
We apologize to readers for a blooper last issue
in the assembly-language screen dump we published.
While it dumps very well, it also crashes all lan
guages if called with a SYS call, or if you do not

overtype the registers in a monitor call. Sorry; it came in one day before we

had to print and we didn't have time for a good test. No excuses; we should not
have published without a good check, and normally don't. Here's how to make the
dump run from the monitor only (don't use a SYS call from language): overtype

all registers with 0 except for S and CC as shown, left, and,
S CC then hit RETURN. Do this after every dump, when the registers

0220 cO are automatically dumped to the screen. Second, do not give
the command; clear <RETURN> unless you reset top of user mem
ory to 7fff* If you do these things, the program works very

well. By way of compensation, we offer you this issue a pluperfect, kandy-koated
assembly language dump which runs in all SuperPET languages and facilities, from
Development through APL, from the microEDITOR thru the MONITOR; which resets top

of user memory in program, and which we've used for a solid month, every day,
without a glitch. The dump lives up high at $7f00. You call it when you drop a
line of forty backslashes ' V , starting at left margin. Whereupon the program
dumps to the line of backslashes, erases them, and stops.

We can thank Jeff Larson and Gary Ratliff for it. Jeff wrote a new dump which is
gentle with printers (it line spaces all blank lines instead of slamming from
stop to stop) , and does a carriage return at the end of the characters on any
line. Gary, meanwhile, found a way to use the interrupt process in SPET to sense
the dump command and to avoid the troubles we described above. When we got the
two new versions, we asked Gary to perform a marriage (which he did). The result
is PIRQ (Print on Interrupt). We've run it in all languages, and find no bugs.
Yes, you can pick another key to start the dump, if you don't want to use the
backslash.

You load it in the mornin' from the language disk with a simple: pirq <RETURN>
in about two seconds; it returns you to menu; whereupon you load whatever lan

guage or facility you want. You may change languages or facilities and PIRQ
remains in memory until you shut down or switch to 6502. See Gary Ratliff's
article, in this issue.
x x

A GAZETTE SPECIAL! THE FIRST PUBLISHED MEMORY MAP OF SUPERPET!
See Article, page 81, this issue.

X X

THE EDUCATIONAL LIST Last issue, we asked if teachers were interested in a

list of educators who use SPET, mutual aid being the
idea. Jim Swift (RR#3 Site E, Nanaimo, B.C. Canada V9R 5K3) tentatively plans to
handle a newsletter/educational list for educators using SuperPET. Unless we
hear from teachers on our mailing list to the contrary, we will send your name
and address to Jim as a start for his mailing list. If the address label on this
issue of the Gazette does not show you at a college, high school, or university,

we have no way of knowing you teach— so please send your name and address to Mr.
Swift directly. To get help or give it: communicate!
x x

JIM SWIFT'S GEM Last issue, you read that a 'g ieee8-15-NO:newname ,id' issued
from the microEDITOR (mED) worked as a DOS command, and that

all DOS commands could be issued in this form from the mED wherever it is used.
One problem, though: how do you handle

g ' ieee8-15.C0:space file=1:space file' filenames containing blank spaces? See
the example at left. Any other arrange

SuperPET Gazette— Vol. 1 No. 7 -67- April/May 1983

ment of quotes we've tested will fa i l . This works. The mED needs quotes around

filenames only when blank spaces appear in that filename, as in: g 'blank f i l e '.
» * *

NEW PUBLICATION SCHEDULE: Starting with this issue, we're increasing the size

REVISED MEMBERSHIP DUES of a regular issue to about 20 pages, and publish

ing once each two months, instead of once each six

weeks, because the production and distribution job is a horror. Instead of giv

ing members about 80 pages a year, we'll give you about 120. Dues must go up to

$15.00 U.S. for the U.S. and Canada to cover postage and printing [80:120 as

10:15]- Those who gave us multi-year memberships will continue to receive the

Gazette until memberships expire. Overseas dues (Europe, South America) will

change to $25.00 U.S. from $20.00, since the new arrangement economizes on for
eign postage. We'll have to cut pages or membership periods if the Postal Ser

vice raises postage during the next twelve months, or if our printing goes up.

NOTES FROM THE SIEVE Last issue, we promised some notes on what runs fast and
what is slow from extensive tests of mBASIC in the Sieve

of Eratosthenes. The results are comparative, not absolute. Use the comparisons
with judgment; the Sieve has only

SLOWER:

i f . . .else . . .endif

FASTER: 26 lines; the comparison of 'goto'

with ' i f . . .else . . .endif' shouldn't
goto hold for long programs.

goto

20 prime* = i*+i*

30 k* = i*+prime*

i f . . .endif

Combine equalities

on one program line.

Significant difference

while. . .until <cond>

if flag* = 1

while. . .endloop

if flag*

Significant difference,

Substantial difference

for i{ : 1 to n

(or 0 to n)

for i* = p* to q* Measurable difference in

8190 iterations.

loop. . .endloop

while. . .until

i f . . .endif

for i* = p* to q* Most significantly and

substantially faster.

Lines numbered 1 ,2 .. .2 6 ran not a whit faster than lines numbered in increments

of 5 or 10 [1 0 ,2 0 ...2 6 0] . In 8190 iterations, removing the white spaces between
program items [count* = 0 vs. count*=0] decreased run time only 2 .6 *— which is
hardly worth the decrease in readability. As a last test, we took out ALL inden

tations for structure. For a grotesque loss in readability, we cut run time only

1 .8*. So let no contributor send in programs written BASIC-style, with every

thing crammed together, on the excuse that 'i t 's faster.' Significantly,

making such measures

it is

unece-not significant. Congratulations to Waterloo for

ssary. Now, if we just had compilers....
» » *

**

INTEGRATING TEXT AND PROGRAMS The assembly-language screen dump printed last

IN THE MICROEDITOR issue was significant, for it 'l l add the MONITOR
as the last, reluctant facility or language in

SuperPET whose programs and output can be integrated in the microEDITOR. All we

need to finish the job is a rewrite of the assembly-language dump so it saves to

disk (primarily to store monitor dumps).

SuperPET Gazette— Vol. 1 No . 7 -68- April/May 1983

The high-level languages which run in 6809 mode are no problem. Any sequential
file generated by SuperPET, in any 6809 language, can easily be brought from

disk into the mED. The problems: how to pull WordPro, Wordcraft, and BASIC 4.0

files into the mED, how to print APL files integrated with ASCII files, and how
add to, abridge, page, file to disk, and put to printer in one pass the files

we thus create, of whatever length. It's a tall order, but a large part of it is
done. We'll cover part of it this issue, and more next, being short on space.

What follows is the result of collaboration between Gary Ratliff and the editor;

just who did what is not at all certain; as with Topsy, the methods 'growed,'

from a suggestion by Gary last December, some great assembly-language work from

him, and five months of interesting work.
» » »

WARNING! Strongly suggest you not file WordPro, Wordcraft, or BASIC 4 .0 files

with any capital letters in the filename. When read in 6809 mode, capitalized

filenames appear in reverse field, and files can neither be retrieved nor man

ipulated by any possible disk command in 6809. To use the methods we describe,

avoid caps in 6502 filenames like plague.
» « »

CONVERTING BASIC 4 .0 The microEDITOR reads only sequential (character) files.

PROGRAMS FOR THE mED BASIC 4.0 programs 'dsaved' are program files, and thus

not readable. You can convert them to sequential files

if you 'dload' them and save them to disk while in BASIC 4 .0 with the immediate

mode commands on the left ; they save

open 5 »8 ,4 , ' 0:filename,s,w*:cmd 5 :list a sequential file to drive 0, with a

print//5 : close 5 new filename. Wait until the cursor

reappears to enter the second line .

When a file is so converted to a sequential file, you cannot load it in BASIC

with 'dload ', but if you load the mED alone in 6809 (outside any language), and

say: g 'FILENAME' <RETURN>, the file will load into the mED. Be sure to use CAP

ITAL letters for the filename, or mED will, refuse your command.

If you have used cursor commands within quotes in the BASIC program, they will

not print properly in mED. You have two choices: type in the COMPUTE! con

ventions for hard..copy cursor commands before conversion, or use Gary Ratliff's

machine language program to convert them to the conventions (in English) auto

matically. Gary's LIST-9 utility does it almost instantly, either to screen or

disk. His program is found on the SPUG disk announced last issue. You need enter

nothing in the monitor.

Here's how to use LIST-9: (1) load LIST-9 from drive 0 with: load '0 :l ist- 9 ',8

<RETURN>; (2) reset BASIC pointers with: new <RETURN>. Then 'dload' the program

you want to convert. When it 's loaded, issue the command below, left (program is
set to file to drive 0).

open 5 t8 , 4 , ' 0:filename,s,w ':poke 78,n:cmd 5:sys 40539 The value of 'n ' , after

print#5 : close 5 the poke, is the number

of characters you want

on a line— the maximum being 80, or a full screen. After the command is entered,

your program goes to disk with cursor commands in English. If you want to see

the program on the screen, as converted, simply say: sys 40539 <RETURN> and you

will have it , on screen, instantly. LIST-9 is a jewel, particularly when you

must convert BASIC utilities to mBASIC utilities. BASIC programs thus converted

may be loaded in the mED in mBASIC and rewritten.

