be tedious
to copy. The abbreviated listing is shown
to help you follow the other programs.]

ional economy is possible
if the second half of the
set is made to be the neg
ative or reverse-field im
age of the first. Then the
CRTC can calculate the 2nd
128 patterns from the 1st
128. Using this scheme,
the 4K character generat
or in SuperPET contains 4

character sets of 256 characters,
each set composed of 1024 bytes of
8-bit code defining 128 8x8 matri
ces of characters. The first two
are the usual CBM character sets,
the third is an ASCII set used by
all Waterloo languages except APL,
and the last is the mAPL set.

Knowing the dot-by-dot definitions of a character set lets us display its char
acters on printers like the Epson MX series, since such printers permit us to
specify the print lines in terms of individual columns of dots instead of char

SuperPET Gazette, Vol. I, No. 12 -198- February/March 1984

acter by character. (Some printers allow you to specify the pixel pattern [Com
modore] or character sets [Base 2]). This facility is equivalent in function to
the bit-graphics approach and conceptually more straightforward to implement.
The details of character formation in that case, however, are a bit messier,
since the characters are not usually 8-by-8 arrays.

Obtaining APL hard copy on bit-graphics printers is merely a matter of drawing
the lines of text using the dot-patterns contained in SuperPET's character-gen-

erator ROM. Having realized this, one is left with two (minor) impediments: (1)
The character generator ROM cannot be directly accessed from either of the two
microprocessors in SuperPET, and (2) the bytes in the character generator de
scribe rows of pixels while the printer description requires columns of pixels.

One may solve the problem easily: remove the character generator ROM (e.g. ROM),
plug it into the expansion socket of another SuperPET, and save an image of
that socket's address range on tape or disk. If you don't have access to a sec
ond computer or are squeamish about messing with SuperPET's innards, skip to the
description of listing 2 (BYTE_GEN) for an alternative way. Only part of listing
2 is shown, so you can get the idea. The full listing is on disk. [Or use the
Zeller/Beck method.]

Whether you copy your own e.g. ROM or use the disk material, you now have a copy
of the character generator ROM that the microprocessor can see. Next, we address
the row-column problem by rearranging the bits of our ROM image so we have bytes
representing vertical columns of pixels. We do this with the APL function CHAR_
XFORM we show in listing 1; it reads the APL character section of the e.g. ROM
image one character (8 bytes) at a time. Each character representation is con
verted into an 8-by-8 array, which we then transpose, swapping rows and columns.
The array is then reconverted to 8 bytes and written to the file APLCHRS. As
this process continues, the 8-by-8 matrix representation of each character is
displayed on the CRT to allay fears that nothing is happening.

•

BYTE_GEN, listing 2, gives you another way to obtain a disk file representation
of the columns of the APL character set. If you have BYTE_GEN on disk, it pro
duces a disk file identical to that you'd get by copying the e.g. ROM and execu
ting CHAR_XFORM. BYTE_GEN defines a vector 'B' to contain the numbers correspon
ding to the pixel columns of the microAPL character set, and then writes 'B' to
disk as a sequence of bytes. Whichever of the two ways described is used to gen
erate it, the resulting disk file may be used in APL functions such as MX_DRAW,
shown in listing 3, to produce hard copy listings of APL text on a dot-matrix
printer. Notice that only 128 characters are defined in APLCHRS. I ignored the
reverse field characters since they never appears in listings. These could be
added, of course, for use with a screen dump routine.

