
TRANSCONTINENTAL TELECOMS John Frost of Seattle,
AND GOOD NEWS AT 1200 BAUD who wrote our last art

icle on telecommunica
tions, will pay Ma Bell's next dividend. He offered

ye ed the privilege of making the first logged transcontinental SPET to SPET TC,
Hatteras to Seattle, and we took him up on it. Ye ed was in TALK; John used his
package for 6502. We had no trouble, and uploaded a good-sized file to John. A
few nights later, we loaded Jeff Larson's FASTERM (a 6809 machine-language pro
gram that can run up to 1200 baud) and had a good half-hour on line with Jeff;
his FASTERM is a jewel, giving both operators a full screen (unlike the single
line in 'talk'), and giving both a capability to upload and download. Which we
both did successfully. You have full cursor control; see your programs as they
upload and download on screen. Later, we ran a long conversation in FASTERM with
both John Frost and with Terry Peterson in California, up and downloading with
ease. FASTERM is the only software needed for TC in 6809- (Yes, 300 baud is OK.)

John Frost has tested FASTERM with CompuServe, a Boeing computer, and with local
BB's, and his reports are enthusiastic. He considers it superior to the 6502 TC
package, which has up to now been the only game in town. FASTERM uses the stan
dard RS232-modem cable (with no jumpers). Jeff has provided a simple way to send
any CONTROL code from FASTERM along with instructions on on how to use the pro
gram. We're glad to say that you can name the files you want to send from disk,
and can assign filenames to incoming files.

FASTERM will be available on disk, 4040 and 8050 format, on October 17. The pro
gram is ready now, but we must have time to include full instructions and data.
When finished, the disk will include the Larson and Frost telecom articles from
the Gazette, instructions on CONTROL Codes, general instructions on telecom in
SuperPET, and Larson's instructions on FASTERM. The price will be $15.00 U.S., a
part of which goes to the author. You may order 4040 format from the Secretary
(address on application form, last page), or either 4040 or 8050 format from the
editor, P0 Box 411, Hatteras, N.C. 27943- Make checks out to ISPUG. We're mighty
pleased with FASTERM, since it handles all 6809 TEXT, SEQ files, with no limit
on the number of disk files sent or received. Jeff Larson reports he has trans
mitted files at 4800 baud okay (screen's not readable) but we haven't tested at
that rate.

Shortly after, we'll have the new SUPERCOMX available (a revised 6502 TC pack
age, with proper handling of the ACIA chip, as debugged and as revised by Terry
Peterson). It's working now, but needs packaging. We're going to put both TC
packages on one disk, with instructions, for $20.00. Those who want a SUPERCOMX
update to any FASTERM disk ordered now can get it later for $5.00. We've held
off announcing both programs until they were tested. Please don't order SUPER
COMX until we announce the disk is ready, with full instructions.
••««*«»«»« * * « « • * « * * » » * * » * * * * * « * » * * « * * * * * • * » * * * » « * » * * » * • * * * • » * • • * * * * *

SEPTEMBER MEMBER, YOUR MEMBERSHIP EXPIRES WITH THIS ISSUE!

You won't get a bill or another notice. If the address label, this issue, reads
e:9-nn-82 (where nn is any date last September), this is your last issue. Please
send in yearly dues of $15.00 U.S. for memberships in North America, or $25.00
U.S. if elsewhere. And please send in the address label, so we won't have to do
a special search (SuperPET is not yet smart enough to find John Q. Jones if the
renewal comes in for Johnny Jones). Forward label and check to Secretary, ISPUG,
made out to ISPUG, at 4782 Boston Post Road, Pelham N.Y. 10803, U.S.A. If your
'entry' date on mail label is: e: 10-nn-82 or later, you're okay.

SuperPET Gazette— Vol. 1 No. 9 -111- August/September 1983

KIND HEARTS AND GENTLE PEOPLE: Oscar Wilde once said that those who try to
(Or How to Kill an Editor do the most good often do the most evil. And

with Goodness) in our experience, he's still dead right. We
now have 23 full disks of undigested, unex

plained, and undocumented programs, sent with the best of intentions by members
who sincerely think they're helping by dumping on ye ed's desk forty or sixty of
th^ir favorite programs— with no explanation of 1) what the problem is, 2) how

they solved it, or 3) the significance of what they did. If we started now, and
did nothing else all day, we might get through them by 1986.

On the other hand, some members send in a few programs with full comment on what
they did and why they did it, with instructions on how to use the programs. We
can get these up and running in short order, and from them get much material for
the Gazette. (Especially when the language is identified. Ever get a PRG file &
wonder where in the seven languages/facilities it runs?)

We need more contributors, more articles on new subjects. Don't worry about wri
ting well. Stuffin' in proper grammar and format is our job; we won't embarrass
you by publishing bloopers. There's not a one of you who doesn't know something
about SPET that nary a soul of the rest of us does. Tell us about it!

Anent disks: As of Aug. 1, all contributions should be on disk. We now have both
8050 and 4040 drives and accept disks in either format. Your disk will be mailed
back within three days of receipt, after we've copied and had a preliminary look
at your material. Send text files either in WordPro or as raicroEDITOR files in
6809; programs in whatever language you wrote them in. If you send APL, put a WS
on disk separate from text, ready to run. We'll convert to proper format. If you
write text in Wordcraft, use its facilities to create an ASCII file for the mED,
as explained last issue. Hard copy of your contribution is not needed, though we
welcome it. Now, durn it, git to writin'!

THE LOST IS FOUND About two months ago, we wrote Waterloo Computing
or Systems, Ltd., about some problems in SuperPET, and

WATERLOO TO THE RESCUE are happy to report we have either solutions to the
(And a Bollix or Four) problems or suggested ways around them. Let's take

the problems one at a time.... First, that perenni
al problem of leaving a language and remembering you didn't save to disk, or,
Lord help us, encountering the 'bye' problem in mBASIC, wherein you see upon the
screen <beginning of file> <end of file>, assume you are in the microEDITOR, and
say 'bye', only to find you've said goodbye to mBASIC, your program, and all thy
labor.

Waterloo Computing Systems, Ltd. speedily sent back to us a splendid solution,
(two solutions, as a matter of fact), which operate in most SPET languages and
facilities. The first is a hardware solution: put a switch to ground from NMI
pin on the 6809 chip itself. If you inadvertently exit any language or facility,
turn the switch ON, ground the pin, and you're back in that language, with your
program. CAUTION!!!! The switch must not bounce (make more than one contact), or
we are warned of consequences dire and horrid. The second solution: a software
retrieve. That solution, written at Waterloo, is up and running, and we print
it below. We've been using it enough to report, and it is as reliable as death
and taxes. It 'retrieves' both your language (or facility) AND your otherwise
dear departed program.... It works in everything except DEVELOPMENT.

SuperPET Gazette— Vol. 1 No.9 -112- August/September 1983

; retrieve.asm, written by Waterloo Computing Systems Ltd.

Process equ $2a
ProcALV equ $39
CurBnk equ $220
BnkCtl_

»•
equ $effc

retrievei equ *

• ldd tfProcALV
std Process
ldb #$00
tfr
sei

cc,a

stb CurBnk_
stb BnkCtl_
tfr a,cc
ldd #-1

. std 2,s
ldd #1
jmp
end

$9000

; Ed: Put the load module of this pro-
; gram on the language disk as 'retrieve'
; and call it with: retrieve <RETURN> if
; ever you want a language and its pro-
; grams back.

get address of process auto-load vector
point to it
select bank 0
save condition code register
disable interrupts
remember new bank number
set new bank number
restore condition code register
NMI reset is TRUE
replace old parm value
INIT code
leap to whoever is in Bank-Switched memory

"retrieve”
org $680 ; this is retrieve.cmd, the linker file.
"retrieve.b09"

Don't use the program to return to DEVELOPMENT; at best, you'll get the menu of
the language disk back; at worst, you'll crash. And don't use RETRIEVE to return
to whatever language you were in, in 6809, after being in 6502 mode. Crash. In
stead, use the method outlined below.

Waterloo points out that one can re-enter any language or facility in 6809 simp
ly by putting the R/W switch in READ, and attempting to load any language (the
microEDITOR, being short, runs fastest). The stupid loader thinks it is loading,
and when it is through, says 'tell the operator I'm done and he has a program'.
The program, of course, is that still resident in the upper 64. You can use the
same trick when you leave 6809 for 6502 and come back.

In this connection, we got a short, sweet program called RESET either from Jim
Swift or Barry Bogart, which does exactly what we describe above— get your lang
uage back after you leave the language or when you come back to 6809 from 6502.
We sent a copy to Associate Editor Terry Peterson, and he promptly disassembled
and rewrote it so you don't even have to put the R/W switch in READ. It won't
get your program back, but it rescues languages with mercurial swiftness.

* « «

RESET0 : TO HAVE AND TO HOLD Printed below is an mBASIC program which creates
a Terry Peterson Special a load module for the language disk to perform the

job we describe above. You need not flip the R/W
switch to 'read', because the load module loads absolutely nothing. Give the ra-
BASIC program away; you won't need it after the module is on disk. (And note we
create a TEXT,PRG file. Terry wouldn't have gotten away with this if he hadn't
suppressed the trailing CR on line 140, for it would have been in the file.)

100 ! reset0:bu : by Terry Peterson
120

SuperPET Gazette— Vol. 1 No.9 -113- August/September 1983

nnnnnnnmnnn
—« *-

S U P E R P E T U S E R S !

