

FOR OWNERS OF THE COMMODORE PET™ PERSONAL COMPUTER

IrI THi \equiv I \equiv FIf

Forestound Escksound
IREM Reviem
Feeder Ir
Wot Eo Fignotom FHII
Fuza le Solutions
Micros in FEveholost
Observetions: IEsues 1-3
Medaling with Midede String
SEAFCH Hote
A Eietter Soreen Equy
Ceseette Guruiusl Hints
HGOMTEI REUiem
How tout bee It
Futo Reweat kess: wersion 2
Frosi ani Excharise
Frosran Exohencte List
Observetions Fesumed
Futo Ilate Entrey
LIFE Eontest Hinners
Sirreen Ilame
Fssembly Larsuase: Fgrt II
EHTMFEAT FEUIEM
ML Fe logetor
Soeedtur Explynation
Commerts on IEsue 4,5
Fesponse to Fron Turoo
pubred
Felroh Eressler.
pubredreadere
Alex Breed
Ei 11 Eatcher.
Geor se Soilich 11
Fo's Eusdieoker 12
Gerry Eisher 14
J Emes Man:Arthur 15
J. F. Eromley 16
I. Gherwood 18
J. Fouller 20

Relph Eressler 21
Fo's Fusdieoker 22
C. IEechames 24

Foy EuEdiecker 30
Felph Breseler 33

- 4
E. U. HEluschave 36
I. Fowler 37
S. Siluermsh 39
F. Wothtel 40
H. Sugn 40

Frg Turgo 41
mubud 4e

We recosmize that logel bere srouse are the most imbortant aid to buth the besinnims ghat experienced user. We will molish the
 us this informetion for zre srouk suu khou of the osn also print
 to sernd umates as this information ohanses.

The PAFER $i s$ published 16 times mer year by Centerbrook Software Iesisns and the Long Island FET Society at 98 Emily Ir．．Centereach． Hr^{\prime} 11720．Te lephore：（516）585－2402．

The FAFER will be mailed to subseribers hear the end of the month until the yolume is combleted．Hem subscribers will receive all issues of wolume 3．Gingle gowe price is $\ddagger 2$ gnd the Eubseription orice is 15 for all the issues of the ourrent volume．Suksoription orders should be mailed to The FAFER，Fox 524，Eset Setouket，N＇ 11733.

Third olass postase is reid at East Eetauket．Hi 11733 （Permit \＃96）．FOSTMASTEF：Mail Ell address oherses to the address above．

The FHFER，Eenterbrook Goftware Ilesishs and the Lons Island FET Gociet gre in no wes gssocizted with Commodore Business machines．CEM is not restonsible for an＇s of the oontents of The FAFER unless otherwise noted．FET ghod Ein are tredemarks of Comodore Business Meohines．

All readere are encourased to submit articles of seneral interest to PET UEErE．MEterials submitted must be free of cowsisht restriotions．All oontents of The FAFER are rot coryrishted．All artioles remain the properts of the author arod mes be revrinted with their mermission．Flesse include a note statirs that the article was orisinglly sublished in The FAFER．

USA third olass：$\$ 15$ ，
Hon－ush first olass surfase：t20，
Fayment in oheok or mones order in US funds must acoompans all orders． Only preqeid purchese ordere will be gocerted．Fll oheoks should be mede out to The FAFER．Sorr＇s．We Gennot acoert bank or oredit cards．

Fiduertisins rates are $\ddagger 25$ ber duarter pase per issue．Copey must be cameraready or there will be arn additional oharae．Special rates may be nesotisted．

Frinted：1006 LBA：526 Eenede： 44 Foreisn： 41

Software malished in The FAFER or distributed throush the Exohanse is belieued to be free of cousristht restrictions．It is meant to work on the methime indiosted．Mons mrostans mere orisinglly desished for the old Fiom FETE but efforts heue been made to gonvert them to work on

：ごもシーデ
Fublisher：Felph Ereseler
St三ff ur－iters：Bill Eatcher－
Editor：Inous Haluya
HEsoc．Ed：For EuEdieker
Yio Egrtaldaig
Ewoherse ：Char lotte Deschambe
JoArin Comito
Gerry Eisher． Iim Folwer

> Ey Felph and Ious

After one issue ment thimse have become clearer then the's were before. Its hard to do everuthing by wourself. He type edit, proofread and meste us the whole $i s s u e$. I suspert this $i s$ more due to the faot that we are dizorsanized than the lack of yolumeeren he have to thank all those who wrote lettere or artioles sime it would be impossible for $u s$ to write all the materigl too. Also thank wou to the readers that acoerted my imitation to ioin te for volume 3 . We
 commitment grad belanoe of $\ddagger 150$. Fisht now we need our subsoribers to encourese others to subsoribe. It would also be helrtul if sut oonvinoed sour fauorite dealer or FET product malker to give ds an ad.