[Next installment: Converting BASIC 4.0 files for WordPro; WordCraft and Wordpro

files for use in 6809; handling giant text files (virtual and real).]

SuperPET Gazette— Vol. 1 No. 7 -69 April/May 1983

PRINT DIRECTORY - A Demonstration of [This, the second of Dr. Spencer's
Some Error-Processing Techniques and articles for the Gazette, should be

of Using Program-Controlled Immediate mastered by every user of Waterloo

Mode in microBASIC microBASIC, for it not only demon-

(c) strates the basic error-processing

by John A. Spencer, Chemistry Depart- techniques in SuperPET, but it also

ment, Southern Illinois University, shows how to use what the old PET

Edwardsville, Illinois 62026 hands call the 'dynamic keyboard',

in which the computer gives itself

instructions. Last, it is a mighty handy utility, producing multi-column print

outs of large directories, instead of the usual Commodore string of spaghetti.]

PRINT DIRECTORY accomplishes the difficult: printing a directory in mBASIC 1.0.

It primarily illustrates, however, several error-processing techniques you may

find useful in your own programs. It also shows another way to use the keyboard

buffer to enable a program to jump into immediate mode, give itself a 'goto ',
and resume operation.

One of the greatest strengths of Waterloo microBASIC is its excellent error pro

cessing, akin to that on many time-sharing versions of BASIC. Errors are handled

by invoking either the 'on [type of error] ignore' statement or the more power

ful and flexible statement shown left, below. Both must be placed in program at

a point prior to the place where a

10 on [type of error] specific type of error might occur.

20 [error processing instructions] The structure shown on the left al-

30 resume [or resume next] lows sophisticated error handling;

40 endon we are not limited as to the amount

of code between ' on. . .endon'. If the

particular error can be handled at all, we may resume program after the error

either on the line where the error occured or on the next line ['resume' or 're

sume next' statements]. We may restore normal system error processing by an 'on

[type of error] system' statement after we pass the trouble spot, or [an import
ant point] by a 'stop' statement.

Chapter 12 of the microBASIC manual lists the various types of errors which can

be processed. Though the manual does not say so, we may not employ the general

statement 'on e r r ', which is refused. Among the most useful of the statements is

'on attn '; if invoked, it keeps the STOP key from interrupting a program, and it

also causes the STOP key to be ignored during 'input' and 'get' statements.

Curiously, and rather unfortunately, the STOP key is not defeated by 'on attn'

for 'linput' statements. If we try to write bulletproof programs, we may not use
'linput' for keyboard input, nor may we read random characters [including STOP,
chr$(3)] from disk files using 'liriput />' .

185 CS$=chr$(12) : CR$=chr$(13) : D$=chr$(10) : H$=chr$(1)
190 ! If system variable date$ is set then listing will be dated.

195 ! WARNING: Change line numbers or renumber this program at your own risk!
200 ! Lines marked by ////////// must be altered by hand if program is renumbered.
205

210 on attn ! Process STOP key up to line 370
215 resume
220 endon

Lines 210-220, above, show the simplest way to process the STOP key. If that key
is pressed, the 'on attn' causes the program to 'resume' on the next line. Note

SuperPET Gazette— Vol. 1 No . 7 -70- April/May 1983

well that mBASIC processes STOP key errors in a special way; it waits until the

end of the current line to check for STOP in the keyboard buffer. Hence 'resume'

jumps to the next line; ’ resume next' skips a line. 'Resume' is thus identical
in effect to an 'on attn ignore' (which is not allowed).

MicroBASIC processes all other types of error differently; it transfers control

of program to the 'on...endon' structure as soon as an error is detected in the
current line. If we employ 'resume', the same line is reprocessed; 'resume next'
goes to the next line.

I

225 on conv ! Process non-numeric input § line 290

230 ce%=1 : resume next

235 endon

240 on ioerr ! Trap or process disk drive error.

245 print CS$: c*=cursor(826)

250 print 'PLACE DESIRED DISK IN DRIVE # ' ; dr% : c%=cursor(c%+150)

255 print 'Check for Write-Protect Tab. Press RETURN when ready.' : dio*=1
260 get a : if a<>13 then 260

265 resume next
270 endon

275 CS$=chr$(12) : CR$=chr$(13) : D$=chr$(10)
280 get a$: if a$<>'' then 280 ! Clear keyboard buffer

285 print CS$: if cursor(830) then input "Which disk drive? ",dr$

290 dr%=value(dr$) ! String to integer conversion.

295 if ce% then cej=0 : goto 285 ! Conversion error detected.

300 if dr%<0 or dr%>1 then 285 ! Only drives 0 and 1 exist.
305 open if 1 2 1 ,'disk/'+value$(dr%)+' .zz' , output ! Test for disk in drive.

310 if dio% then dio%=0 : goto 305 ! Disk 1/0 error detected.

315 on conv system ! Reinstate system error processing.

320 poke 297»0 ! Disable keyboard.
325 close #121

330 scratch 'disk/'+value$(dr%)+ ' .zz' ! Scratch test file
335 on ioerr system ! Reinstate normal I/O processing

340 ncr%=1 : d$="di'disk/"+value$(drJ)+'M " : al$=d$: jj% = -1

345 open #131, 'keyboard', inout ! Allow read & write on keyboard buffer
350

355 ! >>> Returns here to continue displaying directory on screen.

360 print 0131, CS$;d$;rpt$(CR$,ncr%); ' goto 375';CR$! #####
365 stop • Dumps keyboard buffer filled § line 360

370

375 !>>> Program continues to run starting here after keyboard dump.
380 open #131,'keyboard', inout ! Reopen keyboard after 'stop' statement

385 on attn ! Reset STOP key processing after going

390 resume ! into simulated immediate mode § 365

395 endon

When we execute a STOP at line 365 and go into immediate mode, we restore normal

error processing. As we resume program, we must repeat the 'on attn' sequence in

lines 385-395. Note that 'on attn' does not keep a user from putting STOP into

the keyboard buffer; it is simply a method of ignoring STOP. Should the buffer

contain a STOP when we enter a program, STOP will be processed before any of our

program is executed (our program is STOPped). We do not face this problem in any
ordinary programs which are 'run' from immediate mode, for if we press STOP, the

program STOPs, and we see 'Ready'.

In a program such as this, however, we jump in and out of immediate mode. If we

press STOP at just the right moment, we may slip it into the keyboard buffer and

SuperPET Gazette— Vol. 1 No. 7 - 71- April/May 1983

STOP our program before we reset 'on attn' at line 385. This raises a general

question: how do we best keep a user from entering unwanted characters and com

mands in critical parts of a program? One solution: disable the keyboard with

'poke 297, O ', which leaves the keyboard utterly dead (we must avoid this when

in immediate mode, for we lose all communication with the computer and must re

cycle). We may re-enable the keyboard with 'poke 297 ,255 '. We employ the method

several times in PRINT DIRECTORY.

Note that a program 'stop' statement does not re-enable the keyboard; if at line

370 or immediately thereafter you press the STOP key, no STOPs are sent to the

buffer. When it is time to accept further keyed input and 'on attn' has been set

safely, the keyboard is temporarily re-enabled in line 470; when a character has

been received at line 475, we again disable it until at end of program we bring

it back to life . Note further that when we disable the keyboard itself, we may

still use the buffer to receive and transmit data.

Be extremely careful in disabling the keyboard; if your program bombs, you have

no way to recover. Debug your program totally before you add STOP key processing

or disable the keyboard. You must, in addition, plan to handle other errors with

no resort to the keyboard, as we do in this program.

[For lack of space, we must continue this article next issue. The remainder of

the program follows. Comment out all 'on attn' lines and all pokes which disable

or enable the keyboard when you enter the program and keep these lines dead un

til it 's on disk and running well. Many of the features will become clear in the

next installment. Ed.]

400 aa%=-79
405 for ii% = 1 to 24 ! Reads screen lines into AA$

410 print #1 3 1 , CR$:aa%=cursor(aa%+80) : linput "",aa$

415 if aa$=d$ then 440 ! Skip if d$="di' disk/dr#'"

420 if idx(AA$,aa$) then 440 ! Skip if already present

425 if aa$=1 goto 375' then 445 ! #####
430 if aa$(len(aa$)-6:len(aa$))= 'S FREE.' then 450 ! Quit on blocks free.

^35 jj?=jj%+1 : AA$=AA$+aa$! Add DIR entry to AA$
440 next ii%

445 ncr%=ncr%+1 : goto 355 ! Increase # of dir pages and rescan.