[0] MX.DRAW FUNCTION ;XREP;SHAPE;CMDSEQ;D 10; IC;J

[1] DIO <- 0

I 2] MX.CHARS

[3] IC <- (1 4 P D A V I 0 J) , 1 32+4#*««?m \ / b D'B i '
[4] ICMC,' ')<<=>] VA# + /0i23456789([;X :*
[51 I C < - I C , •' 1DIt o*?pT-4ou3tc<-h-»>-

[6] IC«-IC,1 «ABCDEFGHIJKLMN0PQRSTUVHXYZ(-O$$‘

[7] XREP <- OCR FUNCTION

[8] SHAPE f 1 8 x p XREP

[9] CMDSEQ <■ 0AV[27,76,(2561 SHAPE!1J),I SHAPE! 11+2563 « <ESC>,L,NBYTES

[10] A

a USE ZERO ORIGIN

bGET CHAR SET BYTES

bDEFINE INTERNAL CHAR SET

bMAKE CHAR ARRAY

aCALC. SHAPE OF OUTPUT

Listing

3

SuperPET Gazette, Vol. I, No. 12 -199- February/March 1984

111] ' IEEE4' OCREATE 99 aOPEN PRINTER FILE

(123 J f 0 a INITIALIZE COUNTER

[131 DAVI15] DPUT 99 A < SI > FOR NARROW CHARS FOR NUMBERS

[14] LOOP: DAVt13] OPUT 99 aPOSITION PRT HEAD AT LEFT

[IS] (OXR ' <■' , <2 0jJ),'-» ') DPUT 99 aOUTPUT LINE NUMBER

[16] CMDSEQ DPUT S3 aSET PRNTR TO GRAPHIC MODE

[17] MX.BYTESnCiXREPIJ;];] DPUT 99 aOUTP GRAPHIC IMAGE OF LINE

[18] •* <<J <• J+1)<SHAPE(0])/LOOP aLOOP UNTIL ALL LINES DONE

[19] DAVI 13 18 13] OPUT 99 aFLUSH BUFFER ♦ CANC. <SI>

[20] DUNTIE 99 aCLOSE PRINTER FILE

[0] MX.CHARS

[1] A

[21 A

[3] A

[4]

[5] A

[6]

[7]

[8]
[91 A
[10]

GET CHAR-GEN DOTS FROM DISK FILE

UNLESS MX.BVTES ALREADY IN HS.

■» (B^DNC'MX.BYTES’)/8 A IF HAVE BYTES, OUIT

'APLCHRS* DTIE 99 aOPEN FILE HITH CHAR. DOTS

MX.BYTESfDGET 99 1024 aGET THE CHAR.-SET DOTS

DUNTIE 99 a CLOSE FILE

Now that we have the necess
ary data representation of
the APL character set, all we
need is a transcription rou
tine to convert the internal
representation of APL text to
the appropriate sequence of
bytes to ’draw' on a printer.
The routine, MX_DRAW, is giv
en in Listing 3, which also
shows MX CHARS, a routine to

MX.BYTES <■ 128 8 P MX.BYTES a RESHAPE INTO CHAR.-BYTE ARRAY

retrieve the byte data from the disk file. MX_CHARS reads the character set
bytes from the disk file 'APLCHRS' into the global variable MX_BYTES. MX_DRAW
first calls MX_CHARS to make sure MX_BYTES has been defined, then it defines a
character vector 'IC' to contain the internal representation of the characters
of the microAPL set in the sequence obtained by poking the integers zero to 127
to the screen. (Note this is not identical to the first 128 elements of the APL
'atomic vector.') Since the first 14 characters are graphics or control charac
ters, they are effectively ignored by defining them to be 'nulls' in IC. In line
[7] the function to be listed is transformed by the intrinsic function ’canoni
cal representation' into a character array XREP having as many rows as there are
lines in the function definition and as many columns as there are characters in
the longest line of the function definition. In line [9 3 the byte sequence is
calculated that signals to the MX-80 that a bit-graphics image is coming. Then a
file to the printer is opened and each line of the function (that is, each row
of XREP) is output to the printer, following its line number, as a sequence of
bytes selected from the rows of MX_BYTES by matching the characters in XREP and
IC. I apologize to the APL experts reading this, as I am sure a purist would not
use a loop such as in lines [14-17]. In my defense I submit that I did write a
’loopless' version of MX_DRAW, but it couldn't list itself because of a 'WORK
SPACE FULL’ error.
c<xxxxxxxxxxxxxxxxx>oc<xxxxxxx><c<xx><>cxxxxxxxxxxxxx><xxxxxxx>o