FOLIC'
We will try to be consistent about our news letter policies. Here are some thinss we be lieve.

Esok I seues
AREGCO told me thet wolumes I and II ヨre auailable from them in limited duentities. When a werson subscribes to the current wo lume. Volume 3 , the's set all the issues of that volume.

Frosrems

HRESCO will maintain gome of the mogreme on the Goftware She lf. We haue none of these prosrems. Frosrems on Exohanste ARE auailable and some of thee are reselly sood. See the orticle in this issue for more information.

Froticles

We we loome all articles from all readere arod will mulish any article. We reserve the ristht to male small editoriel oherses but the ョrticle remains sour prowertes. It sou can Eummit articles in HordFro II or WordFro III formet this would be he loft. Feaders heve seid they would like to see articles on usins the disk for dete files and the mescaines which desl with FET prostammins.

Letters
The only letters we will hot molizh are those thet simely come liment us or those thet severely oriticize othere. We do not intend to set inuolued in mersonel arsuements.

Fevieus
Go many products are auilable for the FET today that a user has trous le malking decisions. fon's of these products haue rrices in the
 experience with and thet they mot review products they heve a grecigl interest in.

GQrtimbed rext masey

The microcomeuter indusrtry hes its own fledslins trade orsenization. Miorocomeuter Industry Trade Association. The problem
 combanses income while it $i \equiv 10 \%$ of grothere. John Creis mentioned sradusted fees at the Fusust 1980 FDG. This $i s$ definitely what $i=$ needed if the smell moduct sumeliers are to heve their voice.

Computer Shows

Fecent combuter shows haue been disowoointins. The Fersonel Combuter Confererme in Fustet in Fhi ledelphis hed ment Emell supeliers but few of the mesor merufacturers. Eommodore, who recertley moued to Horristown, fai led to show. The Hational Smell Eombuter Stom in Detober at the Hew 'rork iolesium had the bis surs but few smell vendore. The prices were too hish! A gontrouerse hes arisen as to the place of microcomeuters at mejor, netionel oombuter shows. Eis microcombuter oommanes like fres le and Commodore wat to be in the bist Ehous next to IEM and Hewlitt-Foward. Emell yendore will be olosed out by the hisher prices of the larser shows. Should micros be pert of the larse show or be a severgte dizelys? How man's resional grod notional shows ogn there be without di lutins the enthusisem of the rublic and the Economic resources of the verodore? what should the embhesis be in these Ehows; wersonel, Edtestionsel or business?

Chips and Copsrishts

The unendins gobyins of Eome softwere has led to extreme proteotion methods by those oombanies thet produce expensive serious softusre. Some comenies have besum motectins their disks so thet they mes not
 of the purohese price for rer laoement govies. Man's new pobleses reatire a ohis whioh usuelly ountaine ho oude but $i=$ just for proteotion. This incresees the price of the peokese and use ure most
 WordPro, Uisiclao grad EFI are iust z few interestins reoloses that redure a ohip to opergte. Ginoe it is impossible to keer all reople
 hurt business, it is herd to see geolution to this molem. Gompanies who proteot their softwere should reousize that they have gertain resporsiblities. Foore who use serious, hishorioed softugre gre serious. They are usins the prostans for business gev licetions and down time from ruired disks oosts mornes. Comberies must prouide megne to make bewturs or extreme ly fast and incxomsiue replanement seruice. software ueridore who feel thes must use ohims for protertion should include useftul oode in them. Itumy ohime will soon be defegeted by ardent courrizht uiglatore. Fols with bseftl oude will ヨfford the comban more protectigh ard the wer more memory seote to mork with.

UEErE Grour

If sou dont haue a FET or micro users zrour in sour aree I
 settins started and provide an exoharse of information on zereongl level imbosita in meior masazines or even The FAFER. The Lons IEland FET Eociety started as about 20 tearore interested in usins the FET. Two 'seare later we number 15 and heue a hetiongl news letter.