450 BF$=aa$: close #131 ! BF$ = number of blocks free on disk.

455
460 print CS$: if cursor(830) then print "SET PRINTER PAGE TOP"

465 print D$;D$;D$;tab (2 9) ; '[PRESS ANY KEY WHEN READY]'
470 poke 297,255 ! Reenable keyboard for line 475

475 get a$: if a$= '' then 475 ! STOP key still ignored.
480 poke 297,0

485 open #141, 'ie e e 4 ', output ! Set up Comm 8023 printer (132 col)

490 AT$=AA$(4 :21): if date$<>" then AT$=AT$+ " [»+date$+"]"

495 AA$=AA$(28:len(AA$)) : lA%=len(AA$) ! Trim disk header.

500 os%=0 : il%=jj% : if jj%>120 then il%=120

505 tbc%=((ilj>60)+1)*16 ! Spaces to center title line.

510 print #141, tab (tbcX-14) ;H $; ' DISK DIRECTORY'

515 print #141, tab (tbcj-len(AT$)/2); AT$;D$! Disk title line.

520 for kk%=1 to 60 ! Print out AA$ (1 or 2 columns)

525 for llJ=kk%+os% to il% step 60

530 ffj = 27*(l«- 1) + 1
535 if ff%<lA* then print #141, AA$(ff% :ff%+26),
540 next 11%

SuperPET Gazette— Vol. 1 No. 7 -72- April/May 1983

545 print #141

550 next kk%

555 if jj%>120 and os%=0

560 os%=120 : il%=jj% : print #141, rpt$(CR$,2)

565 print #141, "DISK DIRECTORY (cont)"

570 print #141, AT$;D$: goto 520
575 endif

580 print #141, tab (tbc%-15);BF$;" " ; jj% ;"F ILES .";D $;D$

585 close #141 ! Prints just 66 lines for paging

590 poke 297,255 : on attn system ! Restore keyboard, STOP processing

595 end ! Copyright 1983. John A. Spencer
X * « * * X « S X * X X X X X X X X f t

THEM DURN SWITCHES Early SuperPETs were sold with two switches on the right

side of the case: one makes ROM out of RAM by write-pro
tecting the upper 64K of memory; the second selects the processor used (6502 or

6809). What follows is pieced together from reports by Richard Schumacher of St.

Louis and from Associate Editor Terry Peterson (ye ed has two switches on SPET
No. 238): You can't put EPROMs in two-switch SPETs; the circuits which disable

the 6502 ROMs when you switch to 6809 mode will not disable EPROMs. If EPROMs
are socketed at UD11 or UD12, you can't run 6809 mode (without extra switches).

Two new switches solve the problem. Switch three controls UD12 ($9000-$9fff)• If

the switch is on, the (EP)ROM in that socket is active, and the bank-switched
upper 64K of memory in SPET is disconnected. Since any ROM at $9000 can be un

loaded to disk (see Roy Busdiecker, Vol. 1, pp. 28-29) and then reloaded from

disk into any of the 16 4K banks of switched memory, and any of those banks are

accessible from 6502 mode, UD12 isn 't essential unless you like ROMs. You turn

switch three OFF for 6809 mode.

Switch four controls socket UD11 ($a000-$afff), where WordPro and WordCraft ROMs

(EPROMs?) usually reside. If you use this socket, turn the switch on in 6502

mode, and off for 6809 mode.

Walt Kutz has informed us, and COMMODORE magazine has said that the switches are

free, but that installation by a dealer is not. Because the switches are inex

pensive and free, we have a lot of letters saying dealers don't have them. We
rather doubt the distributors are trying'very hard. Suggest the Slobbovian Ulti-

matim: Get the damn switches or I take my business elsewhere. Where is else

where? Try Fisher Scientific (last issue). Aren't alternative sources handy?

Early on, the switches on our SPET fell off or got flipped (usually while in

program!) when we dusted or chased a pencil hiding under SPET. Once we yanked a

handbook out, and extracted a switch, wire entrails and all, from its socket in

side SPET. Enough! So we got a tube of our favorite cement (DUR0 Rubber) , sanded
through the paint, coated two spots on SPET and the mounts of both switches, let

'em dry for 15 minutes, and pressed 'em on— with the switch toggles facing the

operator, not the desktop. Now we can read the legends on the switches; no pen

cil or book or dustcloth flips ary a toggle— a distinct improvement.
x x x x x x x x x * * x x x x x x x x * x x x x * x x x x x x x » x x » » * x » » x x x x x x x x x * * x * x x x * * x x * * » x x * x * x x x x x x x * * *

SUPERPRINT FOR THE SUPERPET [PRINT ON INTERRUPT WITH PIRQ]

by Gary L. Ratliff, P0 Box 829, Sanatorium, Mississippi 39112

Last issue, we presented a 6809 screen dump and promised to find some addi

tional uses for the technique. This issue, we keep that promise and show how

the routine serves as the base for an interrupt-driven process, which works with

all printers; you may, however, need to add a line feed (not hard; take out some

SuperPET Gazette— Vol. 1 No. 7 -73- April/May 1983

'comment' semicolons in the .asm listing) if your printer fails to perform a
line feed with each carriage return ($0d in assembler). Not only does this pro

gram work on all printers, it works in all languages and facilities in SuperPET

including the 6502 Development System. Hence, whenever you run 6809 code, this

program dumps the screen to printer upon demand (Yes, in FORTRAN, PASCAL, COBOL,

APL, mBASIC, the microEDITOR, the MONITOR, and all DEVELOPMENT facilities.)

We call it 'pirq' since it 'prints on interrupt'. You load it from the main lan

guage menu in less than two seconds with: pirq <RETURN>. It occupies only 186

bytes at the very top of user memory, and sets end-of-memory itself. The version

published dumps whenever you hold the backslash ' V key down and let it repeat

forty times. It stops the dump on the row of backslashes, and then erases them.
You can substitute any other key for the 'trigger' if you care to, and want to

use the backslash in text.

In APL, the left-arrow key is probably the best candidate (ordinal 95, or $ 5 f) •

The REPEAT key (ordinal 127, or $7f) is also available, if otherwise not used.

The backslash 'V i s handy for text like this. It 's easy to substitute the key

you want. You will still require at least two backslashes at left margin to stop

the dump short of 24 lines. Once you've loaded PIRQ from the main language disk,

you are returned to the language menu; load anything you want. PIRQ remains in

memory so long as you stay in 6809 mode; you can switch languages or facilities.

The history of PIRQ shows what collaboration in SPUG can do. Jeff Larson came up

with a printer routine which gently line-feeds all blank lines, instead of shov-

in the printhead from margin to margin. His routine also returns the carriage to

left margin as soon as the last character on a line is printed. All this produ

kes a very swift but gentle printout. Jeff sent his new version to Dick Barnes,

while I sent Dick an early version of PIRQ. Dick said: 'Hey, Gary. These two are

great. Why don't you marry them?' PIRQ is the result.

In Aug.'82 , COMPUTE! published a summary of KEYPRINT programs for most Commodore
machines. KEYPRINT allows people using the 6502 to hit the "\" key (one touch!)

to dump the contents of the screen to a printer. (Had we been in 6502 mode, we

would have dumped.) Each different machine needs a different version of the 14

published by Brannon last August. Some users would like to 'trigger' the dump

with a different key. KEYPRINT, in 6502, always dumps the full screen (whether

blank or full), and runs the printhead from margin to margin on all lines. Being
aware of these problems, we improved upon KEYPRINT with PIRQ. (Those who want to

use KEYPRINT in 6502 mode in SPET should enter version 11 .c .(80D), as published

in the Aug. '82 COMPUTE!, starting at p. 103.)

The original version of KEYPRINT appeared in COMPUTE! No. 7, Nov/Dec '80 . I have

(sob) every issue of COMPUTE! except No. 7. If any of you have an extra copy of

issue 7, I 'l l swap you a No. 5 for it , so both our collections are complete. [If

you can help Gary, please do. He is a major contributor to the Gazette and SPUG;
we all owe him a great deal. Find his address on the title line, above. Ed.]

This program also illustrates several programming techniques. (This is not in

my column BITS & BYTES and will show that I don't need an extra month to find my

coding errors). First, the program shows how to use an interrupt; we attach it

to the system via the routine conbint_. We remove from user memory the amount
used by PIRQ by setting memend_. Service_ is set to zero so that after PIRQ is

loaded, system control will pass back to the main menu. The original contents of

the IRQ vector need to be tucked away unless you plan to completely redo the en
tire interrupt system. Second, we employ a technique to control general purpose

SuperPET Gazette— Vol. 1 No. 7 -74 April/May 1983

routines. Any routine to be run by the system should not change the contents of
the stack pointer. The status of other interrupts and system tasks would then

be lost by this process. We may use neither SWI nor RTI; instead, we reenter the
system handler via a RTS instruction, which issues the RTI instruction. Third,

we place the finished load module on the system disk (language disk); we load

it from that disk with any short name (PIRQ loads with: pirq <RETURN>).

Fourth, and probably most important, we have created a technique for a standard

set of 'user library' routines, to which we can all refer without re-defining
them each time we write a new program. Jeff Larson's memory map gives us access

to a number of routines that were not included in the Waterloo export files on

the language disk. Since Waterloo has two libraries of such routines on the lan

guage disk, we created a third: the user library, or 'u srlib '. If all of us use

the standard names for the routines set down in the memory map published in this

issue, these routines (where they do not duplicate Waterloo library exports) can
then become a part of a growing 'userlib ', which, like the Waterloo library, is

put on and kept on the language disk.