GENERATING THE APL CHARACTER SET : PRINTING BY BIT-MAPPED GRAPHICS AND BY

DOWNLOADING. By Steve Zeller, 6425 31st St. N.W., Washington, D.C. 20015

You have three options for generating the APL character set with the dot-matrix
printers most of us use: (1) to insert a chip which supports APL, (2) to print
using bit-mapped graphics, and, most recently, (3) to download an APL character
set to the printer. Some chips do exist for Epson MX-80 and DEC LA-120 printers,

SuperPET Gazette, Vol. I, No. 12 -200- February/March 1984

but I know of none for the CBM 4022 and 8023 models. This article presents an
APL character set for Epson dot matrix printers. For the MX series of printers,
printing is done in bit-image graphics mode. This requires extra routines in
the WS to print, however, and is slow. The newer FX series allows downloading
of a character set to the printer: APL printing is then accomplished at 160 cps.
All the tools needed to develop and print APL characters are presented here. It
is hoped that these tools will provide CBM 4022/8023 owners with a solution to
their problem as well. Note that other character sets, such as the PET ASCII-
Graphics set, can be developed with this approach. This material was developed
simultaneously by Reg Beck and myself, while Terry Peterson did his work over a
year ago in V1.0 APL.

In bit-image mode, eight of the wires in the Epson print head can be controlled
by a single byte from the micro. Characters downloaded to the FX printers can be
at most 8X11; I chose an 8x10 matrix, with the 11th column left empty, and ig
nored other features, such as true descenders and proportional spacing.

Terry Peterson based his design on information stored in the SPET's character
generator. For several reasons, I decided to design the APL characters myself.
It turns out, however, that the design problem is a nice application for APL.
The character is first represented by an 8 by 10 matrix, say, of "nulls" on the
screen. Using the SPET's cursor controls, I build a character using "quad's"
and convert it to a boolean data matrix of the same size. Finally, the APL op
erator, "decode", is used to map each column of the representation matrix into
the relevant byte for the printer. I show the overstruck character "del stile"

at the left, and then generate it on the screen by the methods
explained below. Details of the screen "get" function can be found
in Vol. 1, No. 8 (p. 106) of the Gazette.V

VGETjCHRlUlV
[0] BMAT «- GET_CHR AN S', MAT
[1] CLEAR
C 2] 0 8 lOp
[3] O rC lO lO +6],'N O W CURSOR AROUND MATRIX AND BUILD CHARACTER WITH
[4] ' WHEN FINISHED, CURSOR DOWN TO PROMPT AND H IT <RETURN> '
[5] ^REVERSE •>*
[6] ANS+E
[7] MAT+-AGETSCRll+\8;ilO]
[8] BMAT+MAT*'~'

U"

~0— □— □—
— DHZHD—

THE CHARACTER IS TO BE A MATRIX OF 8 BY 10 DOTS. THE ROUTINE
ABOVE FIRST CLEARS THE SCREEN AND THEN PRESENTS AN "EMPTY"
CHARACTER CONSISTING OF <TILDE>. USEING THE CURSOR KEYS, A
CHARACTER IS DESIGNED WITH <QUAD>. WHEN DONE, CURSOR DOWN
TO THE PROMPT AND H IT <RETURN>. HE RELEVANT 8x10 PORTION
OF THE SCREEN IS CONVERTED TO A BOOLEAN MATRIX AND RETURNED.
FOR EXAMPLE, WITH: IC+GET CHR, THE MATRIX IS SHOWN BELOW.