 A Froduct Reviem

Tures：Sottware
Model FET：ョn＇s model ©IABM rectures di三k and new FOMEs
Gource：Ejar Entervrises
15 Windosr Ir ive
Ftoo．H．T Egenct
Frice： 15 －di三k，$\ddagger 10$－tare
This is the first in ヨ 三eries of reuiews of software writtern bet Bob Eader．Eob writes the Fetwourri oolumn for Miorocombutins and his combery sells softwore written by Eob．He zs lo distributes some FET Eusplies Euch as di三ks arod mrinter ribbons at attreatue priges．There三re several reasons whe I alan to review Eobs prostans gnd why I would like to reuiew them FLL HOM．First，Eots mrosrens are ogreftlly and professionally done and they work！gecond ment are unicut in whet they do and male bse of interestins properties of the FET．Lastles． Bobs orostans are the oheowest around．The pookse reviewed here $i=$ Ebout the most Expensive！
 editor＇assembler logder meokese for the FET usins modified momorics and sweoiel souroe oude formettins．These oharses from sterndrod asembly oodins allow the asembler to asemble faster ever thoush it is written in EHSIC．The disk besed version inoludes oomes of EOTH towe grad dizk beced prosrams olus severel utilities．The tove besed version oonteins onley the tere prosrems．a full twe lue meses of documentation oomes with the pookse as well as Eeveral demoretretion prostems．

The Editor prosrem prouided $i \equiv E s=y$ to use and oriented tougra Esembly prosreme．It uses numbers to refer to lines of code and malus三kiprins from field to field 三imele．It Gen oreete，Edit gnd orint source fi les to the printer．The Editor helps to cheok format before rumins the asembly prosem throush the Assembler．This he les to cut Esembly time to 1 to Eeconds per line of code．

The AEsembler $i \equiv$ two mess assembler written in EREIE．On the first mese the sumbl toble is built zud the ualue of eath lajel is

 loded by the Lowder prosrem ard then exeguted as sou wish．

The listinss arouide are olear arod include the memory lougtion grod obiect in HEA．This is folloued be the zouroe fi le line mumer ghd the line of souroe gode．The source code includes a label．gommend．
 Listinse mes also be direoted to the mrinter for leter listinsa The Embur table $i=$ also ousut at the erud of the listins．

 haub beern made to the mhembrics zrod formet．Also the assembler does hot susport maros．This fast would not unset the besinner at all．

In Eumbers，I mey hot be the best pereon to revieu this prostam Eince my Experiehoe with asembly lanedey is verיg limited．Homever：

Reader I＇0 is wour ohance to ask auestions and make short comments． Letters will be edited to set at their essence and then rorinted．We will answer what we can if an answer is reduired．Comments reauiring no answer will also be printed．Questions we cannot answer will be inc luded in the howe that readers can helo each other．If you can answer a auestion or provide more information than we have，please write us and we will include gour information．Many letters me recently received affered thanks，consratulations and wishes of good luck．We hope we oan satisfy the needs of as many people as possible and live up to sour expectations．

Bruce Karsol writes about a problem uith reading files using BASIC 2．0．If one of the records has to be enclosed in ouotes to allow a comma to be included．FET wowld reswond with a ？FILE NOT OPEN ERROR when tryins to read back that record．For some reason location 593 （\＃ of files oren wes beins set to 0 after reading this string．His solution was to POKE 593．1 before using INFUT\＃1．T東．

I raninto a similar problem when adaoting a commercial word brocesor to work with disk．My solution was to limit string length to less then 80 characters which also seemed to work．You misht also use GET\＃1 instead of INFUT\＃1，but this thkes more time．

R．I．Laver has trouble with Doug Hennig＇s＂Sroeding Up the Print Statement＂．With the neu RoMs both Z and $Z 1$ in line 80 sive values of 6．Even the corrections offered do not he lo．In fact，a direct POKE 59458，62 leaves some flickering soots on the soreen and looks out the keybord．At this point the only way to recover is to reset by turning the FET aff．
＇rou are not alone．This command has a similar effect on many PETs and this is why it is not recommended．See Warren Swan＇s article in this issue．

Iim＇rost，Box 556，Sommerville，MA 02143，contacted me some time aso offerins his helf．I grolosize for not responding sooner and in werson．Jim has both old and new ROMs and considerable information on both．Iim sent cowies of some soreen dumos from his BRSE2 printer usins his oun prosranh．The resultins pictures are ourite imoressive and I＇m sure he can arovide valuable information on that device．He also writes that we should try the following line on our new ROM PETs．

FOR $A=65457$ TO 65463：PCHR央（PEEK（A））；：NEXT
Iim sussests that what awears was done iust to preserve Commodore＇s ＇rot－cuite－berfeot＇imase．