We have the start of such a library, and use it to link PIRQ. As your first step

in entering PIRQ, enter the microEDITOR, type in ' usrlib .exp', and then file it

on the language disk as ' usrlib.exp'. The linker will then use the memory loca

tions in that library to link the routines we need.

After you have assembled and linked PIRQ, you will have a load module filenamed

'pirq.mod'. Put the disk containing the module in drive 1; do a cold start in

6809, and load it from menu with 'pirq.mod <RETURN>'. If it tests okay, put the
system disk in drive 1, and the 'mod' disk in drive 0. Copy 'pirq.mod' to your

language disk with Jim Swift's method in the microEDITOR in Development, (le ft).

From this time forward, PIRQ can be loaded w'nen-

g ieee8-15.C1:pirq=0:pirq.mod ever you enter 6809 mode. Remember it stays in
memory until you leave 6809. and that the top of

user memory is automatically set at $7f00.

If you have a serial printer, you'll have to call 'setup' to establish the baud

rate before you load PIRQ. At any time you want the screen printed, just move

the cursor to the very left margin of the line on which you want printing to end

and hold down the slashbar key until the printer kicks off. If you want, you may

print only two slashbars, and then hold down the spacebar (or TAB or SHIFT keys)

until the keyboard buffer fills . When the dump finishes, the garbage slashbars

are automatically erased. If you use another key as 'trigger', and want to dump

the whole screen, just leave the slashbars out.

While PIRQ works with all languages, special measures are needed in APL. (1) If

you use a CBM or ASCII printer, you print out keys as they appear on the ASCII

keyboard; v iz ., the apostrophe in APL prints as K (shifted K in APL is ') .

(2) Workspaces created prior to PIRQ will produce a WS NOT COMPATIBLE message

when you attempt a)L0AD. For a workspace named 'TEXT', we can cure the problem:

1. Clear the workspace)CLEAR. 2. Copy the workspace into memory:)PC0PY TEXT.

3. Reestablish the name of the workspace:)WSID TEXT. 4. Save the converted WS

with) SAVE TEXT. End of example. (3) In APL, the cursor normally returns to five

spaces into a line. You must, therefore, backspace to the left margin before you

drop your reverse slashes to activate PIRQ. Last, PIRQ will not print overstruck

characters to printers which require a backspace for such characters.

Following are the assembler and linker files for PIRQ. You will see **** where

you may change the 'trigger' key and where you may add a linefeed for printers

SuperPET Gazette— Vol. 1 No. 7 -75- April/May 1983

which do not generate one with a carriage return. Pick your printer type at the
start of the program: 1 for serial, 2 for commodore, or 3 for ieeeU. And remem

ber to put 'usrlib.exp* on the language disk!

export

export

export

export

export

membeg_

memend_

service_

intvctr_

bufpnt

$20
$22
$32
$0100

$012e

supplied 6809 asm documents from Waterloo
If

" [This is file usrlib.exp]
ft

discovered 2/83 by jeff larson

pirq.asm— the file for the assembler

a routine to process print dump as interrupt
by gary 1. ratliff : title 'pirq'

uses screen print routine written by jeff larson with modifications

needed to have routine operate as an interrupt
xref memend
xref service

xdef main

xref conbint

xref intvctr
xref openf

xref closef
xref f putchar

xref buf pnt
xdef start
xdef print

xdef resvd

xdef outpt

type equ 3 ;
size equ 80 ;

quit equ 0
main equ « «

ldd # main ;

std memend ;

ldb if quit
stb service

ldx it 8

ldd intvctr ,x
std resvd

pshs X

ldd if start
jsr conbint
leas

rts

2,s

start jsr [resvd] ;]

ldb [bufpnt]

cmpb if '\ ;
beq doit ; <

• i

rts
t 1
; i

doit sei ; <

user equates for printer: 1=serial, 2=printer

3=ieee4 : equates attach to irq handler

this will be program origin ($7f00)

removes one page from memory

and sets to return to main menu

saves original address used by

normal interrupts

establishes start as the address

to service the irq type interrupts

first service normal interrupts

*** test for reverse slashbar. Change to ordinal of
desired trigger key: left-arrow=$5f, repeat=$7f, etc
remove apostrophe if a new trigger key is used,

not found so exit irq routine

disable further interrupts

SuperPET Gazette— Vol. 1 No. 7 -76- April/May 1983

print

jsr fill ; fill buffer to prevent this

; condition from being recognized

; again during service
ldd # mode

pshs d

ifeq (type - 1)
ldd # typ1 ; serial type printer

endc

ifeq (type - 2)

ldd # typ2 ; printer (Commodore 4022 etc. printers)

endc

ifeq (type -3)

ldd # typ3 ; ieeeH devices which use true ASCII code
endc

jsr openf_ ; open the printer file for processing

leas 2,s ; clear parameters from stack

std outpt

if ne process if file opened correctly

ldd #$8000 ; address of screen start

std line

loop -

ldx line

jsr print

ldx line

ldb # 80
abx

stx line

ldd ,x
cmpd #$5c5c test for \\ at line start

if found the printing is to stop

quif eq
cmpx #$8780 also routine is done when

24 lines have been printed

until eq

tfr x ,d

subd #$8000

std $0122 this portion sets cursor position

the line containing the \\\\ 's
jsr $db30 this sends EOL sequence to erase

the slash characters

ldd outpt

jsr closef

endif

cli enable interrupts

rts task complete

tfr x ,d prepare to adjust

addd #$50 scan line backwards

tfr d,y to only print characters

loop

ldb ,-y ; skipping all trailing blanks

cmpb #$20 ; similar to -trailing

quif ne ; in FORTH

cmpy line

quif eq

SuperPET Gazette— Vol. 1 No. 7 -77- April/May 1983

endloop
tfr y,d

subd line

addd #$01

tfr d,y

now make adjustments to

to the line size to

be printed

loop

ldb *x+
pshs y.x ,d

ldd outpt

jsr fputchar

leas 2,s

puls y.x
leay - i . y

until eq

ldb #$0d
pshs d

ldd outpt

jsr fputchar

puls d

use the following lines if you need a line feed with each CR

;ldb #$0a ; the line feed character
;pshs d

;ldd outpt

;jsr fputchar_
;puls d

by stripping off the semicolons in the lines just above ****

rts

»*»«

fill ldx #$130 ;

ldb r

again stb ,x+
cmpx #$158
bne

rts
again

typl fee

•
»

"serial"

feb 0

typ2 fee " printer"
feb 0

typ3 fee "ieeeH"
feb 0

mode fee "w"

feb 0

outpt rmb 2
line rmb 2
resvd rmb 2

end •«

fill key buffer with spaces

data area

End of pirq.asm
* *

"pirq"

org $7f00
include "d isk /1.usrlib.exp"
include "disk/1.watlib.exp"

"pirq.b09"

[This is file pirq.cmd for the linker.]
[Remove these two comments before filing .]

SuperPET Gazette— Vol. 1 No. 7 -78- April/May 1983

***f t * »*»*«»*»»*»*«»*

RELATIVE FILES - by Loch Rose, 102 Fresh Pond Pkwy, Cambridge, MA 02138

A relative file is a data file that is divided into discrete records, each

record containing one or more pieces of data. Each record is numbered, so you

can directly write to or read from any individual record in a relative file .
This can really speed up data access: for instance, I store every day's Value
Line stock index future closing prices in a different record. When I need a

given day's prices, I can pull them directly out of the appropriate record.

A relative file is created the first time that you OPEN a new file with a

name of the form " (f :XX)disk/0. filename ,rel''. [Note: mBASIC commands will be
capitalized in the text, for clarity, but should be entered in lower case in a

program.] "filename" is a 1-16 character file name, "d isk /0 ." is optional (see

p .30 in SPET System Overview), and "XX" is the record length (1-254) in bytes.
The record length cannot be altered once the file has been created, and all rec

ords in a file are the same length.

This demonstration program creates a relative file with 20 records, num

bered 0 to 19, record length 80 bytes. Into record #0 we'll put the number 0, a

comma, the string "0 " , a comma, and the string "Record #0"; and so on for the

other records.

10 c$ = " t"

20 open #2,"(f:80)num ber, rel" , inout ! 'inout' allows read & write

30 for i=0 to 19

40 print#2,rec=i,i;c$; value$(i);c$;"Record #"+value$(i) ! write to record ’ i '

50 next i

60 input #2, rec=5, n, nura$, rec$! read contents of record #5

70 print n, num$, rec$

80 close #2 : stop ! I suggest STOREing this program

The "rec=i" in line 40 directs the data to record " i " , just as "rec=5"

reads data from record 5 in line 60.

How you structure the data within a record is up to you, but the primary

consideration should be ease of input. I recommend your separate data items by

comma characters, as I have done, so you can use the INPUT# statement. Using

the <RETURN> character (chr$(13)) is not as good, as it interferes with LINPUT#.