^%%%°%%%&%%%.%%%$%%%c%%%&%%%. %%%$%%%*>%%%&%%%. %%%$%%%°%%%. %%%&%%%$%%%*>%%%. %%%& -
- 4 > -

Have you ever wondered what the /%*%$%& is the difference between

'c*/ %*//' and '*c/ %*//' ? Tired of flipping that switch just to do a
1 'collect'? The SuperPET Tutorial Disk reveals the mysteries of the data

editing commands and 'meta-character' strings, using clear and useful

^ examples. It also contains:

-< A GENERAL NARRATIVE DESCRIPTION OF THE MICROEDITOR
—4 I -

<> SYNTAX AND EXAMPLES FOR ALL MICROEDITOR SEARCH STRINGS.
EXAMPLES AND EXPLANATIONS OF ALL MICROEDITOR COMMANDS.
EXAMPLES AND EXPLANATIONS OF ALL MICROMONITOR COMMANDS.
EXPLANATIONS OF ALL SETUP MENU OPTIONS.

- • COMPLETE INFORMATION ON THE PROGRAMMED FUNCTION KEYS.

° INFORMATION ON ALL FILE TYPES AND FORMATS
- 4

° EXAMPLES OF ALL VARIATIONS OF THE DISK ACCESS COMMANDS.

o INSTRUCTIONS ON ISSUING ALL DOS COMMANDS FROM THE EDITOR.
EXPLANATIONS OF ALL DOS ERROR MESSAGES.
INSTRUCTIONS ON AUTOMATING DISK MAINTENANCE TASKS.

- 4 ► -

° INFORMATION ON RS-232C AND THE TERMINAL FACILITIES.

° A TABLE OF IMPORTANT SYSTEM ADDRESSES AND SOFTWARE SWITCHES.
H

° DECIMAL AND HEX VECTOR ADDRESSES OF WATLIB AND FPPLIB ROUTINES. -
6809 ASSEMBLER INSTRUCTION OPCODES, MODES, AN) LENGTHS.
HEXADECIMAL-DECIMAL CONVERSION TABLE. -

-« i-

o HEXADECIMAL AND DECIMAL ASCII CHARACTER TRANSLATION TABLES.
-t »-

h THIS PRODUCT COSTS ONLY $39.95, POSTAGE AND HANDLING INCLUDED. THE ITEMS
-< MARKED WITH ARE ALSO AVAILABLE ON A REFERENCE CARD WHICH IS INCLUDED

WITH EACH TUTORIAL DISK ORDERED. THE REFERENCE CARD ALONE COSTS ONLY $10. -
- 4 I -

IF YOU ORDER ANY DISK-BASED PRODUCT, THE DISK YOU GET WILL ALSO CONTAIN
-< A SELECTION OF THE BEST PUBLIC-DOMAIN SUPERPET SOFTWARE FROM VARIOUS
-« SOURCES. ALSO AVAILABLE IS THE APL-MICROEDITOR INTERFACE; IT ALLOWS USE
- OF THE MICROEDITOR FOR EDITING APL FUNCTIONS AND VARIABLES. VOLUME DIS-
- COUNTS ARE AVAILABLE (30 PERCENT OFF FOR 2-10; 40 PERCENT OFF FOR 11-100.
- 4 h -

- SEND A CHECK NOW (AND SPECIFY 4040 OR 8050 FORMAT); OR WRITE FOR INFORMA-
- TION TO*
—4 h -

DYADIC RESOURCES CORPORATION
2405 WEST 15TH AVENUE

VANCOUVER, B.C. CANADA V6K 2Z1
- 4 t -

_ ('c*/ %//' hangs up; '*c/ %*//' does nothing; '*c*/ %*//' removes spaces |_
H frcsn left) _

- 4 ►“

uu

130 open #9, 'resetO,prg', output
140 print #9, chr$(hex(*90’));rpt$(chr$(0),3);chr$(1);rpt$(chr$(0),5);
150 print #9, chr$(2);chr$(0);
160 close #9 ! Terry lists the code created and annotates it as follows:

byte header trailer
count: 1 2 3 4 5 6 1 2 3 4 5 6 •

(hex)90 00 00 00 01 00 00 00 00 00 02 00
• load block switch bank ignored eof ignored
address length to 0 flag

...a flea hath smaller fleas
that on him prey, and these
have smaller still to bite 'em
and so proceed, ad infinitum

a large glitch, as glitches go.

He comments that "the file consists of a 'header' 6-byte block for a zero-length
load record plus an end-of-file 6-byte trailer, which is normal machine language
'PRG' WCS file format, except, of course, that the load records are normally >0
in length. It is fortuitous that a zero-length record may be handled without a
system crash. The code causes the WCS loader to set the relevant system pointers
to begin execution of a program in bank 0, address $9000. Then 0 bytes are load
ed into RAM; the eof trailer is encountered, so the load halts and execution be
gins. The loader 'thinks' it is starting the file it just 'loaded', when in fact
the already-resident interpreter is all that gets turned on!"

* « K

With apologies to J. Swift, we note that com
puter programs have bugs, which are bedeviled
by glitches, which in turn are afflicted with
a bollix or two. Herewith a report on a glitch
and a bollix or so in SuperPET. The first is

Load the microEDITOR, and pull any text into it
which is longer than one screen page. Cursor down to <end of file>, hit PF0 (or
SHIFT 0 on keypad), and enter one blank line at end-of-text. Screen cursor must
be ON <end of file>. Then cursor up until <end of file> disappears below screen
bottom. Cursor back. Caught a glitch! Note that a screen line from the file has
been duplicated just above <end of file>. This glitch is repeatable. So long as
(1) screen cursor is on <end of file>, (2) you insert a blank line with PF0, and
(3) you enter no text on that new, blank line, the mED copies a line from previ
ous text to the new, blank line. You cannot see it on screen unless you run the
new, blank line off-screen and then cursor back. Solutions: (1) use insert mode
when working above <end of file>, or (2) hit ESCAPE after entering a new, blank
line with PF0 at <end of file>, or (3) put text on that line and <RETURN>.

Waterloo reports the glitch has been squashed in the software (Version 1.2?).
* ' • *

THE DEADLY BOLLIX With something (whatever) on screen in the microEDITOR,
send a command to either file it to disk or to printer.

Then print: ? <RETURN> at command cursor, to duplicate your file command. We are
about to catch a bollix, so be careful. With the retrieved file command on the
screen, touch UP/DOWN CURSOR. Aha! Your command is executed; bollix caught. If
you care to, try the same thing with the RUN/STOP, 0FF/RVS, CLEAR/HOME, or any

PF key. Bollix again. Any of those keys will execute the command retrieved with
? <RETURN>. Queried, Waterloo confirmed the bollix and said they'd try to find
a solution. Meanwhile, you are well advised to be extremely careful of what keys
you touch after retrieving a command in mED with ? <RETURN>.
»»*****»«•»»**«*•*****»*»««»«««»*«*•*«*«*«*«»«««*«****«*«**•*»»*»***»»*»»»*«»«

TO CHANGE DEVICE NUMBER Associate Editor Terry Peterson just put a new 8250 to
ON DISK DRIVES work and must have kept his old 4040, because he sent

in the following program to change device number; we

SuperPET Gazette— Vol. 1 No.9 -114- August/September 1983

5 ! change_device.bu just got a rebuilt 4040
10 ! This program sends the appropriate 'pokes’ to a up and running so we can
20 ! 4040/8050/8250 (& hard disks, I think) to cause handle all disk formats,
30 ! a soft reset of its ieee-488 bus address. and used it to set the
40 8050 and the 4040. Both
50 input "What is old address? ",old_addressJ drives wagged tails and
60 open #10,'ieee'+value$(old_address>)+'-15',output did our bidding as devi-
70 input "What is new address? ",new_address> ces 8 and 9.
80 new_lsn% = new_addressJ+32 : new_tlkjt = new_address>+64
90 print #10,'M-W';chr$(12);chr$(0);chr$(2);chr$(new_lsnj);chr$(new_tlkj)

100 print "OK - device is now " ;new_address$
110 close #10

A BUG IN THE 4022? Don C. Momberg sent a note after reading about the problems
described last issue in getting brackets '[]' to print prop

erly when converting BASIC 4.0 cursor commands to English with LIST-9. Seems a
bug infests the 4022 (and maybe other Commodore printers), which Don learned of
while reviewing the PaperMate wordprocessing manual (Michael Riley, V2.0, issued
by AB Computers). (We're not so sure it's a printer problem: see below.)

If the 4022 is in lower-case mode, left and right brackets, up-arrow, back arrow
(underline) and backslash all print as graphics characters. Likewise, when the
substituted graphics characters are used in text, they print the characters we
list above to printer.

Don sent a BASIC 4.0 program to demonstrate, but we can't print graphics on our
printer. You'll have to run your own demo. But we note that the 'cross' and the
'bar* we noted as a bug in the LIST-9 conversion process (substituted for '[]')
appear on our screen as well as at printer in BASIC 4.0. So is the bug really in
the 4022? Don notes also that the bug does not appear in printouts from the mED
in 6809 (or as we've noted, in any 6809 language). Nice job by Waterloo. Suspect
a glitch in the 4.0 ROMs.

TWO KEYBOARDS FOREVER Sometimes an editor doesn't do his homework. We try.
Or, the Editor is Blind! But... A couple of issues back, we complained about

three keyboards in SPET, and last issue, about there
being a Fourth Keyboard, obtained when you poke the Waterloo Roman font while in

APL. Shortly after, Dr. John C. Wilson of Waterloo dropped us a note:

"I've noticed a bit of confusion about the character sets on the SuperPET....Use
a SYS (to 45194) to change between ASCII and APL characteer sets. If you POKE to
change fonts, only the screen driving hardware is affected; the keyboard/screen
managing software is not aware of the change and this leads to rather peculiar
behaviour. When you SYS to the font-changing routine at 45194, the hardware cha
nge is made for you, and in addition the software learns about it. The argument
of the SYS is 1 for ASCII and 2 for APL."