NOW CURSOR AROUND MATRIX AND BUILD CHARACTER WITH .
WHEN FINISHED, CURSOR DOWN TO PROMPT AND HIT <RETURN>

NOW CURSOR AROUND MATRIX AND BUILD CHARACTER WITH .
WHEN FINISHED, CURSOR DOWN TO PROMPT AND HIT <RETURN>

SuperPET Gazette, Vol. I, No. 12 -201- February/March 1984

IC
0 0 0 0 1 0 0 0 0 0 1........ .. -—
0 0 0 0 1 0 0 0 0 0 I EACH COLUMN REPRESENTS A " FIRING PATTERN' FOR THE
0 0 0 0 1 0 0 0 0 0 I PRINTER'S EIGHT P IN S . THERE ARE 2 TO THE 8TH POWER
1 1 1 1 1 1 1 1 1 0 I UNIQUE COMBINATIONS, AND THE EPSON EXPECTS AN A S C II
0 1 0 0 1 0 0 1 0 0 I CHARACTER TO TELL I T WHICH ONE I T I S . WE NEED TO
0 0 1 0 1 0 1 0 0 0 1 KNOW WHAT THE BASE 2 VALUE OF EACH BOOLEAN COLUMN
0 0 0 1 1 1 0 0 0 0 I I S AND WE CAN DO THAT WITH "DECODE", AS SHOWN BE-
0 0 0 0 1 0 0 0 0 0 I LOW. THE FIRST COLUMN MAPS INTO 16 AND HENCE WE

2 l i e I NEED TO SEND THE 16TH CHARACTER IN UAV TO THE
16 24 20 18 255 18 20 24 16 0 ““\PRINTER IN ORDER TO FIRE THE PINS CORRECTLY.

Since I need to construct a full character set, it's worthwhile developing some
other tools as well. The functions below allow me specify a range of characters
(All 128 at one sitting is too much!). Each character is displayed on screen
and followed by a prompt for the name of the character, which is stored in APL-
NAMES. The design, using the material above, is stored in APLCHARS and then
sent to the printer. Note that the most compact storage of the bit image infor
mation consists of the relevant bytes and not their boolean representation ma
trix. The routine BIT_Epson puts the printer into dual density bit image mode
and determines the length of the bit ..image line being sent to the printer (al
ways the same in this application).

pAPLCHARS
128 10

pAPLNAMES
128 15

V BUILD_CHARSl D]V
[0] BUILD_CHARS \N\I\IC
C 1] "MASTER ROUTINE TO BUILD APL CHARACTER SET FOR EPSON PRINTER
[2] S I:'E N T E R : START AND FINISH * " S . (1-128)'
[3] -(2*pAM])/Sl
[4] M [l] - 1
C 5] S 2 :'A P L CHARACTER: ',Q4^[I-I+1]
[6] 'ENTER: NAME OF CHARACTER (15 CHRS MAX)’
[7] APLNAMBSUil*- 15+Q
[8] APLCHARSlIi]+OAVlUlO+2ilC+GET_CHR]
C 9] PRINT APLNAMESlI;] ,' \BIT_EPS0N APLCHARSUO
[10] -0V[2]>I)/S2
[11] 'DONE'

VBIT_EPSONiniV
[0] R *■ BIT_EPS0N STUFF ;QI0 ;N C 0L‘,PC0DE
[1] N C O L + C n pSTUFF) +DTOK)
[2] PC0DE+{]AV121 76,(256|M70£) ,LM70£*256]
[3] R*-PC ODE,STUFF

It is sometimes hard to anticipate how the bit image will actually appear on
paper, however, so an editing capability is available in EDIT_CHAR; characters
can be printed on an ASCII printer with PRINT_CHAR. A partial APL character set
is shown in' Table 1, to give you an idea of what the set looks like, together
with the ten-bit image bytes for each character (origin 1).