Relative files reserve space on disk for all records from record #0 up to

the highest record to which you have written. For example, watch the error in

dicator as you run the following:

10 open # 2 , " (f : 200)demo ,rel" .output ! note that 'output' can be used

20 recnum=25
30 print #2, rec=recnum, "record"; recnum ! write to record #recnum

40 close #2 : stop

Check the number of blocks used by the file via the directory command (it

should be 22 blocks). Then substitute 50 for 25 in line 20 and run it again;

there should now be nearly twice as many blocks. Even though you didn't use any

records 26-49, space was reserved for them; I suggest putting a filler charac

ter, such as chr$(255), into unused records like these in event you access them

by accident. If you watched the error indicator, it should have flickered red.

This is normal whenever you expand a relative file , so ignore it .

SuperPET Gazette— Vol. 1 No. 7 -79- April/May 1983

You lose nothing in using relative files : you can treat them like a sequential

file , if you want. This program runs through the data file until it finds the
string "1 0 " :

10 open //2," (f :8 0) number, re l", input ! use same name; 'input' not 'inout'

20 loop

30 input #2, a$! note omission of 'rec='

40 print a$

50 until a$="10"
60 print "We found " ; a $; " ! ! ! "

70 'close #2 : stop

Yoi* can shortcut the procedure by inserting "15 input#2,rec=5,a$,a$,a$", which

poaitions you after record 5 in the data file. GET// and and INPUT# statements

wi-fchout a "rec=" clause operate at the point within the data file where the last
operation left you, just as with sequential files.

I would avoid using GET# statements with relative files, as LINPUT# is a faster

and more convenient way of reading the entire contents of a record. The state-

"100 linput#2, rec=10, a$" stores in a$ the contents of record #10, or the con
tents up to the first chr$(13) character (if any).

Notice that while all data were INPUT as strings in the above program, the

first datum in each record was a numeric variable, " i " (see first program). This

works because all data are stored on disk as strings; when reading the data, you

you may choose to INPUT numeric variables as such or as strings.

You can modify a relative file easily, provided that you remember that any

writing to a record wipes out ALL its former contents. For example, suppose we

alter the second datum in record #5:

10 c$=»," : newdata$="505"
20 open # 2 , " (f:80)num ber,rel",inout

30 input #2, rec=5, n, num$, rec$! read current record #5 content
40 print #2, rec=5, n; c$; newdata$; c$; rec$! rewrite record

50 input #2, rec=5, nextn, nextnum$, nextrec$! check new contents

60 print n, num$, rec$: print nextn, nextnum$, nextrec$

70 close #2 : stop

Relative files waste space on disk compared to sequential files because all

records must be as long as the record with the lengthiest data, and so most rec
ords will contain some unused space. Also, the DOS limits you to 720 records per
file , though new 8050's are supposedly not so limited. But the speed and ease

of access mean that I use relative files whenever possible, whenever data break

down naturally into records of 254 bytes or less.
X X

BITS BYTES & BUGS For lack of space, we will carry Gary Ratliff's regular col

umn next issue (you have enough assembly language material

this issue to last a while!). Gary says the error in the last BITS & BYTES col

umn is one that BASIC programmers make less frequently than others, as BASIC,

unlike many high-level languages, sets all variables to zero before a run. Last
issue, he defined the screen as equal to $8000, but never stuffed that value in
to the y register, either before or after the ldx # msg. The code assembles okay

but if executed wipes out the operating system, since index register y contains

0000 and the message it points to overwrites vital pointers on the zero page,

starting at the very first address (0000 !). Gary, you are MEAN!!!!

SuperPET Gazette— Vol. 1 No. 7 - 80- April/May 1983

It ***

SUPERPET MEMORY MAP by Gary L. Ratliff

The companion article to this one is PIRQ, an interrupt-driven routine for

printer which dumps the screen. If you examine the code, you will notice that

we use some routines which are not documented. For the past several months, var
ious members of SPUG have exchanged data on the routines they have found. Much
of the information is contained on the files watlib.exp and fpplib.exp, found on

the system disk. If you haven't already done so, print hard copy of these files.

With this information in hand, we (all who cooperated) traced the actual loca

tion of these routines in the system ROMs. Jeff Larson did most of this chore;

his information was verified by me and also by Reg Beck; with three of us at it ,

we caught most errors in locations of text strings. Not all of the Znd (See be-
ow. Ed.) have been tested, however, as t h e y are a very recent addition to the

material in this memory map. And we did find a number of useful but previously
undocumented routines.

This map shows the current state of all memory locations so far identified.

The honor of naming the routines and locations belongs to the person making the

discovery. However, to meet a publication deadline Dick sugested that I tempo

rarily name routines discovered by Jeff and others; such routines end with * ,

and are subject to renaming by their discoverer. When the information is com-

lete, SPUG will publish a file called 'usrlib.exp' (On disk. Ed.) which will

include all known locations and routines not now included in the Waterloo lib

raries. This user library may then be included in any linker file by a simple,

short reference in any .cmd file to "include ' d isk /1.usrlib.exp '" . [A stroke of
genius by Gary; we now have a simple, standard way to identify and use the un

documented routines throughout SPUG. Ed.]

Some old PET hands remember how ROMS changed in early PETs, and how the lo

cations we had so laboriously discovered were instantly outdated when the ROMs

were updated— amidst great cries of woe and pain. The ROM updates were worth the

trouble. We hope Waterloo updates ROMs for SuperPET; if Waterloo should, we have

a microEDITOR and can simply update our 'usrlib ' file to conform to any changes.

A word of caution, though: if you write a lot of programs in which you address

current data locations, rather than using a library routine, any update might
leave you with the task of rewriting every address in your programs, instead of

simply using the new 'usrlib ' file to update them automatically. Example: we now

know where 'date$' is kept in the zero page; an update can easily change its lo-,

cation, but the library routine (if changed) will automatically go to that new
location without you having to bother with a change in address. My advice: stick

with the library routines where you can use them.

Now we present the first published SUPERPET MEMORY MAP.

loc . NAME Description loc. NAME Description

0020 Mem Beg Start Usr Memory 0022 Mem End End Usr Memory

0032 Service 0 rts menu; reruns 0040 Free 1 Unused. 0040_0060

0080 FpWk Float area to 0097 0080 fac1 Fp acum 1 see 6809 doc.

00x0 (Sign) Fac 00 pos ff neg 00x1 (Exp) Exp. in excess 128 form

00x2 (MSB) Normalized fraction 00x3 (Fract) Fraction part 1

00x4 (Fract) Fraction part 2 00x5 (Fract) Fraction part 3

00x6 (Fract) Fraction part 4 0088 Ttapwk Fltng point work area

0090 fac2 Fp acum 2 to 0097 0098 Free2 Unused zpage to OOff

0100 IntVctr Sft cpy irq vectors 0102 SfSWI3 Soft copy SWI3

0104 Sf SWI2 Soft copy SWI2 0106 SfFIRQ Soft copy FIRQ

0108 Sf IRQ Soft copy IRQ 010a SfSWI Soft copy SWI

SuperPET Gazette— Vol. 1 No. 7 - 81 - April/May 1983

010c SfNMI Soft copy NMI 010e Tab 1 1st tab setting

0110 Tab2 2nd tab setting 0112 Tab3 3rd

0114 Tab4 4th 0116 Tab5 5th

0118 Tab6 6 th 011a Tab7 7th
011c Tab8 8 th 011e Tab9 9th

0120 Tab 10 10th 0122 Curpos* Cursor pos - 0123

012c Kyptr1 * Pointer 1 to kybuffer 012e Kyptr2* Pointer 2 to kybuffer

0130 Kybuf* Kybuffer (0130_0157) 0160 Time* Holds time to 0163

0160 Hours Time hours 00-17 0161 Mins Time minutes 00-3b

0162 Secs Time seconds 00-3b 0163 Jiffs Time jiffies 00-3b

0164 Date* Date string to 0l6e 0182 PCSav Saves Monitor PC reg.

0184 ASav Saves Monitor A reg. 0185 BSav Saves Monitor B reg.

0186 XSav Saves Monitor X reg. 0188 YSav Saves Monitor Y reg.

018a USav Saves Monitor U reg. 018c SSav Saves Monitor SP.

0l8e CCSav Saves Monitor CC reg. 018f DPSav Saves Monitor DP reg.

0 1f8 StkBot Bottom sys stack 0220 SysStk Normal System stack
0220 Cr Bank Current bank used 0223 Us Vctr User crtd. irq vectors

0226 UsSWI3 Usr vctr for SWI3 0229 UsSWI2 Usr vctr for SWI2

022c UsFIRQ Usr vctr FIRQ 022f Us IRQ Usr vctr IRQ

0232 UsSWI Usr vctr SWI 0235 Us NMI Usr vctr NMI

0400 Linbuf* Text buffer to 0450 0600 LnStk Language Stacks to 09ff

OaOO UsWkSp User workspace-7fff 8000 Screen The video sen. to 87cf

87d0 Hyde "Hidden" screen memory reported by associate editor Roy Bus-

diecker in article which first appeared in COMPUTE # 7. Goes to 87ff.