Before we continue: 45194 decimal is hex $b08a. When we got Dr. Wilson's letter,
we took a quick look at watlib.exp on the language disk, and there the routine
was: TSetChar_, at $b08a. For a year it's been there.... From now on, there are
only two keyboards in SuperPET.

Since there is no SYS capability in the microEDITOR, and mBASIC requires a pro
gram to pass parameters, we came up with a simple, standard way to get either of

SuperPET Gazette— Vol. 1 No.9 -115- August/September 1983

of the fonts and the proper keyboard from the monitor. Enter it from menu on the
language disk or from the microEDITOR, in whatever language, and at the prompt,
>, enter the code below, modified from that in Barry Bogart's article in Vol. 1,
at pp. 25-26.

>m 7000 cc 00 02 ed 8a bd bO 8a 3f [command for APL font and APL keyboard]

Hit <RETURN> on the line above, and then say, at prompt: >g 7000. You will be in
the APL. font immediately with the standard APL keyboard. Then quit the monitor,
at prompt > with q <RETURN>. When you want ASCII (the Waterloo Roman font) back,
issue the same command in the monitor, with a single change: following cc, enter
00 01 (recognize we're passing the font/keyboard argument of 1 or 2 at this po
sition). Anyone who cares to can do a direct SYS in any language but mBASIC.

'NOT T0_BE' or 'NOT T0_BE$'? tEd. In a letter to Associate Editor Terry Pet-
Yes, That IS a Question! erson, we noted that 'if not idx...' fails to

by T.M. Peterson determine if idx has value; idx is an intrinsic
function in mBASIC, fast and powerful, which

finds a string within a string. Turns out it returns an integer value, and....]

The evaluation of 'logical' expressions in mBASIC is rather subtle if one is not
dealing with 'logical' quantities. The root of the 'problem' is that mBASIC
treats everything except integer quantities in a consistent fashion, namely,
zero equals 'false' and non-zero equals 'true'; and 'not' toggles the two.
Therefore, if one evaluates 'not sin(.3)' the result is 'O', i.e., false, since
sin(.3) is non-zero or 'true'. Similarly, the result of '2 and 8' is '1'. You
can verify this by PRINTing it.

However, in the case of integers mBASIC performs bit-wise operations on the
operands instead of simply testing whether they are zero or not. In particular,
'not' makes every bit of the result the 'opposite' of the corresponding bit of
its argument, so 'O' becomes '-1' and * 1' becomes •—2'(!). Therefore, if we s_t
x% to 2 and y% to 8 the result of 'x% and y% ' is 'O'— and 'not x% ' is '-3'! At
first, this may seem inconsistent— and in a sense it is!— but this treatment of
integers allows more flexibility than one would have if integers were not
singled out for special handling. For example, to print reverse-field characters
on the SPET CRT you need to set bit 7 before printing. This may be easily
accomplished via 'print chr$(b7$ or ord(c$))' where b7?=128 and c$ is the
character you want 'reversed'. If integers (yes, 'ordO' is an integer) weren't
handled differently from floating point quantities, you would always get chr$(1)
with the above! Now, before you interrupt, I hasten to add: Yes, in the example
1 just gave you could have used 'chr$(128 + ord(c$))', but suppose the routine
you put this in were passed (inadvertently or not) an already-reversed character
(ord(c$)>128). In this case, '+' will cause an error while 'or' will print the
reversed character!

In general, mBASIC's treatment of logical expressions will behave as you expect
(zero=false, non-zero=true), as long as you avoid

100 if not idx(a$,b$) integers except when you WANT bit-wise operations.
110 However, you must be careful when dealing with st-
120 else ring functions because those string functions that
130 return numeric values return INTEGER numeric valu-
140 endif es. See the example at left. It will (almost) nev

er execute the 'else' clause.

SuperPET Gazette— Vol. 1 No.9 — 116— August/September 1983

SUPERPET FILES : DISK FILES For nineteen months, the editor has been puzzled
A CONCEPTUAL FRAMEWORK by lack of a coherent explanation of the types

and formats of SuperPET files. We've asked a lot
of people to explain the file structure and until recently got no answers. As
Associate Editor Terry Peterson wrote:

"The Waterloo documentation is rather sketchy about the various disk files that
the SPET is capable of using. In fact, I'm reminded of Prof. Peter Schickele's
analysis of the plot of 'Hansel and Gretel and Ted and Alice' (P. D. Q. Bach's
opera in one unnatural act): At first, it appears complicated, but— with a
little study— it seems hopelessly confused. However, I'm being a little unfair.
The documentation is mostly correct— as far as it goes...."

What are the problems, the quandaries, the unanswered questions?

The System Overview and Language Manuals describe TYPES and FORMATS of SuperPET

files as shown left, below. Can you explain why the disk filetypes PRG and USR
nowhere appear on the list? What is the

File TYPES: Text, Fixed, Variable relation between SEQ, PRG, USR, and REL
designations on disk directories to the

FORMATS: Sequential, Relative file types and formats show at left? Do
you know? Next, note that we can combine

the Waterloo file TYPES and FORMATS in the matrix at left. Have you ever seen a
Variable, Seq file on directory? How about a Fixed, Seq? And
how many of the combinations shown are useful? For what? Do
you know? If not, read on, for it has taken some four months
for ye ed, Associate Editor Terry Peterson, and for P.J. Ro-
vero to piece this puzzle out. We suspect Terry is the re
tired Sherlock Holmes in disguise, because he certainly did
a superb piece of detection as this matter proceeded, and is
largely responsible for what we have learned. First, as he
pointed out, there is a relation between Waterloo's file
types of Sequential and Relative and the DOS formats of SEQ,

PRG, REL, and USR, but that relationship is at first most obscure.

Text, Seq
Text, Rel

Fixed, Seq
Fixed, Rel

Variable, Seq
Variable, Rel

Second, the Waterloo formats do not seem to be detailed formats, but merely an
indication of the ORDER in which data are stored and can be retrieved. To make
the distinction clear, let's call the Waterloo designations ORDERS. Once we make
this conceptual leap, the structure below is clear. The Waterloo ORDERS have no
thing to do with what appears on disk directory as filetype, except in the case

of Relative (Waterloo) REL (DOS)
Waterloo file TYPES: Text, Fixed, Variable files.

Waterloo file ORDERS: Sequential, Relative

DOS 'sequential' FORMATS: SEQ, PRG, USR

DOS 'relative' FORMAT: REL

Possible File Types/Orders/Formats:

1 Text, seqorder, SEQFORMAT
2 Text, seqorder, PRGFORMAT

Well, with the concept in hand,
we list below all the possible
combinations of Waterloo and DOS
orders and formats, and print
Waterloo ORDERS in lower case to
distinguish them from the DOS
formats in upper case.

Applications:

Default in all but APL.
APL PRG files; 'stored* mBASIC files

SuperPET Gazette— Vol. 1 No.9 -117- August/September 1983

3 Text, seqorder, USRF0RMAT Not explored.
4 Text, relorder, RELF0RMAT It really exists!

5 Fixed, seqorder, SEQFORMAT Likewise exists.
6 Fixed, seqorder, PRGF0RMAT Likewise exists.
7 Fixed, seqorder, USRFORMAT Likewise exists.
8 Fixed, relorder, RELFORMAT The normal relative file.

9 Variable, seqorder, SEQFORMAT Not explored.
10 Variable, seqorder, PRGF0RMAT The usual '.mod' file in Assembler
11 Variable, seqorder, USRFORMAT Not explored.
12 Variable, relorder, RELFORMAT Not explored.

Since the Waterloo ORDER 'sequential' is a default in all filetypes but DOS REL
you may safely and utterly neglect it. And, since the DOS format REL is created
whenever you file a 'relative' Waterloo file, you may also ignore the duplicate
structure set out above for REL files. But the table makes the file structure in
SuperPET crystal-clear.

1000 ! text seq seq file 'text.seq.seq' Terry Peterson sent us a whole slew
1005 of test programs, one of which we
1010 scratch 'textfile' copy at left. Modify lines 1020 and
1020 open #6,'(text)textfile,seq', output 1120 for file combinations wanted.
1030 print # 6 , ^ ' Try '(text)textfile,prg', and you
1040 print #6,'AB' will get a file in sequential ORDER
1050 print #6,'ABC' and in DOS format PRG. Then manipu-
1060 close #6 late the program through the other
1090 and sundry combinations, as we did.
1100 on eof ignore (microBASIC does not support vari-
1120 open #2, '(text)textfile,seq', input able files.)
1130 for i=1 to 10
1140 linput #2, aline$ Having established the framework,
1150 if io_status <> 0 then quit let's pass on to Terry
1160 print i,""';aline$;""’, 'length: ' ;len(aline$) Peterson's article. He
1170 next i doe3 a superb job in de-
1180 close #2 fining and explaining the structure

and uses of various file combina
tions. After that, we briefly discuss how to structure filenames in SuperPET.

* • «

FILETYPES, SCHMYLTYPES: First, let's clear up a bit of terminology. In the
What's Going on, Anyway? various documents that accompany your SPET and CBM

by T.M. Peterson disk drives there are two essentially different ref
erences to disk 'filetype'. These two kinds of 'file

type' are specifified in the 'file-designator' part of the 'filename' in all the
Waterloo languages, one in front of the ',', and the other afterward, as shown
at left, below. The one preceding the commas [as in (text)], I will refer to as

the Waterloo filetype, and the other I

'(text)example,seq' or '(t)example,seq' will call the file organization, as in
'(fixed)example,rel' or '(f)example,rel' 'seq' or 'prg' (we can also call it a
'(var)example,prg' or '(v)example,prg' CBM 'filetype'). [Ed. We've called it

disk FORMAT in the article above.] If
you examine the Waterloo manuals, note that when they're really careful about it
e.g., as in the COBOL manual [Omigawd, you didn't read that thing, did you?]—
the Waterloo folks use this same terminology. The CBM literature refers to two
flavors of CBM 'filetype' (or file organization): sequential and relative.