WPEN_PTRL01V
0PEN_PTR
'IEEE4' OP RE ATE 4

V P R IN m iV
PRINT MSG

MSG DPUT 4
VCLOSE_PTR[D]V

CL0SE_PTR
UUNTIE 4

SuperPET Gazette, Vol. I, No. 12 -202- February/March 1984

VEDIT_CHARl D]7
[0] EDIT_CHAR N \BMAT
C 1] "ED ITS EXISTING CHARACTER
[2] •*■((1>N)v (128<N))/0
[3] CLEAR
[4] (T t f) . A P L N A M E S t N . D A V l N l
[5] 8 10p(, (8p2)T~l+Q47\APLCHARS\.N A'D'
[6] CH-REVERSE »>»
[7] ANS<-0
[8] BMAT-*-(kGETSCR[.(2+\8); \ 10]) = '□'
[9] APLCHARSLNil+ttAVLUlO+2lBMAT']

V PRINT_C ff [□] V
C 0] PRINT_CHAR N
[1] "PR INTS OUT A SC II REPRESENTION OF CHARACTER
[2] -*((1>AOv (128<AO)/0
[3] PRINT (f N) \APLNAMESlNO
[4] PRINT 8 10p(,(8p2)T_l+[Wi4PZZ7//M?5UV;])\,=>’

Now having a character set, we may print it either of two ways. The first method
is bit-image printing; shown below is one way to do this with an MX printer. The
function PRINTAPL will send APL characters to the printer in bit-image codes.
Screen "get" routines are useful to capture data before printing, or CONVFN
will produce a visual representation of a function as a character matrix. Thus,
PRINTAPL CONVFN 'yourfn' will produce a function listing. If space is tight in
the WS (it usually is), the best bet is to send the APL output to a file and to
print it later. Note that there is no need to "explode" the APL output into its
external representation: overstruck characters can be printed with bit image
control "as is". I used this method for several years with an MX-100, and it
should work as well on the MX-80.

v PRINTAPLUJ]!
[0] PRINTAPL STUFF ih.NROW
[1] -Kl<pp STUFF)/MATRIX
[2] PRINT BIT_EPS0N tAPLCHARSlQAV\STU FF ;].DAViUTOl
[3] -*0
C 4] MATRIX: NR0W+-(1+pSTUFF) +T«-0
[5] SI-.PRINT BIT_EPS0N ,APLCHARSlttAV iS T U F F L l+ I+ lO ;] ,0AVL0I0]
[6] +(NR0W>I)/S1

VCONVFNlD]V
[0] CFN +- CONVFN FN \NR0WS\N0S\UI0
[1] DT0«-1
[2] ->(3 =CWC FN)/OK
[3] 'NO F U N C T IO N ... 'tFN
[4] OK: CFN+&R FN
[5] NR0WS4-(pCFN)Zll.
[6] N 0 S - W 1 tNR0WS) p ' C 1),(▼«?(1 tNR0WS)p(\NR0W S)-l), («?(1 ,NR0WS) p’]')
[7] CFN+-N0S ,CFN
[8] C Z W ^ a M p C ^ ^ M p C ' F A O ^] * ' V ' ,FN , ' V ') ,tl~]CFN

Recently, I sold my MX-100 and purchased an FX-100. This printer prints twice
as fast and supports proportional spacing, but the most important feature for
me was the ability to download character sets. The ROM set consists of ASCII in
the lower 128 positions and italics (plus a few other characters) in the upper
128. In addition, 2K RAM is provided for an alternative character set, which

SuperPET Gazette, Vol. I, No. 12 -203- February/March 1984

can be turned on and off at will. The function below loads the bit-image bytes
from APLCHARS to either the upper or lower half of the alternative, RAM-based,
character set. Note that I do not load the overstruck characters to the lower
128, where they have ASCII control interpretations. Such characters must be pro
duced using the sequence of character, backspace, character. I can, however,
load the overstruck characters into the upper 128 and tell the printer not to
interpret them as control codes. With a function such as REVERSE (printed in
an earlier column), APL characters in the lower 128 can be moved into the upper
128 and then sent to the printer. This avoids backspacing and produces faster,
cleaner output. [Ed. The difference in quality between backspaced overstrucks
and those printed directly is most obvious from samples sent by Steve; we regret
we can't print them, since reproductions do not show the full difference.]