We need all the hels we can set．Risht now articles are what we need the most．A reuiew of the EASE2 or other things you have done would be interestins．

Giars Stone wints us to know 三bout the Fiarallel Interfacing Element （PIE）made bu LEMDATA，Box 1080，Columbia，MD 21044 and priced at \＄89．95．This printer interface aluss directly into the PET＇s parallel user＇sport．f printer like the PR－40 can then be olussed into the PIE and since the PIE extends the edse connector of the parallel oort this is still zuailable to the user．The FIE prouides a IIP switch selectable IEEE device number and has a PET style IEEE edge connector．

This interface also has an optional Rom which correots the LAperr louer cese problems for the uarious FETS.

Thanks for the info. I'm zure man's users would like to use other printers beside those from Eomodore. This provides a possible solution for them.

Tes Chin heeds he la with interfooins EDC CA134-II printer to the FET IEEE bus. He hes some manals but no Echematics. Jas has already interfaced a FR-4日 printer, an IBM Selectric tyeuriter and a Eentronics got mrinter. He will share what he learned with anone who gontats him at 1169 14th St. Up land. CA 91786.

I knou' 'uour recuest was made some time aso but here it is. Good luet and thenks for the offer. I'd like to see ar artiole relating some of sour experienoes and sour evaluation of the uarious printers.

Tohn sefue ler hes some suscestions unioh mey extend the life of our PETE. HE owerates his FET and peripherals at 2% below rated line ultase dsing a \because ariar ard line yoltast meter. He also has a ge line woltese spike sumpesor in the line buss which feeds the eourment. Iohn stestem is ariold Fold EK FET with an added 24 K of memory, 3
 Levtogrd. He is mleseed with the disk which loods arot saves 10K prostans in 1 ser.

I've had a FET an peripherals for 2 years and have had two bromnout problems and no other asparent problem. Your precautions seem like ouerkill but I m sure sout know more about it than I do. Many pope le Eeom to think that only the Commodore peripherals work with the FET. 'rour omments or the Domputhink drive would be aporeciated.

Emil Woloheok sase that the Screen Frint on pase 39 of March/April Be morks mell if it is wlaced in the second cessette buffer. He Etates that rooklems arise when it $i \equiv$ oleoed in the tow of memory sinoe EHSIC !uill write guer it. His solution on the sek FET is to POKE 52.134: FOKE 53.127

Thi s problen ogours with ane routine stored in the top of memors. The tor of memory pointer should aluays be set down just the amount reeded to acomodate the routine. Be sure to remember to reset it.

Soott Sumer mants to know if Commodore makes a 2040 A sinsle disk drive, He sass that mast dealers say ho but that Fobanoed computer Products has one aduertised. RCP euen said they had some more oomins, outed a prioe gnd sube soos. He also duestions the auailability of the Commonore eleotrostatio printer.

This business is full of ghounced but never produced products. As far Es I know. Commodore hever produced the sinsle stribped drive. ACP mey have a sinsle drive, but I dont thirk its commodore's. It should ke stated thet there are other tine drives oomeatikle with the FET. Asain. Dommore never produced their aduertised eleotrostatic printer. Severgl comegries beat them to it with sood printers and I sues they didn't think it wes worth it to produce the ir oun. Two oombanies that did produce electrostatios are Sky les and A\%iom.

Herry Ealhoun heeds informetion on the General Instruments AYS-8910 Eound senergtor. He hes buen urable to set information or data from local dealers or from the oombens itself. The E'rite article from July 1979 is not sufficient. 'rou can contaot Harres direotly at RT 1 Box 5s. Medicel Late. WH 99022. Harry also Eays that dealers in his area do mot surbort the FET but mush combetitive Eystems.

Let's face it, some people are just plain imorant. This seems to include the dealers in your area. Have you tried to educate them? Foduanced Comouter Froduct: is selling a manual for the GI chip for \$3.80. We have seen the manual and it is comolete and should solve your problems. The 60 page manual and chipare advertsised on page 10 of the 1980 oatalos. $A C P, P O$ Box 17329. Irvine, $C A 92713$.
D.an Condon asks us to 'set a better title' since many publications use FET without any problems. He wants us to let peop le know what our publication is about. Dan imolores us to avoid 'show talk' and in-jokes which do little to inform. He also would like to see more machine lansuage programs uhich kerform simole and interesting tasks and then explain whes.