SuperPET Gazette— Vol. 1 No.9 -118- August/September 1983

Unfortunately, the the CBM 'sequential' filetype has three different names: SEQ,
PRG and USR. The contents of these three kinds of sequential files are indistin
guishable as far as the DOS is concerned. (I should here define DOS: it is the
program executing within the CBM drives 4040/8050/????, as opposed to the file-
handling part of the operating system in SuperPET.)

All of the sequential files consist of linked lists of arbitrary bytes— accessi
ble one after another. Of course, since these files are conventionally used for
different purposes, you must request the 'correct* sequential type (SEQ, PRG, or
USR) in order to get the DOS to allow you to access the data within one of these

files. Yet the only real distinction between them is the setting of particular
bits in the file directory on diskette. All of them are Sequential files, in the
sense that the data are filed and retrieved sequentially.

If you wanted to access a particular PRG file as a SEQ file, you would need only
to change the file directory bits so that the PRG file becomes a SEQ file on the
directory (without any change of contents). If, for example, you 'store' an mBA
SIC program to disk as a PRG file, and then toggle the directory bits to make it
a SEQ file, you may try to 'old' it (as a SEQ file) back into memory. At this
point, the DOS will allow you to 'open' the file and will attempt— without suc-
ces— to carry out the load. The load fails because mBASIC sends quite different
byte streams to disk when 'saving' and 'storing'. 'Save' sends an ASCII transla
tion to a file; 'store' actually copies memory contents to file. (All the inter
preters, save those for mBASIC [store] and APL, save an ASCII listing to disk.)

On the other hand, the DOS maintains REL files quite differently. Any REL file
is actually two files (1) a collection of fixed-length records containing the
data, and (2) a linked list of pointers to the data records. This dual file or
ganization allows one to access the data on REL files in an arbitrary order.

As far as the Waterloo software is concerned, the choice of SEQ, PRG, or USR is
arbitrary, except that 'SEQ' is assumed if no other file organization is spec
ified. Within the Waterloo languages, the REL file organization (CBM filetype)
should only be used with the Waterloo 'fixed' filetype, as explained below. Let
me also point out that the 'direct access' files referred to by CBM in its disk
drive documentation are not to be confused with REL files. Direct access files
are not actually 'disk files' at all, but merely a method of bypassing the DOS
file structure to access disk blocks directly by track and sector number.

Having disposed of the file organization or 'CBM filetype', we are left with the
chore of filling in the gaps in the Waterloo documentation concerning the
Waterloo 'filetype'. As mentioned in the System Overview Manual, there are three
'filetypes': 'text', 'fixed', and 'variable'. Text files are the type you're
probably used to if you're an mBASIC programmer. These files consist of a series
of 'records' delimited by carriage returns. That is, the actual file contents
are a series of bytes interspersed with chr$(13)'s that are interpreted as
record separators. Further, commas within each record may delimit intra-record

fields, as in the example at left. Reco-
THE FIRST RESULT, 123.456 <CR> rds in text files are of variable length

up to some system-dependent maximum; in
BASIC 4.0, the maximum is 80 characters; in microBASIC, it is effectively 'free
memory."

'Fixed' files contain records all of the same length. Unlike text files, there
is no record delimiter written into the file, since it is unnecessary. (The
Waterloo file-handling system keeps track of record boundaries.) Fixed files may

SuperPET Gazette— Vol. 1 No.9 -119- August/September 1983

be written in either sequential or relative organization. If they are
'relative', individual records may be accessed at random using a 'record number'
specification in the language-dependent input/output statement.

WARNING! If you use fixed files with sequential organization, the DOS maintains
no information on the file about the record length (the DOS does not know that
is a 'fixed' file); you may specify a different record length when opening the
file to 'read' it than when you wrote the file— with perhaps disastrous results.
This error is not possible with relative organization because the DOS will not
allow you to 'open' a REL file with an incorrect record length specification.

'Variable' files attempt to combine the flexibility of the arbitrary record
length of text files with the freedom from contextual interference of 'fixed'
files; there is no special 'delimiter' character, so that any character may
appear within a record. This is accomplished by encoding within the file the
length of each record 'outside' of the actual data. In the case of the Waterloo
SPET file system, each record is preceded by a two-byte 'byte count' of the
record. These files may be used in microFORTRAN and (I think) in microPASCAL and
microCOBOL. I'm not sure of the situation in APL. Variable files created e.g. in
microFORTRAN may be read by microBASIC (if opened as a variable type), although
the mBASIC documentation claims they are 'not supported.' If you have understood
me so far, you should now be able to 'trick' mBASIC into creating a 'variable'
file! (An exercise for the reader.)

So, to summarize, we have three (Waterloo) filetypes: text, fixed, and variable;
and two file organizations (CBM filetypes): SEQuential (which is also called
'PRG' and 'USR') and RELative. The table below shows which of these may be mixed

and matched (* = OK). Note
CBM Filetypes

Waterloo Sequential Order Rel Order
Filetypes: SEQ PRG USR REL

text

fixed

variable

the only forbidden combin
ations involve REL file or
ganizations with non-fixed
record lengths. Also note I
d i d n’t say you couldn't cr
eate such files! But if you
do, may the Lord have mercy
upon your Soul! Think about
it....

Printed at the beginning of this series is a single program in microBASIC, which
is ISPUG's lingua franca, which you can modify to test the output from each file
type combination. You can easily modify it to handle REL files. I learned a lot
about the construction and use of SuperPET files from running such variations,
and suggest you could do worse than spend a few hours learning what each file
structure produces as file output in your favorite language. You are due for a
few suprises, many of them pleasant. <End Peterson>

• * *

FILE COMMAND STRUCTURE: The disk file commands in the System Overview manual,
WITH EXAMPLES pp 28 ff, being generalized, fragmented, and without

quotation marks where needed, are very hard to follow.
We set forth below an integrated package, with quotes, with the Waterloo file
type and DOS filetype, plus some examples taken from full specification to maxi
mum default. First, the general format of a filename:

SuperPET Gazette— Vol. 1 No.9 -120- August/September 1983

disk address - channel/drive.(Waterloo type)file-designator, DOS format
Reference 1 2 3 4 4.1 5
below:

Ref 1 Includes two designators: the word ’disk' plus the device number, in
the form 'disk8' for device 8, *disk9' for device 9, etc.

2 Automatically assigned by the interpreter; DO NOT SPECIFY without good

•reason (channels 2-14 are used when a designator is specified; channel
15 only when there is no designator. You may override auto assignment,
but run serious risk of two open files having the same channel number.
Channel 0 is reserved for directories and other system commands; channel
1 is reserved for system use. Neither should be opened or closed. See
separate note on 'channels').

3 Drive Number: 0 or 1; default is to 0

. 4 Select one of three file types: text, fixed, variable. Default to text.

4.1 Commonly miscalled 'filename'. The TITLE of the file on directory.
Waterloo calls it the file-designator.

5 DOS format; default is to sequential, 'rel' must be used
for relative files, 'prg' for program files; 'usr' for user files.

EXAMPLES OF FILENAMES: File title is 'example 1»
For Device No. 8:

'disk8-12/0.(text)example 1,seq' [full filename; no use of defaults;
a 'text' file, 'SEQ' DOS format]

'disk/0.(t)example 1* [same filename, some defaults]

'example 1' [same filename, all defaults]
« * •

For Device No. 9:

'disk9-12/1.(f:80)example 1,rel' [full filename; no defaults]

'disk9/1.(f)example 1,rel' [same filename, all defaults; 80
bytes is default value, fixed files]

Note on Channels: DOS channels and logical file numbers are two different hor
ses. You are not limited to numbers 2-14 when opening logical files for devices
such as disk, printer, keyboard, and terminal. Logical file numbers as high as
1500 have been successfully employed. Example: open #1500, 'printer', output. We
have not tested for an upper limit, 1500 LFN's being most adequate. We note this
because most SPET programs we've seen limit themselves to LFN's 2-14.

READABLE CODE AND LONG Being curious, we ran some tests in mBASIC and in mFOR-
VARIABLE NAMES TRAN to determine how much run-time a program lost from

using long variable names for both string and numeric
variables (versus variable names of one character). We compared 'long_variable
name_used_here' with 'a' and 'long_string_name_applied_here$' with b$— and found
to our astonishment that the LONG names ran just as fast as the short ones did.
So we repeated the tests with a number of short and long names in separate test

SuperPET Gazette— Vol. 1 No.9 -121- August/September 1983

loops. Results confirmed. A 31-character-long variable name runs just as fast as
a single-character variable name. Period. So, if any of you have been abbreviat
ing or truncating 'newfile$' to ’nwfl$' under the illusion that it is faster, be
informed it's not. Short, abbreviated, truncated variable names generate nothing
but unreadable code. Long names may take a little longer to type, but produce a
readable code that runs just as fast. We don't know how Waterloo managed it, but
they managed it. Let's see no more code written 'call tmchk' when we're really
calling procedure 'timecheck'. English is the ultimate programming language in
SuperPET. What say we stop mumbling and speak it?