VDOWNLOAD_APLCHARSl□]V
[0] D0WNL0AD_APLCHARS ;FN;ANS
[1] "DOWNLOADS B IT MAPPED APL CHARACTERS TO EPSON RAM
[2] 'ENTER: F ILE NAME TO DOWNLOAD T O . . . '
[3] (FJIM3) DCREATE 10
[4] +(0*pnSTATUS)/0
[5] ’ UPPER 128? (Y/N) '
[6] -*■('Y'=1+ANS+?})/UPPER
[7] LOWER:DAVlDl0+27 38 0 32 127] DPUT 10
[8] (A PLC H A R SL(D l0+31+\96)O ,D A V lD l0 lY DPUT 10
[9] -+EXIT
[1 0] UPPER:{EXPAND_PTR) DPUT 10
[11] DAVLDI0+27 38 0 128 255] DPUT 10
[12] (i4PLC7M/?S[QTO+""l+il28;] tDAV{.DlOl) □PUT 10
[13] E XIT:'D O N E '
[14] DUNTIE 10

VR0M_CGID1V
[0] R R0M_CG
[1] "SELECTS RESIDENT CHARACTER SET
[2] / M W C D T 0 + 2 7 37 0 0]

VRAM_CGl D]V
[0] R +- RAM_CG
[1] nSELECTS DOWNLOADED CHARACTER SET IN EPSON'S RAM
[2] i M W [Q T 0 + 2 7 37 1 0]

The upload function can be used to download characters to the printer by re
sponding with a filename such as 'IEEE4'. You can, however, also send these
characters to a disk file, such as ' epson .aplchars,' and then use the copy fa
cilities of either mED or PIP to set up the printer without first loading the
APL interpreter. To do this, you copy the file to the printer (with the printer
turned on). For example, from command level of the microEDITOR, issue the com
mand: copy 'epson.aplchars' to 'ieeeU' in order to set up the printer. This is
particularly helpful when using the SPET as an APL terminal. Reg Beck has pro
vided a machine language program to set up the printer with a similar APL char
acter set from main menu. That program is also on disk.

Finally, the Epson printer needs an IEEE488 interface of some sort. I use the
board provided by Epson that fits inside the printer. This works fine but does
not provide any translations for the 6502 side of the SPET. Reg Beck employs an
ADA1800 interface with good results in both the 6809 and 6502 modes.

SuperPET Gazette, Vol. I, No. 12 -204- February/March 1984

TABLE 1 — Sample of the Zeller APL Character Set, with Column Definitions

6 i nst * 137 137 2 4 9 137 160 9 5 "7s.* 3 2 1

7 eeol 2 4 9 169 169 137 160 2 2 2 n 1

8 c r f w d <T 113 137 137 137 81 32 21 21 17 1

9 c r b c k <* 113 137 137 137 81 32 2 2 2 2 1 1 1

10 tab T» 129 129 2 4 9 129 129 3 2 2 2 2 2 1 1 1

11 c r d w n 113 137 137 137 81 32 18 18 15 1

12 c r u p % 113 137 137 137 81 31 n 2 31 1

13 cl ear ■t 113 137 137 137 81 ?nOxL 2 2 2 2

14 cr <* 113 137 137 137 81 32 21 23 2 2 9

15 nor 81 137 133 131 66 35 37 41 81 1

16 n a n d X 66 131 133 137 81 41 37 35 6 6 1

17 del s t i l e t 33 49 41 37 2 5 6 37 41 49 3 3 1

18 d e l t a s t i 1 e * 5 13 21 3 7 2 5 6 37 21 13 5 1

19 ci r c l e s t i l e 25 37 67 67 2 5 6 67 67 37 2 5 1

20 c i r c l e s l o p e $ 129 89 37 8 3 75 71 67 3 8 2 5 1

<X X X K X x>0<C><XXXXXXXXX><XXXX><XXXXXXXXX><XX>0
APL CHARACTER SET FOR FX80 The material below comes from Reginald Beck of