I think 'sou krowide some ohallenses to many of us. First, I really haven't thousht much about the name. Let's have some ideas on this! We will try to awoid 'inside jokes and comments' and will try to exolain what we are doing. At least you'll know that any unexp lained comments or ideas are not on muroose but simoly oversishts. You last comment is a challenge to our readers who understand and urite machine languase. The challenge, as I see it, is to prouide short simple routines which are explained in such a way that all can understand.
R.L. Leutzinger needs information on how to connect his Heath H14 printer to his PET through the CMC ADA14日日. When he tries this the buffer over loads and printins stows.

This is why some people, like me, bought only Commodore peripherals. Its not because Commodore products are the best but becasue we can be relatively sure they will work when plugsed in. Therefore, I aok laud your efforts and howe some reader can he lo. Have you tried contacting Connecticut microComouter directly?

John Bosak is suffering from lack of basic information about the PET. He comments that many articles in The PAPER have been of little value for his awolication or were beyond his level of understanding. John also wonders what Commodore should have supolied to PET owners and it he missed something.
'rou are not a lone in sour bewi lderment at the lack of information prouided by Commodore. Fortunately, many fine books and masazines now have PET related information. To discuss all of these now is beyond the scope of this column. I home The PRPER will besin to provide information which you find useful. Let us know what you would like to see. Baok to uhat Commodore owes us! When I originally got a PET during the summer of 1978. I sot a small pamphlet explaining how to turn on the PET and make a rooket blast off. That uas it and I never have sotten anything else for buying that. PET. Later Commodore besan Euklyins a manual' for the PET which contained basic information buried amons references to ML prospmming and onerating systems. This book is so unorsanized that it is next to use less. Sumisingly, the manuals provided with periphersels (disk, printer) are informative and uell-written $\equiv s$ is the manual prouided uith the business machines. The later, however, contains little information for a real prosrammer. With the very newest machines Commodore is sumplying a BRSIC 4.0 manual, the business sestem manual ard the new FET,CBM Personal Computer Guide published by Dsborne. This is a grest book. I think anhore who did not receive prower documentation for their PET (all of us) Fhould urite or call Commodore and reauest this new documentation.

Thats the end for now. Plesse write. We promise to answer.

Ohe sees oncesionsl references to the FETs random function producins a reweatins series of random numbers．Gn my new Rom machine the random loow is delayed entres．From a ould start my gomouter． senerstes 59022 random numbers that do not rewest，and then it besins三 series of 13379 random mubers which does reveat indefinitely．

I houe never tested arn old ROM FET but would suess that its random number function mould be similarly rebetitive，perhass with a different loow lensth and entry moint．A FET will brobably behave as mine does if these are the first two rendom numbers it produces from a cold 三tart： 974626516 ョnd 922097304.

Or FET s where this $i s$ the gese，a short prosram oar be run which will verif＇s the lowe lensth and entry point．First，turn off the meohine for about ten minutes to ensure a cold start．For some reason， iust flickins the power off and on does not reseed the rarudom number senerator to its oold start walue．Now run the prosram which takes zoout ten minutes．Ft the end of the run the soreen will disolay the r andom rumber $559014-59033$ and $72393-72412$ ，and the point where the rewetition besins will be evident．

10 FRINT＂colr．）＂；
20 FOR N＝1 T0 59013： $\mathrm{K}=\mathrm{RHI}(1)$ ：HEXT
30 FOR N＝59014 T0 59033：FRINT H：RHII（1）：NEXT
40 FOR N＝59034 T0 $72392: 8=R N I(1): N E X T$
50 FRINT＂（home）＂；
60 FOR $\mathrm{N}=72393$ TOT2412：FRINTTRB（18）N：ENI（1）：NEXT
This rebetitiveness obuiously affects on ly prosrams that senerate a sreat number of random numbers．I discouered the problem in a bettina stame which produced about 10.600 random numbers in each rum．After a whi le I was settins hear ly the same results in every same．

It does mo sood to attemet to avoid the look by seeding the random function with $X=R H D(0)$ or $X=E N I(-T I)$ ．Dri the contrary．tests I have made indicated the lows are ofter shorter and are entered earlier then without seedins．Here is a BHSIC subroutine which is slower than the mathine function but auoids the loop problem．Sinoe I am not a statistigizn．I haue not ristorously tested it for distribution．It is besed on the simele inea of multimluins two rumbers tosether and usins the freotionsl bert of the product as the rendom mumer．The basic idea had to be altered abit begase in its simele form the routine also produces a loor．Looss are not essy to avoid in random sererators as the peove at Commodore should know．