CHAIN DOES NOT PASS
MATRIX VALUES

100 ! 'chaintest.bd'
110 b=8 : c$=10 : d$='Frank'
115 dim f (50)
120.for i*=0 to 9
130 e(i$)=ij .
140 next i%
150 mat f = (1)
160 open #3, 'keyboard', output
170 mat print e;
180 mat print f;
190 chain 'overlay'

Despite the claim on p. 188, V1.1 mBASIC manual, that
all matrices are passed to the overlay program when the
keyword NAMES is used to chain (see line 190 left, be
low), neither identification as matrices, nor values of

matrices are passed. Try the program as
printed. You'll note that values of all
single variables pass, as promised, to
the overlay. Then make a second run, and
remove the comment '!' from lines 120 &

files, names

100 ! 'overlay'
110 print b, c$, d$
120 ! mat print e;
130 ! mat print f;
140 print #3, 'Test:
150 reset : stop

file open?'

130 of 'overlay'. You'll find the progr
am fails to a 'not a matrix' error, even
though you printed both matrices to the
screen before you CHAINed.

There's a second way to pass a variable
to a CHAINed overlay: the USE statement.
Variable names must appear in both the
CHAIN (line 190) and in the overlay (new
line 105, overlay), as below:

190 chain 'overlay', b, c%, d$
105 use b, c%, d$

You'll find the variables listed in the revised line will indeed pass to the new
overlay. Now try passing a matrix. If you succeed, let us know how! We can't do
it, and have numerous complaints that no one else can either. But there's a sim
ple solution, provided this issue by Frank Brewster: CHAINING WITHOUT CHAINING,
mm
NOTE ON THE USE OF At any time a program is running, most of the keyboard's
THE KEYBOARD BUFFER closed off to the user (but for the STOP key), but the

keyboard buffer will still receive characters. Whenever
the program halts for STOP, for PAUSE, or for INPUT or LINPUT statements, SPET

dumps the keyboard buffer. It ALSO dumps the buffer when a program reaches its
end and the system prints READY. On STOP statements in program and on printing
READY, it dumps the whole buffer. On PAUSE, INPUT and LINPUT statements it dumps
only to the first carriage return in the buffer. This is no suprise, since SPET
looks for a statement followed by a carriage return for input, of course. Below
is an example, showing the autoinput from the buffer at input, linput, pause, &
READY statements. Note that 'linput #' inputs not only the answer, but also the
question, as the final output string in line 140. And note also that after READY
the word UNREADY prints to the screen as the buffer empties, and without quotes!

100 ! autoinput example 'autoinput.bd'

105 CR$=chr$(13)

SuperPET Gazette— Vol. 1 No.9 -122- August/September 1983

110 open #20, 'keyboard', output : open #30, 'terminal', input
115 print #20, 'How much to tell me?'+ CR$ +'No!'+ CR$ +'cont'+ CR$ + UNREADY
120 input 'Want to know your future? ', ans$
125 print 'Have any money? '; ! Remove semicolon to avoid picking up the
130 linput #30, money$! question as part of the answer.
135 pause
T40 reset : print 'ans$ is: ';ans$, 'money$ is: money$

We suspect the keyboard buffer operates similarly in all languages. Any reports?

CHAINING WITHOUT CHAINING [Ed: Would you like a few megabytes of memory
or, How to Save those Lovely for SuperPET? Well, you got it. When this pro-

Variables with Ease gram first came in, we thought Frank was just
— by Frank Brewster — playing games with the dynamic keyboard. He's

done far more— he has created unlimited virtu
al memory for SuperPET which saves all variables— no CHAINing, no definition of
variables to be saved. Frank arranges for SPET to give itself instructions to
delete old, used program, to merge new program from disk, and then to continue a
run. When we ran his program, we found we had more memory free AFTER the run (if
we exclude memory occupied with variable values) than we had at the start. There
is no doubt about the technique. It works. Better yet, it's simple. Some readers
may remark that CHAINing with the 'names' statement (p.188, 1.1 mBASIC manual)
is easier. Ha! See article, this issue. Can anybody make it work? We note that
mPASCAL and mFORTRAN both have PAUSE and CONTINUE statements, and wonder if this
technique will work in those languages also— and, perhaps, with APL, to end that
terrible problem of not enough workspace.]

To have a program issue system commands to itself while it's running, you must
halt it in some way, at which point the system will await instructions from the
keyboard. There are several methods of halting, most of which aren't worth house
room:

You can include an error; it halts program, but why bother? Or you can in
clude an input statement (which will dump the keyboard buffer to the first carr
iage return okay), but the system expects data, not system commands.

Or you can include a STOP statement, which halts program all right, but the
only way to get it started again is to give it a 'goto' or to call a procedure.
A 'continue' command fails, as does a 'resume'; the program has lost its refer
ences. You may also STOP program with the STOP key, but how do you know where?

I've worked at it, and have found the 'pause' statement the best, in spite
of the back references it prints to the screen. During a 'pause', you can enter
any system commands which don't utterly wreck the program, and may then 'cont'
program at will. Every 'pause' dumps the keyboard buffer thru the first carriage
return in it, so if you have the right command string in the buffer, SPET will
tell itself to execute that command.

Have you ever needed more memory? I've often wished the 'chain' statement would
simply pass all data intact without USE statements (many of my programs have a
hundred variables or more, including large matrices). Well, there's a way; as I
show in the program below, you can wipe out parts of the program that have been
used, bring in a new section or sections from disk, and then resume program with
all data undisturbed.

SuperPET Gazette— Vol. 1 No.9 -123- August/September 1983

I've developed a simple way to do it (it's always easy after you find out how);
procedure 'command', below, is very simple and yet very powerful (hence, use it
with caution). You can do most anything. Shown below is one ultimate, a program
which runs until the first part is no longer needed, deletes that from memory,
gets more program from disk, overlays it in the deleted area, and then continues
with all data untouched.

Your only problem will be getting rid of the messy PAUSE messages on the screen.
Since these messages vary in size, it's easiest to clear screen quickly.

All of the necessary operations (filling the keyboard buffer, pausing, issuing
commands, resuming operation, erasing) are handled by calls to PROC COMMAND. It
works this way [I use CR$ for chr$(13)> and CS$ for chr$(12)]:

1. You pass c$ as a parameter to the procedure. That string is simply the
system command you want stored in the keyboard buffer, including a carriage re
turn, as in: 'del 100-250' + CR$. If you want to clear the screen and then to
issue a directory command, the command string is: CS$ + 'di'+ CR$.

2. PROC COMMAND creates command$, which adds to your command a 'cont' state
ment and another carriage return (CR$).

3. It opens the keyboard buffer and stores the command string there. You can
stuff only 40 characters in the buffer, so keep commands short.

4. It then, by pausing, causes a dump of the keyboard buffer thru the first
CR$, thus entering your stored command.

5. After the command has been obeyed, the system answers 'Ready', then
looks for another command in the keyboard buffer. Your 'cont' and its CR$ are
already there and waiting, 'cont' is printed to the screen, the CR$ follows, and
your program begins to run again.

Be sure you put the add-on program 'addlines' on disk 0 as a separate file. The
program will look for it there as a SEQ (SAVED) file after it deletes the first
part of itself. And don't try to RUN the program in main memory again: parts of
it aren't there any more!

100 ! program virtual.bd
110 CR$=chr$(13) : CS$=chr$(12) : T$=chr$(9) : D$=chr$(10)
120 print CS$; : option base 1 : dim zilch(50)
130 for i=1 to 50
140 zilch(i)=i
150 next i
160 print 'Here is data before we delete part of program in SWITCHER.'
170 mat print zilch;
180 print : input 'When ready to proceed, press RETURN: ', o$
190 call switcher
200 call addlines
210 print D$;T$;T$;'End of Run. Now List the program...'
220 stop
230
240 proc switcher
250 print CS$;

SuperPET Gazette— Vol. 1 No.9 -124- August/September 1983

260 call commandC'del 100-180'+CR$)
270 call command('merge "addlines"'+CR$)
300 endproc
310
320 proc command(c$)
330 coramand$ = c$+'cont'+CR$
3^0 open #3» 'keyboard', output
350 print #3» command$

360 -close #3
370 print CS$;'This is command to be executed: ';c$
380 call delay(400) ! These delays may be eliminated. They are
390 pause ! inserted to show command execution.
395 call delay(100) : print CS$;
400 endproc
410
420 proc delay(period) ! You may delete this procedure, used only
430 for j=1 to period ! for demonstration.

4.40 next j
450 endproc .

100 proc addlines ! save on disk/0 file "addlines"
110 print 'Old Data are Undisturbed: ' ;D$
120 mat print zilch;
130 endproc

{Note that Frank merges 'addlines' at the start of the old file. He could have
merged it at the end. You can merge anywhere so long as line numbers stay in
order. Also note that a few modifications of 'switcher' could easily merge add
lines. 1, addlines.2...to addlines.n, one on each succeeding pass. Ed.]

A NEW HOME FOR WORDPRO AND POWER Last issue we noted that the latest SPETS ar*»
AND OTHER R0MS/PR0MS/EPR0MS equipped with two switches and we listed some

problems trying to load and to peek the upper
64 from 6502 mode in that model. Our dealer pleading ignorance (Customer Support
at Commodore was at par), we asked Waterloo for help, and received it in time to
test before this issue appeared. It seems that on two-board SuperPETs with two
switches, the locations of sockets have changed. U45 now takes ROMs, etc. desig
ned for $9000-$9FFF, and U46 those for $A000-$AFFF. The new sockets are easy to
find and use, being on the front edge of the top board, and are clearly marked.
As soon as we moved POWER to its new location at U45, all problems reported last
issue disappeared.