Box 16, Glen Drive, Fox Mountain, RR #2, Williams
Lake, B.C. V2G 2P2. He uses the ADA 1800 interface, which can be switched to an
8-bit mode. You must be able to transmit 8 bits to your.printer (normal ASCII is
sent in 7 bits). We think most interfaces will handle this, but you'll have to
test. As did Steve Zeller, Reg designed his own character set— but in italics.
We show a sample at the left; the reproduction doesn't show the quality of the
original. Reg dumps the set to his printer before a session with APL. Here is

his description of what he
vDUMPCQ3v does and how he does it:

DUMP ;V ECTO R\DIO
l I E E E 4 l DCREATE 1+DJ0*-O "First, you send some by—
VECTOR*-OAVCS U A P ,A L F ,A L F S Y M ,CH ARS3 tes to direct the printer
VECTOR O PUT 1 to swap its ROM characters
O U N T IE 1 into RAM. Then you send

bytes to tell the printer
where each character is to be loaded. The positions are from 0 to 255. If you
send a sequence of characters, you only have to tell the printer the starting
and ending positions in the 0-255 sequence; otherwise, you specify the position
of each character you send. If you can use some of the ROM characters (I used
the numbers and the punctuation marks), you don't have to download them as they
are already in RAM. Having loaded the set you want, you then tell the printer to
use the RAM character set instead of the one in ROM.

C 03
Z ID
1 23
L 33
t 43

"The programs I send on disk will do this for the FX80. One APL function dumps
the character set to disk (DUMP). The bytes are stored in four global vectors in
the workspace: letters (ALF), the shifted APL symbols (ALFSYM), the other char
acters (CHARS), and 5 swap bytes which swap all printer ROM into RAM (SWAP). I
concatenate these vectors into one in DUMP (see above). It's a good idea to keep
separate global vectors so you can locate and change a particular character. On
disk, you'll find two workspaces: 1) APLCHRSET includes a function DESCRIBE; it
comes in running and supplies some information before it actually dumps the set;
2) the other function, APLCHR, automatically dumps the characters as soon as you
load it. Use either one.

SuperPET Gazette, Vol. I, No. 12 -205- February/March 1984

"Since the characters use bytes up to 256, you must use a full 8-bit interface.
I show at left the steps you follow to load
and use my character set." Readers fill find
SDUMP on page 109 (issue 8) of the Gazette',
and on the disk we offer below. After the
above came in, Reg wrote an assembly-language
program which loads his APL character set
from main menu, filenamed : typeapl:men; it is
also on disk. Put a disk with the character-

set program 'apl.chr' and the program 'typeapl:men' in drive 1 (it's handy on
the language disk). Type: typeapl:men <RETURN> at main menu, and the FX-80 char
acter set will be loaded from menu— if you remember to turn on your printer....

Reg also sent an assembly-language program named 'adump,' which will send any
SEQ file in SuperPET to an ieeeU printer from main menu. It can be re-assembled
and re-linked for 'printer' or 'serial' printers. Very handy, in combination
with another program we got from P.J. Rovero, which gets a two-column directory
of either drive from main menu. That's on disk also, as: dir:men. Since Rovero's
directory program loads in user memory, and Reg's dump loads in bank 15, you can
use the two in tandem: get a directory, then print any file. Neat. In all langu
ages but APL and COBOL, you can 'reset' to the language or facility which is in
the upper 64 after using 'dir:men' and 'adump.' We also put on disk Jim Swift's
'loader :au,' which alphabetizes the directory of any disk (pretty fast) and then
loads the program/WS that you choose. If you use SDUMP (also on disk) with it,
you can send to printer an alphabetized directory of any disk from APL. Source
files (.asm and .cmd) are on disk, with the .mod files, ready to run.