The format of fac2 is identical to that of f a d . The generalized de-

cription is given using offsets from start address. The Usr irq vectors
are set up through Conbint_; form is bank// address.

Math routines from fpplib.exp JUMP TABLE: A000_A06E compiled by Jeff Larson.

My explanations are terse; a full description is found in the file fpplib.exp,
which is on the system disk.

a06f cnvf2s cvrt fit 2 string a 1b7 cnvs2f cvrt string 2 float

a2bc fload_ load f a d a2db fload2_ load fac2

a2fa fstore mv f a d 2 memory a 314 envfi f a d 2 integer

a33f fraction frac part of f a d a35d exponent expnt of f a d

a 36b fmul10 fa d x 10 a 386 tr f 1 f 2_ transfer fa d 2 fac2

a 39a envif cvrt integer 2 float a3b0 fzero f a d =0
a3e4 femp compare fa d 2 fac2 a 3e7 fcompare not mentioned in doc.

a41a ftest test f a d a 42b fsub2 Id fac2 sub from fa d

a430 fsub fa d minus fac2 a434 fadd2 Id fac2 add to fa d

a439 f addhalf f a d plus 0.5 a43f fadd_ f a d plus fac2

a4b6 shiftl not mentioned in doc. a4c3 fmulby Id fac2 mul by fac1

a4c8 fmul f a d times fac2 a54b fdivby Id fac2 div into fa d

a555 fdiv divide fa d by fac2 a5e6 fneg_ negate fa d

a6l 3 addacc not mentioned in doc. a65d sqr square root of fa d

a666 power f a d raised to fac2 a6e2 exp e raised to pwr fa d

a739 log_ log base e of f a d a799 atn arctangent of f a d

a7d7 cos_ cosine of fa d a7dd sin sine of fa d

a939 ffloor lgst intger less f a d a93e finteger not mentioned in doc.

Consult the document entitled 'Waterloo 6809 Assembler: Waterloo microsys

tems SuperPET Specifics', available from Jennifer Uttley, Editor, WATNEWS, Uni

versity of Waterloo, Computer Systems Group, Waterloo, Ontario, Canada N2L 3G1,
which will explain the parameters and use of these routines. The issue at hand

is dated September, 1982; later version may even explain the routines not cover
ed in my copy of the reference. Next, a few general items:

SuperPET Gazette— Vol. 1 No . 7 -82- Apr il/May 1983

aa27 Mnwdsl* Menu words (to aa5e) abf2 Sldsk* select %n%x\ disk/1 tnsg
adOe Pgntfd* Pgm not found rasg af67 Mnstup* Setup menu

Library routines from watlib.exp compiled by Jeff Larson. Consult the Assem
bler Manual for how to use these routines. JMP TBL: B000 B11a.

addr. NAME addr. NAME addr . NAME addr . NAME addr . NAME

b11a IntPowlO b124 Dev List b1c1 InitSrd b1e5 GetChar b 1ea PutChar

b1f9 PutNL_ b1fe GetRec b20f PutRec b221 Printf b23b Openf
b292 Closef b2a6 FGetChar b2fd FPutChar b324 FPutNL_ b333 FGetRec

b367 FPutRec b3aa FPrintf_ b4a3 FSeek b4c9 Eor b4d3 Eof_

b4e5 Errorf b510 Error Msg b518 Scratchf b543 Renamef b58b Mount
b5bd TimeOut b5d2 Dir Openf b610 Dir Readf b627 DirClose b66a Iotime*

b677 RET b67f RET2 b687 MUL b6c4 CARRYSET b6ce DIV

b6d8 MOD b742 NEG b748 _RSHIFT b74a _LSHIFT ""b782 Str Eq

b7b1 Length b7ce Equal_ b7ff CopyStr b80a PrefixSt b832 SuffixSt_
b84a Decimal b87e Stol b8e6 BtoHS_ b946 HStoB_ "b9c7 Hxstng*

b9d8 IsAlpha_ b9ee Is Lower b9fa Is Upper ba06 IsDigit_ ba 14 IsDelim
ba2d Is Hex ba58 Hex ba77 ZUpStr ba8d Upper ba9e ZLoStr_

bab4 Lower bacb ItoS_ bb48 Ito HS_ bb68 Copy bba7 TableLoo
bbf 1 BankSW bc21 Banklnit bc2d ConBInt bc45 UlntHdl bc67 UlntTab

bc75 Spawn bcab Suicide c1c8 Dvntprs* c 1e 1 Request c1f5 SysIOIni

c2d8 SysRead c52c SysWrite c6c6 SysNL ca57 Dskerr* ebea Albet*
d27b Uhxsng* d4be Nomem* d4cc TIOInit_ d4d2 TGetChr d4f0 TPutChr

d500 TGetCurs d509 TPutCurs d518 TBreak d521 TSetChar d55c SI0Init_

d598 SPutChrJ" d5bb SGetChr d62e SBreak d7l4 Bputscn* d721 Zndrgt*

d729 Zndup* d743 Zndlft* d74b Zndhm* d750 Zndr/s* d751 Zndasc*

d7e3 Tab Se t_ d817 TabGet d872 Zndcr* d887 Znddn* d945 ZndTab*

d9a9 Zndclr* d9de Zndins* da53 Znddel* db30 Zndeol* dc4a ChrPtr*

dd82 KyputB* de01 KBEnable de07 KBDisabl_ deed Scroll* e0f4 SetTime

e 107 SetDate e 13c GetTime e 158 GetDate e15f PassThru _e1c7 FxChBuf*

An explanation of some of the newly-discovered routines is in order:

Mnwdsl is a list of the main menu words, v iz ., setup, apl, etc. Sldsk is the

"select disk " message. Pgntfd is the message "loading . . . program not found."

Mnstup is the setup menu for configuring the serial port. Iotime is the I/O time

out message. Hxstng is the string "0 1 2 3 4 5 6def." Dvntprs is the message "De

vice not present." Dskerr is an assortment of disk error messages. Albet is a

subset of the alphabet from A to P. Uhxsng is the same hex string using upper
case letters 'A B C . . . ' , etc. Nomem is the message "out of memory." Bputscn puts

the character in the b register on the screen and advances the cursor. Znd is a

family of routines which use Bputscn to send the home, clear screen cursor left,

and erase to end of line, etc., to the screen. ChrPtr is a table (but not a jump

table) of pointers to the various characters on the keyboard; this table is , of

course utilized by bput et al. KyputB gets a character from the keyboard buffer

and places it in the b register. Scroll moves the screen up one line, while FxCh

Buf adjusts the character buffer pointer by one position. This buffer is in lo

cations 0400 to 0450.

DATA REGISTERS and FOOO BLOCK

e810 PIA1 to e813 e820 PIA2 to e823

e840 VIA the 6522 chip to e84f e880 CRTC The CRT controller

effO ACIA1 the 6551 to eff3 eff 4 ACIA2 the 6850 to eff5

eff8 SysLth the System Latch effc BkSel The Bank Select Latch

SuperPET Gazette— Vol. 1 No . 7 -83- April/May 1983

f03d Nocndo* "unable to perform req" fObf EntMon The Monitor entry point

f 123 Mongret* "Waterloo microMonitor" f 41d Mon Err* Monitor error messages

f 6c2 Ermsgs* Error messages f 6e0 inttxt* " Interrupt"

f6ee AzWds 1 * Assembler keywords fcfe AzWds2 more Assembler keywords

fdcc Invld* "Invalid command" ff80 SysRst System reset routine

f fa2 SysIRQ Interrupt handler f fb1 Ext IRQ The RTI instruction

ffb2 SvRSV Service 'RESERVED' ffb4 SvSWI3 Service SWI3

f fb6 SvSWI2 Service SWI2 ffb8 SvFIRQ Service FIRQ

ffba SvIRQ Service IRQ ffbc SvSWI Service SWI

ffbe SvNMI Service NMI fffO RSVD Vector 'RESERVED'

f ff 2 VSWI3 Vector SWI3 ff f 4 VSWI2 Vector SWI2

f ff 6 FIRQ Vector FIRQ fff8 IRQ Vector IRQ

fffa VSWI Vector SWI fffc NMI Vector NMI

fffe RESET Vector RESET .

Thus with a lot of help from many people, including much help from Water-

loo for not treating SuperPET owners like a bunch of naughty kids and hiding

the goodies from us, we now have an excellent start on the map of the 6809 side

of the SuperPET. There is still plenty room for exploration; for the very ambit

ious, there are the still-unmapped languages. Who will find the equivalent of

CHRGET in the 6809 side?

v

To all those who contributed: please send in your name for the routine or

routines which you discovered. As more discoveries are made, we'll update the

map. If you send an address, please check it ; send the correct address, not the

address at the start of your hex dump line, but the exact starting location. It

is a chore indeed to verify, and I would deeply appreciate the help. Please send

all updates and new locations to me, at the address above.
*»*************************** *************** ************************************

TELECOMMUNICATION for the SuperPET

by Jeff Larson, Route 1, Box 261D, Rustburg, Virginia 24588

Telecommunication in the micro-computer world Is simply the process of

getting computers to talk to each other. Aside from various computer networking

schemes (which get complicated fast) , the most common means of communicating is

by a modem which converts the serial transmission of data from the RS-232 port

to an audio signal which can be received by another modem through the telephone

line. The proper disposition of this data depends on the communications soft

ware used by both computers. In other words, some computers expect certain re
sponses during the transmission of data (handshaking), and use differing ASCII

screen control codes to display the data. If the communications software is not

suited for the computer on the other end of the phone line, the computers won't

respond properly to each other and many strange characters along with unusual
screen formatting will occur. The SuperPET is unique among microcomputers in

that it has a telecommunications program built in (along with an RS-232 port).