Waterloo says that "for the Universal Board in the 8032 after March, 1981, no
change is required. (This is the lower of the two boards.) If your SuperPET has
three boards, this technical memo does not apply. On the COMBO Board [The upper
of the two boards. Ed.] the following changes are required for Revision B Boards
or earlier. The revision mark (a letter enclosed within a triangle) is found on

the COMBO board. Revision C or later boards have had this modifica-
/ \ tion made." We found our revision mark top, left, rear of the top

/ G \ board, about the size shown at left. Waterloo continues:
/______\

"1. Add a trace from pin 24 to pin 21 on U46.

SuperPET Gazette— Vol. 1 No.9 -125- August/September 1983

"2. Cut the trace from pin 21 to the bottom of the board.

"Note that WordPro and VisiCalc will not work without this modification. The
same applies to the Waterloo Structured BASIC enhancement chip. The WordPro chip
plugs into U46 which is address range $A000-$AFFF. The VisiCalc chip plugs into
UU5 which is $9000-$9FFF. This address range is also the bank-switched memory
range.

"To access the $9000 ROM (U45), you must (using BASIC 4.0) poke 61438,1; to acc
ess the $9000 RAM from 6502, you must (using BASIC 4.0) poke 61438,0. It is rec
ommended that the $A000 socket be used for the Waterloo Structured Basic enhan
cement chip." (Emphasis: Revision C and later boards need no modification. Ed.]

We add that U45 boots up OFF. You must poke 61438,1 to turn on any ROM chip in
that socket. And, as we warned last issue, you must turn off whatever program is
in that ROM chip before you switch off the socket with 61438,0— or CRASH. Those
of you who, like ye ed, stuffed ROMs in UD 11 or UD12 may have found that they
worked, but all manner of mad things then transpired. Move 'em to U45 or U46. We
again appreciate the splendid support from Waterloo, but are compelled to wonder
aloud if Commodore ever will tell owners about configuration changes and how to
handle them. P.S. You can't load any bank of the upper 64 unless 61438 is set 0.

DOING IT THE HARD WAY We still get disks formatted for 6809 by 6502 DOS com-
OR DOING IT EASILY mands (capitals in titles give them away), and handy-

dandy instructions to drop a language, leave 6809, and
issue a DOS command in 6502. We gave up that dreary nonsense six months ago. In
6809, we have RENAME, SCRATCH, and MOUNT as system commands in the mED wherever
used. We also have a mED COPY command which copies/renames individual files in
the same general format as the 6502 command. We then need know but five DOS com
mands in 6809, and to left below they are, all simple five of them. You need to

remember only that the destination al
ways is on the left and to use CAPS in
the command. Why drop a program and
language and go to 6502 to issue that
long 6502 'copy' command because you
can't remember C1=0? Saints!

For a long time, those $#*•! opens and
closes in mBASIC, and the horrid pro

grams you had to write in
CONCATENATE files: C1:big=0:tiny,1:teeny,0:weeny mPASCAL and in mCOBOL to be
(Appends to 'tiny' files 'teeny' and 'weeny' as able to issue DOS commands

file 'big' on drive 1) had us dropping back into
6502, but no more, no more.

VALIDATE (collect) a disk: V or V1

That was BS (before Swift). When Jim discovered that he could issue any DOS
command from the microEDITOR (all languages but APL) by putting 'g ieee8-15' in
front of the DOS command, everything turned simple, simple, simple. We guess the
readers (many of them) haven't tried it— or don't believe a 'get' will 'put' a
command to the DOS. Well, it will. Everywhere, in all languages but APL. Why do

things the hard way? The command at left, given at the command
g ieee8-15.D1=0 cursor in mED, does a backup TO disk/1 of disk/0 fast as scat.

You should drop into 6502 to do THAT? We can think of only one

Destination always is on left of '='

COPY a disk to another: C1=0

DUPLICATE (backup): D1=0

NEW (format or header) N1:disknarae,22
disk number 22:

SuperPET Gazette— Vol. 1 No. 9 -126- August/September 1983

minor question that arises in using Swift's 'get1: what do you do about spaces
in filenames? Use quotes: g 'ieee8-15.N1:disk name,22'. Handling DOS commands in

6809 is now as easy as falling downstairs. Quod Erat Demonstratum.

When disks come in with all filenames in caps (inexorable if you work in 6502),
pray tell what microprocessor are they for: 6809 or 6502? And in what language?
Okay, maybe you LIKE to have files for eight languages/facilities (including WP)
all in upper case, and maybe you're psychic and can tell where they run....

TRIPWIRES, MINES, HIPPOPOTAMI As one of our unhappy readers, who discreetly
AND OTHER APL ACULTURATIONS remains anonymous (and calls himself the Curmud

geon) has several times said, in frustration and
in obvious rage, 'APL handles matrices with the grace of a fin de siecle baller
ina, but the housekeeping In that language is as graceless as a waltzing hippo

potamus. And instructions are as hard to find.' Nobody has clearly defined the
the peculiarities of APL as implemented on SuperPET. So we've logged both the
tripwires and our waltzes with the hippo. Herewith a few excerpts....

Day Ml. A booby trap. Try to save a workspace (WS) named EXAMPLE to disk 1. Say
)SAVE DISK/1. Error. Say (as in all' other languages))SAVE »DISK/1 .EXAMPLE'— and
weep. WS is renamed 'DISK/1.EXAMPLE' and saved to drive 0. In this mad language,
you must rename the workspace with)WSID DISK/1.EXAMPLE. Then say)SAVE, and off
to drive 1 goes the workspace, under the filename of EXAMPLE. Mad! A WSID is not
a WSID if it's a filename going to drive 1.

The Shattered Weekend in the Minefield: We received a number of letters asking
how to set up ASCII printers from APL (which we usually do from the system disk
with a load module), and budgeted an hour on Saturday morning to do it. Ha! If
you refer to the Character Code Tables, Appendix C, APL Manual, you'll find them
in hex (do you ever send printer code in hex?). So we converted them to decimal
for convenience (see below), and then ran into the INDEX problem. In all other
languages, your OPTION BASE (whether 0 or 1) for matrices does not affect you*’
system commands [char(1) in mFORTRAN, for example, remains char(1)]; APL, howev
er, loads with D I O set to 1, so any code you send to printer is off by one. If
you put to printer D A V 1, you send NULL or chr$(0), which, after all, is the
very first code in the ASCII series, is it not? Until we sorted this out, our
poor printer climbed walls, performed Immelmann turns, and wept a lot.... Is it
any wonder those letters came in?

Having that in hand, it's easy to set printer with the usual ASCII codes if you
use an ASCII table for any code sent above CODE 31. ESCAPE G, for example, goes
to printer as 27 71, using the ASCII code for G, not the APL code for G.

The terminal screen is a different story. If you look on page 105, APL manual,
you'll see a series of overstruck APL characters, starting at CODE 14 and run-
ing through CODE 31. As shown in the table below, they can be printed to screen
by using DAV[n], where 'n' is the code number (assuming D l O is zero).

A happy note: All the conventional SuperPET ASCII codes from 0 through 13 can
be sent- i-o screen as commands using DAV[n], and there they perform the exact
S3K" fw-.v.-tion they perform in all other SuperPET languages. OAV[12], for examp
l e clears screen and homes cursor, just as it does everywhere else in SuperPET.

-PTf. must be zero, and THAT may louse up functions in WS. So, APL provides

SursrF. T Gazette— Vol. 1 No.9 -127- August/September 1983

the TC commands (p. 82, APL manual) which control printing independently of the
value of D io .

TABLE 1. THE FIRST THIRTY-TWO CODES IN APL, IN DECIMAL, FOR TERMINAL SCREEN

CODE/FUNCTION OR CHARACTER CODE/FUNCTION OR CHARACTER
GIVEN AS N IN []AV[N]

1 HOME CURSOR 17 t GRADE UP
2 RUN 18 <> REVERSE/ROTATE
3 STOP 19 i TRANSPOSE
4 DELETE RIGHT 20 e WITH 18, RVS/ROTATE
5 INSERT SPACE 21 • LOGARITHM
6 ERASE TO END LINE 22 LOCKED FUNCTION
7 CURSOR RIGHT . 23 k EXECUTE
8 CURSOR LEFT 24 ? FORMAT
9 TAB 25 SCAN/EXPAND
10 • LINEFEED, CURSOR DOWN 26 y REDUCE/COMPRESS
11 CURSOR UP 27 a LAMP (COMMENT)
12 CLEAR SCREEN, HOME CURSOR 28 D INPUT
13 CARRIAGE RETURN 29 1•
14 r LOGICAL NOR 30 a MATRIX INV/DIVIDE
15 k LOGICAL NAND 31] I-BEAM
16 f GRADE DOWN 32 SPACE •

0 APL CONTROL AND CHARACTER CODES FOR ASCII PRINTER, DECIMAL O
CODES FROM 32 THROUGH 126 ARE IDENTICAL FOR SCREEN AND PRINTER

0 1 2 3 4 5 6 7 8 9 10 11 12

0 HULL LF DC* RS v 2 •• * c D N X
1 SOH VT NAK US A 3 X 7 ? ■*- E 0 Y
2 STX FF SYN SPC X 4 •• A P 1- F P Z
3 ETX CR ETB * 5 \ I r -► G Q I
4 EOT SO CAN) • 6 O H R H

5 ENQ S I EM < + 7 a Y 4- - I S }
6 ACK DLE SUB £ • 8 1 □ U 0 J T $
7 BEL DC 1 ESC = / 9 n 1 (1) A K U
8 BS DC 2 FS > 0 (L T 3 B L V
9 HT DC 3 GS] 1 • c £ O + C M W

REVERSE FIELD CHARACTERS ARE FOUND AT CODE PLUS 128

CONCAT CODE NUMBERS ON ABCISSA (TOP LINE) WITH NUMBERS ON ORDINATE (LEFT MARGIN)
TO DETERMINE ASCII CODE NUMBER OF CHARACTER/COOE AT CHARACTER LOCATION

Use the first table above to send codes to the SCREEN only. Use the second table
as a reference to the ASCII codes to PRINTER through code 31, and the remainder

of table 2 as a reference to the CHARACTER you will print if that code number is
sent to either to PRINTER or to SCREEN.