First，in order to seed the suroutine，olase this instruetion somemhere in the main arosran where it will be exeouted only once and before the rernom sukroutine is called：

$$
10 \mathrm{~F} 1=\mathrm{FHI}(-T I): \mathrm{F} 1=\mathrm{FHI}(1): \mathrm{F} 2=10060 \mathrm{FHD}(1)
$$

Then there is the rendom subroutime：
501061 IF F1 THEH R $2=R 2-R 1: F 1=0: G 0 T 050120$
$50110 \mathrm{~F} 2=\mathrm{FQ}+\mathrm{F} 1: \mathrm{F} 1=1$
501020 R1＝R1＊
This staretes a random number，R1，which is a decimal fraction．

In the last issue．I desoribed hou a muza le deve lowed in melas ard how，unexneotedly mes students arrived at three different solutions．Not wishing to deprive wou of the joy of disoovers，I did not sive the solutions at thet time．Since that artiole wes uritter，a fourth solution hes been found．If sou missed the last issue or for sot the puzz le，the mroklem mes this：

1 －Tyre the followins arosran into a FET：

10 IHFUT R 20 FRINT RIGHT（A） 36 GOTO1Q		

2 －Run the prosran and when the ？momets sout ture in a set of letters such that when sou press FETURN the FET will resporad with JIMA＇EARTEF or GEDRGE WASHINGTOH ©or whatever＇．

3 －Once you have the ides ther comes the real muzle．Try to set the combuter to respond with AEE LINCOLH．The A must greeser direotly under the $?$ ard there must be a sooce between ABE ard LINCOLH．

If you havent tried the muzz le soushould do so before lookins at the solutions．Line 20 tells the FET to move the last four ohareorters of the inout to the besinnims．So of ounse if we ture LINCOLNABESses，we have solued the problem．Uriforturately wher a soace ends ari inout the FET drops it．We ogn tare LIHCOLHAEE with ed soaces after it arid the FET will still interretet it as only 10 ohareoters lons．Three srouse of students fourd wess to foroe the FET to keen a final sreae after the E ．

Solution 1：Ene lose sour inwht in atotes：＂LIHOOLHAEE＂
The PET will intermet all 11 ohareoters in the cuotes as mert of the inout．Knowins this misht also oome in hende in situations where sout wanted to inolude a colon or ooma in sour inout．Without adotes this would sive gn PERTFA IGHORED messase．For instarice，if three
 when zsked for $\underset{\text { w hene．}}{ }$

Solution 2 ：Use reverse field after the E ：LIACOLHEEGrus so
The FET does not interpret reverse field Enger the zane as a
 Erace has a uelue of 160．So asain，the FET would court 11 ohareotere in this inmut．Wherever the FET soes to a hew EREIE statement，it eliminates the reverse field．so the shas atter the E wodld be
 the entire line in reverse field．

 has a different RELII velue．So the FET will asain Eout all 11
 routine for eliminatins the sudden endins of prostans. Here is a prosram line which will prevent the endirs of a prosram if RETURH is prenature ly hit:

Finally, a teacher aboroened the moblem differently, Instead af askins How can I hold the soace after the E", she simely alaoe a Erace before the L and held it with a left hand auote.

$?$ " LINCOLH RBE

But then the A was'nt under the ?, so she asked What oharaoter oan be put before th A which will nat gonsume a soot on the soreen ?'

Solution 4: Use an INSERT before the $A: ?$ "LINCOLHCinser tiABE
Rotually, this solution reouires a 12 charaoter inbut but one character is a NULL character. The insert does nothins exoept set itself counted. Another null character that could have been used is the OFF key. Null characters misht be handy if you wanted to treat strings of different lensths as if the's were all the same length.

This concludes the solutions to this puzzle. It is clear that the investisation of this puzzle led to the discovery of many different, interesting and useful ideas. Please urite if you find other solutions. Since these kinds of problems seem to stimulate interest and lead to unexpected discoveries, it misht be nice to make puzz les a regular feature. Let us know if any other puzz les deve low.

by Dr. Georse Sri lich
For the last twenty sears, pescholosists have inoreasinsly used computers in their work. This utilization has taver a number of forms: for examele computers have proven useful in data reduction, in simulation of coshitive rorocesses, eto. Microcombuters have been found to be extremely useful in laboratory situations in westholos'g; turically the's are used to krouide visual stimuli to subjects arid to record their responses. The latenoy of such responses oan also be measured. These small combuters oan also be used to teach undersraduates about the neture of ooshitive ooerstions.