This makes it especially easy to get started.

I have been successful in talking with a Control Data mainframe computer and a

Datapoint minicomputer using an assembly language modification to the built-in

passthru mode routine so that I could save whatever was transmitted to me on

disk. I had to use assembly language to operate at 1200 baud, since any non

compiled BASIC program is barely fast enough for 300 baud. The benefits: I can
use the mEditor in the SPET to modify documents and programs and then ship the

end result back to the host computer. The process has also made it possible to

receive large amounts of data (6000 addresses) for input into a mailing list

program. The same technique could be used to send programs and information back

and forth between fellow SPET users.

SuperPET Gazette— Vol. 1 No. 7 -84- April/May 1983

A modem is the only thing that you need to start communicating. For right
now, I will assume that the passthru mode (accessed from the monitor) is ade

quate to accomplish what you want, and I will concentrate on hardware. There

are nearly as many modems on the market as there are micros, but for the most
part, they all fall into one of a few distinct classes. Some are designed to

be used with Apples, TRS-80's and other specific computers (not what you want).
Others hook up to nearly any computer with an RS-232 interface (what you want).

Some communicate at 300 baud only (slow - as in cassette speed). Others are

capable of 1200 baud or both 1200 and 300 baud (1200 baud is 4 times faster, and

is at the limit of Ma Bell's capability). Most use Bell 103 protocol for 300
baud, and Bell 212 protocol for 1200 baud (protocol being how the serial signal

is converted to an audio signal). I have used others (like Racal-Vadic), but I

would recommend sticking to the Bell 103 and/or 212 types for compatibility with

the most equipment. Several popular brands of modems have been reviewed recent-

in one of several micro magazines. I have used the Hayes Smartmoden with 1200

and 300 baud capability with great success; it has many nice automatic features

(auto dial, repeat last dial, etc), and is about as cheap as a 1200 baud modem

comes (discounted to $520.00). 300 baud modems are cheaper, mostly below $200,
and many approach $100.00. For serious work, I 'd strongly recommend 1200 baud—

it 's sort of like going from casette speed to disk drive speed, and at long-dis-

telephone rates, that can make a difference fast!

Telecommunicating is not without problems, however. I found, for example,

that SPET drops some characters at 1200 baud whenever the screen scrolls (it

takes .035 seconds to scroll, which is enough time for about 4 characters to go

by). In addition, some host computers need ASCII input from you, which you nor

mally can't send; ESC and STOP (ASCII 03 and 27) are examples of keys which are

processed by SPET instead of sent to the other computer. And it becomes highly

desirable to save the info you receive on disk, and maybe to have the ability

to send a disk file to someone else. Here is where special software packages

are needed to add to the 'dumb terminal' capability of the passthru mode. You
will encounter another problem, probably at 1200 baud and over very long distan

ces: garbling of characters by the telephone line. Thunderstorms are espec

ially good at contributing to the data you receive at your SPET. I haven't run
into any problem like this even when talking to West Va. from Central Va. (some

states don't have the best phone networks).

Here's a way to get started with Telecommunications using SuperPET:

1) Obtain a modem and become familiar with it . If you have a smart modem

like the Hayes unit, you can verify correct operation by sending it commands in

the passthru mode. The cable for the two modems I have used both work with the

SuperPET without modification— direct connection of pins 2 ,3 ,4 ,5 ,6 ,7 , and 8. If

If you have difficulty getting the SuperPET to talk to the modem, make sure you

are satisfying the handshaking connections for SuperPET.

2) Obtain instructions for 'logging in' from whoever you are to call. (See

'Commodore', March 1983, for info on CompuServe and telephone # 's , e tc .) .

3) Use the setup mode to set the baud rate to either 300 or 1200 baud— for

whatever your modem is set for, and for whatever's expected at the other end.

4) Enter the monitor mode (from any language, or from the main menu).

5) Press p for passthru mode— from now on, any key you press should be sent

to the other computer, and any transmission from the other computer should show

SuperPET Gazette— Vol. 1 No. 7 85- April/May 1983

up on your screen. To verify whether you are sending or receiving characters,

watch the LED indicators on your modem light up when it receives characters. If

you get no response, check the RS-232 cable connections. (Modems usually require

a different cable configuration than printers. See (1) above.) If you get double

characters or other bad output on the screen, follow the modem manual to fix it .

6) Dial up the other computer (from the keyboard if autodial). Most 1200

baud modems will be direct connect (the modem connects directly to the telephone

jack, bypassing the phone handset). Other modems may use an acoustic coupler,

two rubber cups which fit over the telephone earpiece. The acoustic coupler type

is usually dialed manually, whereas the direct-connect type often is dialed from

your keyboard.

7) Follow instructions for using the other computer. You can get instruc

tions for CompuServe, for example, along with access authorization, from a Radio

Shack dealer. Ask for cat. no. 26-2224 and ignore any protests that you need

software (the passthru mode takes care of your needs). If you operate at 1200

baud using the passthru mode, be sure to tell the other computer to add 5 nulls

(ASCII 0) after each carriage return to avoid dropped characters. If you want to

use the 6502 processor instead of the 6809, the programs to use 6502 mode are on

SPUG disk 1 (the Commodore public domain programs). [Ed. We'll cover the 6502

packages in later issues.]

8) If you want the ability to send and receive files at 1200 baud using the

6809, send me a donation (enough to cover disk, postage, time & effort) [Ed. Ten

$ U .S ., Jeff?]. I 'l l send you an assembler-based program that has worked with a

CDC mainframe and a Datapoint minicomputer. It is an extension of the passthru

mode which opens disk files for you, and eliminates the need to use nulls while

at 1200 baud. I have an 8050 drive, and cannot provide 4040 format.

[Note: This is the first of a series on TC. We hope to continue it with material

on 6502 TC next issue, courtesy of John Frost of Seattle. For those interested:

Associate Editor Terry Peterson published an excellent program called 'Smarterm'
in the April issue of MICRO, which does what the name implies— makes a smart

terminal out of SuperPET in 6502. In assembly language. Ed.]

nnn
(C) 1983 000 THE APL EXCHANGE <XX> STEVE ZELLER

uuu
Last time, we indicated that functions represent a very powerful tool in APL.

Today, we will begin to examine their design and use in the language. There are

six allowable forms of functions, summarized in Table 2 .1 .

Table 2.1 Form of Functions in APL SYNTAX

NUMBER OF NO. OF NO EXPLICIT EXPLICIT

NAME ARGUMENTS FORMS RESULT RESULT

NILADIC 0 2 FN RES <- FN

MONADIC 1 2 FN RHA RES <- FN RHA

DYADIC 2 2 LHA FN RHA RES <- LHA FN RHA

When you declare a new function to APL with the 'del' operator, you also speci

fy the form the function will take, along with its arguments and its local

variables, if any. This is called the function's header; it is line [0], and

SuperPET Gazette— Vol. 1 No. 7 -86- April/May 1983

you can edit it when you re-open the function (you must do so for explicit re
sults in some functions which follow). We must start by thinking carefully about
the form the function will take. In particular, we need to consider how the fun

ction will communicate with other functions in the workspace and with the APL
language primitives. We’ ll consider some examples of this shortly.

A function (FN) may or may not return an explicit result (RES) and it can have

no arguments, a right-hand argument (RHA) or a left- and right-hand argument
(LHA and RHA). Think of the arguments as "dummies" that only take on values

when the function is invoked. They have significance only to the function while
it is executing and are not available after execution is complete. (Note: this

is different from arguments in a FORTRAN subroutine call.) Information from the

function can be returned as an explicit result, however, by including still

another dummy argument in the header (RES) along with the "gets" symbol.
Variables used during the function's execution but which are to be "hidden"

from the workspace are called local variables and are also declared in the
function header.

Most of the variables used in a function should be declared as local variables.

This will keep the workspace clean and avoid name conflicts as other functions

are added. All other variable names appearing in the function are global varia

bles and can be used to pass information back and forth between the function

and the workspace. Think of global variables as key variables to your system of

functions in the workspace. The width of your printer, for example, would be a
good choice for a global variable.

Keep the function short. A modular approach, with each function performing just

one simple task, will allow you to use functions in several contexts. Breaking

the functions down into short modules makes debugging simpler and editing
easier. In general, have the single task performed by the function returned as

an explicit result. This provides much more flexibility in combining functions

to accomplish more complicated tasks and in directing output to the printer. In

example 2 .1 , we see four functions that have no arguments. The two functions

which do not return an explicit result, HELLO and GOODBYE, cannot be utilized

in any indirect way, while the two functions that do return explicit results,

FIRST and LAST, can be combined to yield a composite result.