Below find an APL function to control margin set on a DIABLO (Commodore 8300P)
printer. Since the new margin cumulates on the old, you have to zero out the old
margin first. (Code to do it is in ZMARGIN, below.) The rest is straightforward.
Any other printer control codes may be sent in the same manner. Note that D l O
is set as a local variable to avoid wrecking other functions.

SuperPET Gazette— Vol. 1 No.9 - 128 - August/September 1983

Call the function with: SETMARGIN n (where n is the margin). No quotes. Wilma,
George, and Ted, you ruined ye ed's Saturday, but here's how to control an ASCII
printer in APL in SuperPET. Stop writing those letters. And we did get some APL
tables in decimal out of all this.

VSEJMARGIN [□] V

[0] SETMARGIN MARGIN ; DIO;ZMARGIN;SPACES;SMARGIN
[1] D I O O Pi SET 10 LOCALLY TO ZERO OR PRINTERS GO MAD!
[2] ZMARGIN+OW [27 13 80]
[3] SPACES-*- 1 iMARGINpOAV [32]
[4] SMARGINKOW [27 57 13]
[5] 11EEE41 DCREATE 3
[6] (ZMARGIN, (,SPACES),SMARGIN) O U T 3
[7] [UNTIE 3

MICROPIP : A SOFTWARE REVIEW All three of the authors purchased microPIP
by Dick Barnes, Terry Peterson, and have used it for several months. To pro-

and Steve Zeller vide a broad point of view, we circulated a
draft and all three took turns revising. The

general reaction: "The more we use PIP, the better we like it." Terry Peterson
adds, "PIP manages files better than ever before on CBM equipment, and you can
quote me as an 'old hand' at CBM disks."

MicroPIP is a Waterloo program designed to handle all files (including printer,
serial, disks, and terminal) on both output and input. It operates with main
frames running HOSTCM. Steve Zeller has limited experience using it with a main
frame. It enables entry of the MONITOR, operates in dumb terminal mode, (and, in
tandem with proper software, in smart 6809 terminal mode). It copies, renames,
formats, searches and compares, and will log results to printer and to screen.
It has the valuable ability to read and put to disk as a load module any part of

SuperPET's memory with relatively simple commands. It handles files on several
separate disk drives (and on a Host computer). All old DOS commands may be sent
in that format rather than in the more powerful, but more complex, PIP format.
With few exceptions, the manual is well illustrated with specific, exact exam
ples (though we wish there were more on command files).

1. COPY and RENAME. These commands, combined with a very powerful imple
mentation of the wild cards available in the Commodore DOS, allow you to copy or
rename any particular filenames (or any filenames beginning, containing, or end
ing in specific characters), and of particular types of files (SEQ, PRG). Whilst
copying, you may also rename the copied files. After we caught on (it took a bit
of time), we renamed and copied every file on ISPUG disk 1 in about 10 minutes,
using the powerful, general commands with wild cards. See examples below.

copy disk/1=disk/0 copy disk/1.??????????????as=disk/0.*b will
(copies all SEQ [default type] copy to disk 1 all SEQ files on drive 0 if
files on drive 0 to drive 1) they end in 'b' (in this case they ended in

'.b'), and renames them with the suffix of
copy disk/1=disk/0.*,* '.bas'. Thus an old file, 'proc dos.b', is

(copies all files, of whatever renamed 'proc dos.bas'. You MUST use a tot-
format, to drive 1) al of 16 '?' and other characters in this

command to pick up all filenames. The extra

SuperPET Gazette— Vol. 1 No.9 -129- August/September 1983

copy disk/1.*,seq=disk/0.*,* '?' wildcards, if not needed, are discard-
(copies all files, of whatever ed by the system. We copied and renamed 39
type, to drive 1 as SEQ files) files in one 3-minute pass, but needed some
[See important note, below!] two hours, the first time, to nail down the

proper command. The manual says that * rep
resents 0 or more repititions of any character, but when we did *as=disk/0.*b,
instead of using ??...? in the example above, 'proc dos.b' became 'proc dosas’.
You must test carefully to learn to use the wild cards.

Your files must be systematically named if PIP is to save your time. PIP
can neither rename nor copy selected files en masse unless those files are iden
tified in a distinctive way. Steve Zeller has several times suggested an ISPUG
filename convention; one is in draft now. Note that if your filenames carry a
distinctive prefix or suffix, you can sort, copy, and rename not only by lang
uage but by the function the file performs, as in the suffix ':bd', which, when
used as an identifier with the name of the file, tells us that the language is
microBASIC ('b') and that the file is a demo ('d ') for the Gazette. You can lo
cate, copy, or rename all 'filename:bd' files easily with PIP.

Initially, Dick thought that PIP converted SEQ files to PRG files, and vice-ver
sa (see last command, left, above). But files so renamed stay in their old for
mat, despite their new names. PRG files are still PRG files, even though renamed
as SEQ files, as Terry points out. Be warned.

2. PIP makes it simple to handle files on two or more disk drives, as
with devices 8 and 9, for example.

3. PIP does a good job of reading and sending to disk the SuperPET mem
ory locations you specify, in modules which you can reload in PIP with GET, in
the MONITOR with load, or from the language disk. Example: with SCROLL and PIP
in memory, Dick saved $7f00-$8000 to disk as 'highmem' (which should have saved
a load module containing SCROLL); shut down, loaded 'highmem' from 6809 menu, &
then loaded PIP— and both SCROLL and PIP worked perfectly. In short, when some
thing in memory (particularly a program modified in MONITOR) is up and running,
you can save it as a load module— a decided blessing.

4. The MATCH command is powerful and most useful: it compares two files,
line by line. If it finds difference between them, the lines from both files are
printed to the screen, and optionally to printer. If you have a several versions
of a complex program, this feature is golden in finding and comparing the diff
erences.

5. You may create 'command files' which contain a series of PIP commands
much used, and execute them with a one-line command. With such a file, we found
MATCH remarkably fast. We went through a a pair of disks, one of them an old
backup, in less than five minutes. Every difference was printed to screen and to
hard copy— with the drive number, line number, and full text of the lines. These
were SEQ files. PRG files are compared in hex. Fast, easy, and valuable.

6. We particularly like the feedback on commands. PIP prints to screen,
and optionally sends to printer, exactly what it is doing with each file as it
does it. You can STOP if you see mistakes. It is easy to make short tests.

7- DIRECTORIES. PIP's handling is lovely. [Peterson: understatement!]
You may see on screen or send to printer a whole directory or any selected part.

SuperPET Gazette— Vol. 1 No.9 — 130— August/September 1983

Example: M i ieee4 = disk/O.*.bd sends to screen and to printer the filename of
each file on disk ending with '.bd'. You can find the files you want quickly.

8. Steve notes that he can upload to a mainframe, sometimes, with the
command 'copy serial=myfile.txt', but that he cannot download a file off the
serial port, and that he had trouble setting up the serial port. The timeout
option does not work in PIP, and although he set the speed, he had trouble in
the passthru mode. He finally used setup in the main menu, before loading PIP.

9. That, in general, is the good news. Some few features need to be im
proved. The first: an uncontrolled, FAST scrolling of directories off the top of
the screen. Here you sit with a powerful PIP, designed to handle files, and you
cannot read the scrolling directory as it goes by; you hope to God you're at
the right spot and press STOP. If you don't STOP at the right place, you get
to call for a directory all over again. Luckily, we got a program from Canada
called SCROLL. Loaded with PIP, it stops and starts scrolling at your command.
We hope to publish, the code for SCROLL soon.

10. We doubt much can be done now about inconsistent syntax; i.e., else
where in SPET, an apostrophe may be substituted for ". Not in PIP. If you use '

t<? enclose a filename with spaces in it,
mED and Languages: PIP: ('new file'), the ' is memorized as part

of the filename. And quotes are not used
'disk/1.new file* disk/1."new file" as elsewhere in SPET (example, left).

11. COMMAND DEFINITIONS. The command definitions called to screen with
? whilst in PIP are in many cases too brief. We wish PIP included two or three
'help' screens with specific, concrete examples of the more complex commands.
The syntax gets complicated, and you need the examples if you do not use PIP ev
ery day. The manual, thank goodness, contains good examples.

12. PIP RUNS ALONE. The command files for PIP are best created in the
microEDITOR; (though you can CREATE them in PIP). Often, you need to see your
files; we found ourselves loading them in mED frequently, so we finally filed
PIP (without its help programs) on the language disk. We wish the writers had
integrated PIP into the mED, as in the languages, to avoid constant reloading of
of the two programs. But, for $75.00.... Available from: Watsoft Products, Inc.
158 University Avenue West, Waterloo, Ontario, Canada N2L 3E9.
mm
IS THE SCREEN A RELATIVE FILE? Enter and run the little program below; watch

A Useful Puzzle what happens. See if you can figure out why the
program prints and inputs where it does. Don't

90 ! by Terry Peterson modify anything. Enter and run it as shown
100 print rec = 0, 'Hello' at left, even if doesn’t make sense at the
110 print 'Now the cursor is here.' start. If you can't figure it out, blame
120 input rec = 24, 'Well?', line$ Terry Peterson for sending it in, and see

the last page of the Gazette, this issue.