I suspect that there are a momber of pescholose labe around the countrey using mioros such as the FET or Arsele as a researoh or didactic tool. or both. At Weshinston Collese. we are at present usins
 anod also as a prosrammale deuice for students to use in their ourn research projects. We gre about to userrade our FET with additional memor" \Rightarrow or a disk arid other meripherses. I would like to hear from anvone also usins mioros for simi lar purooses in cosnitive pecholosy in order to set up a Epecialized FET user se srour. Throush this sroup we could all share in shewers to common problems. This srous could be interdisciolingry in the field asyoholosy. Frisone interested should
 MII 21620. Flease indicate vour interests, heeds and tures af combuters.

by Roy Fusdiecker
(Pub Note - I must arolisize to Roy. He sent his observations in right on time. In the transition from ARESCO to $u s$ their mblication has been delayed. I thousht mant of Roy's comments so valuable that I have included them here in a condensed form.?

Most sisnificant, in my orinion, is that volume 3 is beins mublished. With over two sears experience with FET behind us there is an awesome amount of information behind us. This is a fise ory from the bits and pieces we had to dis out in early 77 and 76 . Mant key wieces of information came to us uia FET USER Notes, FET Gazette and The PAPER. Of the three, only The FAFER remains! We have an exoellent 'slick' masazine, COMFUTE, which has res laced the other two and it is a valuable asset; however, it s nice to have a folksy newsletter. In The PAPER we can ask "dumb auestions" and share initial findinse without having to wait until theyre fine la polished.

One of the most valuable parts of The FAFER is the Reader Iro. A word to the reader NHOR and others who are abetins started. If sou really are a beginner, then machine lansuase prostamins is NoT the place to begin. It's like eatins an avele (no kun intended) by starting with the core! perhass it can be done, but it will be much easier (and taste better) if sou start at the outside and work your way in. Learn ERSIC, do a LOT of prosramins, and set a feel for what the comouter oan do. Then when soure ready for machine lansuase, you'll be abile to see its sreat strensthe and mant terrible weaknesses. For some purposes, it s worth all the troukle it talkes. For mans other eases, it's a disacter and should be avoided. The "Machine Lansuase" tawe provided bet Cominodore is a moritor', which allows you to inseect and charse values in absolute memoty locations. rou must know the architecture of the 650 computer (its resisters. data waths and instructionss; understand the relationshies amonst binares, hexidecimal and decimal number systems and kees track of addresses and pointers all af which sou bar affect and manimulate with the monitor. Of course, if sou miske a mistake, sou mey lose control and will have to start over. Man's of "these' oreshes oan bue recovered by using UH-CRASHER from International Technical Sustems, FO Box 264, Woodrridse, UF 22193. It costs $\$ 14.95$ Fnd allows you to stet sour FASIC or machine lansuase prossem baok in most oeses.

Arnie Lee's desoription of the FET's flosting paint arithmetio routines was very close to what I would like to see for all rom rotuines. Explanations should inglude where the routine is logeted. where the inout should be placed before calling the routine. Frd where the result is left when it sane. Alm I oorrect in assuminst that the locations siven are for the old (Version 1) FETs? Armie is the author of a Machine Lansuase Guide for the FET with loogtions of routines for old and now PETs and numerous exameles of how to use them. The Guide is awi lable from ABACLS software. FO Fox 7211 , Grand Rasids, MI 49510.
 is not ouerwhelmins unless sou are ouerwhelmed. Arry comester or individual offerins software for sale has an oblisation to engure that it urke correotly urder all reacongly medietable cireumetsnoes. If it fails to do so, the seller has ar oblisation to fix it, or to refund the oustomers mones. Someone who buts a prose sin Fhould not have to debus it! on the other hand, keosle who fail to pay for software should set only gopies that alwas fail. Dueliter desisn and
responsible maintenance and service are sood reasons to pas for software.

I did enjoy Fram's article and prosrann on the "Better List". The program aopears to well-constructed, and is certainly well-commented (many good REM statements). Not onl'y is it a sood model for new programmer's to stude, but thoroush study of the prosrom will lead to a better understandins of the wes BASIC prosrans are stored in the PET. The 'key words' in lines 63988-63995 are auilable in ROM locations in old or new PETs, althoush mith old FETs, it takes a tiny machine lansuase routine to be able to retrieve them. On the new machines, the followins command mode' will diselay them on the screen: FOR I=49298 T0 49551: ?CHR (FEEK(I)); : HEXT

The corrections in the March'Raril issue to James MoArthur's excellent SEARCH program were we loome. I haut been disarooirited when I tymed it in and it didn't run. After making the correction swecified (hex location $\$ 0375$ should have contained $\$ 38$ rather than $\$ 28$), I found that the program still didn't work. With the heln of my son, Rick, I found that I had left out 8 bytes, which meant that my listings on pase 35 and 36 were incorrect. I'll be slad to sumbly corrected listing to anyone who asks.