EXAMPLE 2.1: NILADIC FUNCTIONS
A...1HELL0

[0] HELLO
C l] 'HELLO YOURSELF '

C . . . VFIRST
[0] R FIRST
[1] R^'STEVE'

B . . . VGOODBYE
[0] GOODBYE
[1] »NICE TALKING TO

D...VLAST
[0] R •*- LAST
[1] R*-' ZELLER'

YOU

ACTION
TYPE:

HELLO
GOODBYE

TYPE:

FIRST
LAST

FIRST,' '.LAST

Now let 's consider functions with one or two arguments. Monadic functions are

shown in example 2 .2 . Note that returning each function's result explicitly

allows them to interact naturally with each other and with APL.

EXAMPLE 2 . 2 : MONADIC FUNCTIONS

A...VSUM

[0] R ^ SUM X

[1] R*+/X

ACTION
TYPE:

SUM 1 2 3 4 5 6 7 8 9 10

SUM 110

SUM IQ,SUM i10

SuperPET Gazette— Vol. 1 No. 7 -87- April/May 1983

B . . . V L O G

[0] R ^ L O G X

C 1] R * o * X

C...VEXP
[0] R - E X P X

C 1] R<-*X

LOG 10

LOG i10

LOG SUM i10

EXP 10

EXP LOG 10

LOG EXP 10

Functions with two arguments, the dyadic form, appear in example 2 .3 . They are

of two basic varieties. In one instance, each argument is of equal "weight” in

the function. In the other, the left-hand argument is used to modify the func

tion 's operation on the right hand argument. This latter approach to the dyadic

function's form is not strictly enforced in APL, of course, but is good

programming practice.

EXAMPLE 2 .3 : DYADIC FUNCTIONS
A...VPLUS

[0] R «- X PLUS Y

C 1] R<-X+Y

k 5 . . . V UNION

[0] R +- X UNION Y
[1] R+X,Y

C . . . VINTERSECT
i [0] R *■ X INTERSECT Y

C 1] R<-(XeY)/X

ACTION
TYPE:

(ilO) PLUS ilO

SUM (ilO) PLUS i10

LOG 5 PLUS i5

•100 UNION i5

FIRST UNION 1 \LAST

FIRST INTERSECT LAST

5 INTERSECT ilO

The functions in these examples are trivial. However, the ideas behind their

design and use apply to much more complicated functions. Consider HIST, shown

in example 2 .4 . It produces a histogram from a vector of frequencies. The func

tion does just one thing: returns a character matrix of the histogram. This al

lows the result to be sent to a printer or used in some other way.

VHISTV

c

[

[

[

[
c

c

c
[

c
[10

]

]

]

]

]

]

]

]

]

]

3

M «- HIST F ;NMAX;MAX;NF; NPLOT; LINE

"GENERATES FREQUENCY HISTOGRAM: DUE TO SMILLIE (P. 20)

MAX+MAX*-\/ F H 0 .5 +F
NF+-pF+ pM+-10

51: NPLOT*-(MAX<,F) / \NF
LINE+NFp' '
LINElNPLOTW pNPLOT) p

M*-M,'. » .LINE

•+(0<MAX+MAX-1)/S1
M*-M, (1+NF) p f . *
M+-H+NMAX ,NF) pM

B TO EXECUTE, TYPE: HIST ilO

fi NOTE: SCALING MUST BE DONE EXTERNALLY
fl TRY: ‘ HIST (i20)*2

In example 2 .5 , we compute summary statistics for a vector of data. This task

is broken into two functions. DOSTAT does the needed calculations and SHOWSTAT

displays the results and takes care of the formatting. This allows DOSTAT to be
used with other routines that may require one or more of the summary measures.

VD0STATI
CO -] ST ATX + DOSTAT X iR;MAX-,MIN;N;MEAN;VAR-,SD;MD-,MED;MODE;V;M

C l] RCOMPUTES SUMMARY STATISTICS FOR VECTOR X

SuperPET Gazette— Vol. 1 No. 7 -88- April/May 1983

[2] "DUE TO SMILLIE [1969], P . 16
C 3] R+-{MAX+XlpX'}) Cl]
C 4] SD<-(VAR+-(+/(X-MEANH+/X)iN)*2) + (N+pX)-l)*0.S

C 5] MD<-(+/\X-MEAN)iN
C 6] MED*-0.5*+/XL([Ni2) ,1+ U *2]

C 7] -+(N>pM0DE+apV)p(\M)zl)/V4-Xt(V=M<-[/V++/X'>.=X)/\pXl)/Sl
C 8] MODE+\Q
C 9 3 .S I : STATX+N ,MAX ,MIN ,R JMEAN ,VAR,SD ,MD ,MED ,MODE

VSHOWSTATV
C O] R +- SHOWSTAT ST ATX

C l] "FORMATS OUTPUT FROM: 1DOSTAT'

C 2] Ml-*-3 lUp'SAMPLE SIZE MAXIMUM MINIMUM '

C 3] Ml+Ml, Cl D3 14 p 'RANGE _ MEAN VARIANCE 1

C 4] M1+-M1, Cl]3 14p 'STD. DEVIATIONMEAN DEVIATIONMEDIAN *

C 5] i?«-tfl,10 4t9 IpSTATX

C 6] H^pSTATX)/Q
C 7] if<-i?fCl]l 2Hp'M0DE ' .1 0 4T5T /im i0]

TYPE: DOSTAT\10 OR SHOWSTAT DOSTAT ilO

An excellent APL disk from Australia recently came to SPUG via Waterloo. It con
sists of tools for use in Exploratory Data Analysis (EDA) and contains eleven

basic workspaces, extensive documentation, and examples. Almost all of the 8050

floppy is filled with this material. The techniques were developed by John Tukey

of Princeton, who in his textbook of the same name (Addison Wesley, 1977) char

acterizes EDA as 'numerical detective work.' The disk supplements 'Interactive

Data Analysis: A Practical Primer,’ by D. R. McNeil (John Wiley & Sons, 1977).

McNeil and a colleage, M.P. McFarlene, authored the disk. I found their book in

paperback, but it was very expensive ($ 2 2). If you want a copy of the disk,1 send

$10.00 U.S. to me (no disks, please) for the 8050 version. If you want 4040 for

mat, send $20.00 to the Secretary, Paul V. Skipski, for the three-disk set. This
material, being a gift and in the public domain, is offered to all— not just to

members of SPUG. Make checks out to SPUG.

Reference: Sraillie, K .W ., 'Statpack2: An APL Statistical Package,' Dept, of

Computing Science, University of Alberta, 1969.

nnnnnr.nnn

6425 31ST ST ., N.W. , WASHINGTON, D .C . 20015 U.S.A.
uuu
Prices, back copies, Vol. 1 (Postpaid), $ U.S.

No. 1: not available No. 4: $1.25 No. 7 ’ $2 .50

No. 2: $1.25 No. 5: $1.25 Send check to the editor at

No. 3: $1.25 * No. 6: $3.75 P0 Box 411, Hatteras, NC 27943

Add 30% to prices above to cover postage If outside North America.

DUES IN U.S. $$ DOLLARS U.S. $$ U .S. $$ DOLLARS U.S. $$ U .S. DOLLARS $$

APPLICATION FOR MEMBERSHIP, SUPERPET USER'S GROUP

Name:__ Disk Drive: ____________ Printer:_______________

Address:___ ._______________

Street, PO Box City or Town State/Province/Country Postal ID#

For Canada and the U .S .: Enclose Annual Dues of $15:00 (U .S .) by check or money

order, payable to SPUG. DUES ELSEWHERE: $25.00 U.S. Mail to: Paul V. Skipski,

Secretary, SPUG, 4782 Boston Post Road, Pelham, N.Y. 10803, USA.

SuperPET Gazette— Vol. 1 No. 7 -89- April/May 1983

Newsletter published by the SuperPET Users’ Group (SPUG): editorial offices

at PO Box 411, Hatteras, N.C. 27943. Secretary, Paul V. Skipski, 4782 Boston

Post Road, Pelham, N.Y. 10803. Membership applications, dues, and inquiries to

Mr. Skipski; newsletter material to Hatteras, attn: Dick Barnes, Editor. Super

PET is a trademaark of Commodore Business Machines, Inc .; WordPro a trademark of

Professional Software, Inc. Contents of this issue copyrighted by SPUG, 1983.

except as otherwise shown; reprinting by permission only; SPUG members are auth

orized to use the material. Enclose a self-addressed, postpaid envelope with all

material submitted and all inquiries requiring reply. Membership: $15.00 per yr .

U.S. in North America, $25.00 overseas and elsewhere. See enclosed application.

For all outside the U .S .: All nations members of the Postal Union offer

certificates good in the postage of any other country for a small charge. The

Union includes most nations of the world. Canadian members: send Canadian dimes

or quarters for postage, but no paper currency.

SuperPET Gazette

PO Box 411

Hatteras, N.C. 27943
U .S.A.

PRINTED MATTER