* # *

We also put on disk from R. D. Connely, 424 South Florida Ave., Joplin, MO 64801
a character set for BASE 2 printers (2K for U16 & 17) and a 4K version for late
models (the set includes APL). You may obtain on disk copies of all APL charac
ter set articles of this issue, plus workspaces, character sets, and listings
used by Peterson, Zeller and Beck. For 4040 format, write Secretary ISPUG, 4782
Boston Post Road, Pelham, N.Y. 10803. For 8050, write the Editor, P0 Box 411,
Hatteras, N.C. 27943. Enclose $10.00 U.S. State format. Make checks to ISPUG.
< X X X X X X X X X X X X X X X > < X) < X X X X > 0 < X K X X X X > < X X X > 0 < X X > < X X X X X > < X X X X > < X X X X > < X >
Prices, back copies, Vol. 1 (Postpaid), $ U.S.
No. 1: not available No. 4: $1.25 No. 7: $2.50 No. 10: $2.50
No. 2: $1.25 No. 5: $1.25 No. 8: $2.50 No. 11: $3-50
No. 3: $1.25 No. 6: $3.75 No. 9: $2.75 No. 12: $3.50
Send check to the Editor, PO Box 411, Hatteras, N.C. 27943. Add 30% to prices
above to cover additional postage if outside North America. Make checks to ISPUG

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$
APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP

(A non-profit organization of SuperPET Users)

Name: Disk Drive: Printer:

Address:___
Street, PO Box City or Town State/Province/Country Postal ID#

[] Check if you're renewing; clip and mail this form with address label, please.
For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check payable
to ISPUG in IKS. Dollars. DUES ELSEWHERE: $25 U.S. Mail to: Paul V. Skipski,

Secretary, ISPUG, P0 Box 411, Hatteras, N.C. 27943, USA.
SCHOOLS: Send check with Purchase Order. We do not voucher or send bills.

1. Set interface to 8-bit mode.
2. Load APL (V 1.1)
3. Type)L0AD APLCHR <RETURN>
4. Listen for printer’s "burp."
5. Load Jim Swift's SDUMP and

dump the screen any time.

SuperPET Gazette, Vol. I, No. 12 -206 February/March 1984

This journal is published by the International SuperPET Users Group (ISPUG), a
non-profit association; purpose, interchange of useful data. Offices at PO Box
411, Hatteras, N.C. 27943. Secretary, ISPUG: Paul V. Skipski. Editor, SuperPET
Gazette, Dick Barnes. Send membership applications/dues to the attention of Mr'.
Skipski; newsletter material to the attention of Dick Barnes, Editor. Super
PET is a trademark of Commodore Business Machines, Inc.; WordPro a trademark of
Professional Software, Inc. Contents of this issue copyrighted by ISPUG, 1984,
except as otherwise shown; excerpts may be reprinted for review or information
if the source is quoted. Members of ISPUG are authorized to copy the material;
TPUG may copy and reprint any material so long as the source is quoted. If you
send inquiries, enclose a self-addressed, postpaid envelope (4 x 9.5 inches,
please). If you submit material for the Gazette, enclose a suitable return/reply
envelope, postpaid. Canadians: enclose Canadian dimes for postage. See enclosed
application form for membership dues. The Gazette comes with membership.

For all outside the U.S.: All nations members of the Postal Union offer
certificates good in the postage of any other country for a small charge. The
Union includes most nations of the world.

FIRST CLASS MAIL

SuperPET Gazette
PO Box 411
Hatteras, N.C. 27943
U.S.A.

\ ' T' '*k~i * \
Hrv.* * ’ ^

USW $ T 4^ USA 17c ‘

/
First-Class Mail
in U.S. and Canada