BITS BYTES & BUGS Since 6809 memory is blown in my SuperPET, I cannot
by: Gary L. Ratliff, Sr. get to or work on my Development files, so I'll have
P0 Box 829, Sanatorium to depart from my promise to show a way to optimize

Mississippi 39112 the LENGTH routine. Dr. Cowan of Waterloo has kindly
given permission to publish a translation of it which

— SuperPET permitting— will be printed next issue.

SuperPET Gazette— Vol. 1 No.9 -131- August/September 1983

This column therefore considers where we have been and where we are going. I'll
also introduce, at the suggestion of Fred Fuller of Clinton, IA, a quiz in each
issue which will allow readers to test their understanding of the 6809 and 6502
instruction sets, and ask that readers by mail or phone tell me what they'd like
to see discussed in this series.

Let us review what we have accomplished and also what you now should have mas
tered. In the earliest issues we showed how to prepare an assembly language
program from the editor. The format of .asm and .cmd files has been explained.
We showed how to use the editor to modify files to save time. Some of the addre
ssing modes of the 6809 have been introduced, with examples of various ways to
deal with text. And, finally, we showed how to use standard library routines.

In the last issue you should have caught the error. We showed that error as the
absence of leas 2,s. We had, however, placed two parameters on the stack and
each parameter required two bytes. We should have removed both paramaters by
using leas 4,s. We hope everyone caught the error.

In other articles on the 6809 we have given you various useful tools: the first
published example of a user-interrupt which dumps the screen to the printer, a
detailed map of the 6809 side of the SuperPET, and a method of easily using the
discovered routines in your own assembly language programs.

So much for where we have been. Now, where are we going? This installment will
mark a transition; instead of covering basic material we'll cover the more ad
vanced aspects of assembly language, one of which is structured programming. It
is available in Assembler as well as in the high-level Waterloo languages, and
in Assembler as elsewhere makes programming much simpler and easier.

If at all possible, I recommend that you read Software Engineering For Micros, a
book written by Ted Lewis and published in 1979 by Hayden Book Company. If your
local library has a good computer section, you should be able to locate a copy;
if not, it is sold at most good computer stores. The book is most instructive,
and will help you grasp structured programming. It is well written (there are
some minor errors for which Ted assures me he takes full responsibility). Lewis'
technique of software decomposition is invaluable when you tear down some of the
system routines.

We'll also offer more tools for the assembly language programmer. First will be
an extended monitor for the SuperPET which will be offered on the next ISPUG
disk. [Ed. Let's call it EXMON for the moment. We have another improved monitor
in the mill from Terry Peterson.] EXMON is the outgrowth of my work with MICRO-

MON. See 'A SuperPET Monitor you can Bank On' in the March '83 issue of COMPUTE!
for some of the limitations of the 6809 monitor. EXMON is intended to remedy
most of these shortcomings. Second, I've rewritten a screen dump to send monitor
and other output either to printer or to a disk file. Third, Paul Ruud, of Berk
eley, Cal., has written a routine to let us redefine the keyboard. Last, Water
loo has sent additional data on the 6809-side map. Many tools are emerging to
make assembly-language programming in SuperPET easier and less a drudgery.

Next, I may be writing about hardware. I normally don't do it. So why depart
from strictly software solutions to problems? Because there is a definite need
for such material. Dick tells me that at this moment three of our Associate
Editors have SuperPETs with blown memory boards. After a bit of work, I was
able to locate MOSTEK's data sheets and several informative articles on the 4116

SuperPET Gazette— Vol. 1 N o . 9 -132- August/Septeraber 1983

memory chip, so I’ll attempt to fix the memory board myself and report on resul
ts. If I succeed or fail, I'll report. If I fail I will be doing as well as the
local Commodore repair technician....

If you have hardware experience you may be able to help me. The diagnostic
program 'Test 6809 SPET' which is on the first ISPUG disk shows that the ram at
UD37-UD44 is bad. A memory test via ’fill 9000 9fff 00' in all banks shows that
banks 2,3»a,b d o n’t produce correct results. The pattern revealed is 80 00 80
00 80 00 etc. There are 8 chips involved, and the high bit appears to be perm
anently set. At present the 4116 chip in position UD44 is the suspected chip to
replace. Any advice or help is welcomed.

Now for the example for this issue. Many of you may have wondered how the stru
ctured programming construction: quess..„endguess is actually used in a program.
The following example is from the open command of EXMON for the SuperPET. The
object is to allow the output to be redirected from the screen to either the
printer or to a disk file.

open equ *

;the format of this command is ’o p’ to open printer, ’o d’ to open disk,
;’o s’ to open serial and ’o i’ to open ieee4 (ASCII printer)
clr busy ; device never opened
jsr getchar
guess

ldy tfwrite jdefault case
cmpb #'d ;?disk
quif ne
ldy ^append
Idx //sent

admit
cmpb #'p ;?printer

quif ne
Idx ^printer

admit
cmpb #'s ;?serial
quif ne
Idx tfserial

admit
cmpb #’i ;?ieee
quif ne
Idx //ieee

admit
ldd #invalmd
jsr printf
bra byby

endquess
sty mode
stx type
byby jsr waiter

jsr putnl
rts

ieee equ *
fee ’ieee4* ;this is not in ROM as others
feb 0

Here the object is to present the method of
using guess...admit...endguess construction.
As this example shows, it may be used as a
case structure to select one option of many.

I have not underlined routines normally
requiring it because this example
is not to be run.

This is a technical error. But there is a
more common error in this routine which you
are to try to find.

The example is from a much larger file and
the cmd file to corectly link it is not
needed.

Here invalmd is the ROM area which prints:
'invalid mode'. This case is reached if the
user fails to select one of the devices. As
given in the outline of the instruction.

Waiter is a monitor routine which waits un
til the user hits the carriage return.

SuperPET Gazette— Vol. 1 No.9 — 133— August/September 1983

mode rmb 2 All the other areas are found in the area of
typ rmb 2 ROM near DevList. See Map in issue seven,
busy rmb 1
sdsv rmb 1

end ; +++ Now for the promised quiz. Answers next issue: +++

1) <• What is the difference between the action of the carry flag in the 6809 and
the carry flag in the 6502 micro's?
2) List at least three methods of clearing the 6809 carry flag.
3) What is the difference between the instruction ABX and LEAX B,X?

The error in the example presented: either stx 'type' must be changed to 'typ'
or the rmb 'typ' must be changed to rmb 'type'. Variables clearly don't match.
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmnimmnimmnrimmmrnrniTimmTnmmmmmnimmmmrnmmmninimmrniwnmmmrnmm

STEVE ZELLER IS MISSING.... The APL Exchange does not appear this issue be
cause Steve's SuperPET has blown the upper 64.

We'll try to make it up to you next issue.
i i «

THE PUZZLE : A POWERFUL ANSWER The answer to Terry Peterson's puzzler: indeed
the screen (or more properly, 'terminal'), is

•Fortran demo: screenfile.fd treated as a 'relative' file, not only in mBAS-
character line IC, but j.n microFORTRAN as well. See program at

write(rec = 0) 'Hello' left, which places all write(rec = n) lines on
print, 'Now the cursor is here' the screen at the lines indicated. Note there
write(rec = 24) 'Enter string' is an offset: row 1 of the screen is line 0 and
read, line the offset persists to row 25 (line 24). This
print, char(12) is far more than a trick; it provides powerful
write(rec = 12) line and simple cursor control. We suspect the same
end technique will work in mPASCAL and in APL. If

our answer is still confusing, change the rec =
entries in either mBASIC or mFORTRAN versions and watch the screen lines change.
If you change to OPTION BASE 1, we'd guess line 1 no longer will be rec=0. And
note you now have a powerful way to test relative files where you can see them,
mmmrnmmmmmmmmmmmmmmnimmmrnn’inimnim

Prices, back copies, Vol. 1 (Postpaid), $ U.S.
No. 1: not available No. 4: $1.25 No. 7: $2.50
No. 2: $1.25 No. 5: $1.25 No. 8: $2.50
No. 3: $1.25 No. 6: $3-75 No. 9: $2.75
Send check to the Editor, P0 Box 411, Hatteras, N.C. 27943. Add 30% to prices
above to cover additional postage if outside North America. Make checks to ISPUG

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$

APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP

Name: Disk Drive: Printer:

Address:

Street, P0 Box City or Town State/Province/Country Postal ID#

For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check or money
order, payable to SPUG. DUES ELSEWHERE: $25.00 U.S. Mail to: Paul V. Skipski,

Secretary, SPUG, 4782 Boston Post Road, Pelham, N.Y. 10803, USA.

SuperPET Gazette— Vol. 1 No.9 -134- August/September 1983

Newsletter published by the International SuperPET Users Group (ISPUG); a
non-profit association; purpose, interchange of useful data. Editorial offices
at PO Box 411, Hatteras, N.C. 27943. Secretary, Paul V. Skipski, 4782 Boston
Post Road, Pelham, N.Y. 10803. Membership applications, dues, and inquiries to
Mr. Skipski; newsletter material to Hatteras, attn: Dick Barnes, Editor. Super
PET is a trademark of Commodore Business Machines, Inc.; WordPro a trademark of
Professional Software, Inc. Contents of this issue copyrighted by ISPUG, 1983,
except as otherwise shown; reprinting by permission only; SPUG members are auth
orized. to use the material. Enclose a self-addressed, postpaid envelope with all

material submitted and all inquiries requiring reply. Membership: $15.00 per yr.
U.S. in North America, $25.00 overseas and elsewhere. See enclosed application.

For all outside the U.S.: All nations members of the Postal Union offer
certificates good in the postage of any other country for a small charge. The
Union includes most nations of the world. Canadian members: send Canadian dimes
or quarters for postage, but no paper currency.

PRINTED MATTER