For those of us who want to learn assembly larigause, the listings on pase 20 and 21 of the March.fioril issue were excellent. Listings should show menemonic on codes, symbolic owerands, lots of comments and the actual hex code that goes into each memory location. Incidentally, that listing was produced by Carl Moser's Eastern Software House Assembler. I have no connection with that comoany but recommend its products wholeheartedly. There is a taoe version, as well as, a more extensive one for disk owners. For ansone who wants to set really into machine code a sood, hish-speed assembler is a necessity.

Asain, thanks to Fran Turco for the ecellent summary of 6502 on codes. This should make ram machine code more understandable to many readers. Of course, I'm never satisfied...it would also be nice to have a 'decode' list, where the hex values are in numerical order. This way we code look un a value and see uhat on code it rebresents. Also, it would be rice to have a diasram showing the uarious resisters and the paths alons which data can flow in the 6562 .

On pase 17 of the March/April issue. the Software Maintenance bulletin should have refered to a Micro Softuare S'stem product (PO Box 1442, Woodaridse, UA 22193). If you like the idea of these bulletins, tell your dealers and urite to other manufastuerers.

Kudos to Paul Soarks for his work on E.L. $^{\text {L. Buchanan's soreen print }}$ prosram, and an excellent article. Mr. Buchanan is a treasure trowe of worthwhi le information, and has been a sreat he lo to mans of us. Orie of his major areas of interest is in the tawe I Guksytem. If any of you have made interestins discoveries in that area k lease sernd them to him at 5000 Shokton Ir., Cank Sprinss. MI 20031 . Rdd a note that he should put it all in an article for us.

Whi le were on the subougt, how about more articles from kreviously unouk lished authors? (That means 'т' Cll!)

Ray Ilavidson, in MEM EXFLORER AGBIN, demonstrated how one idea ean be explored from several different ans les and oan prouide new learnins exweriences. It show be noted that the commeroial version offered bes Micro Software Systems includes a routine to merse it with gour prosram.

It's been a sood das but. I m bushed. Goodnisht and see sou soon!

The MID function is a useful tool in arabhios and motion srawhics: because interesting results can be achieved with relatively little memory. MID dissects a string in such a way that the strinst elements

 letter. For examole, ? MID ("ABCDE",3.2) will ousut CD.

Let's start with a swinnins stick: (HOTE - Due to the limitations of printing many characters cannot be trul's rewresented. EE CAREFUL.)

10 A $=$ ="@NEM": REM ALL THESE SHOULD BE SHIFTEI
20 FOR $\mathrm{X}=1$ TO4
 40 FOR I=1TO1Q: HEXT I, X:REM TIME IELF'' TO SLOW MOTION
50 GOTO1Q: REM REFERT
To reverse the swin chanse line 26 to:
20 FOR $\mathrm{K}=4 \mathrm{TO}$ ©TEP-1
You may want to try jussling two swinning stioks by adding more MID functions and setting the soece between them with cursor moves.

For a different graphics effect, keep lines 30. 40, and 50 and add:
10 A $=$ =" $\$$ RFECDE\#EDCRFR": REM FLL THESE SHOULD BE SHIFTEI
20 FOR X=1T014
We have just seen exameles of varyins the startins woint of the MID function. Other effects oan be achieved by ohansims the lensth of the strins elements used whi le keesins the startins point oustant. Try:

10 F $=$ ="CHFRLIE BROWN"
20 L=LEN(A \geqslant): REM HLMBER OF LETTERS IH THE STRIHG
30 FOR 'T'=L TO 日 ETEF -1

50 FORJ=1TOY:?"(O1)"; FAEXT:REM MOWE STARTIHG FOIHT TO EOVER OLI STRING
60 FOR K=1T075:NEXTK, Y
Fnother exercise would be to make the name asoear letter by letter on a blank screen. If the name slides in from risht to left, wou would be maintains the same startins letter. However if CHAFLIE EFODN slides in from left to right, both the stertins letter grid lensth must vary at the same time:

16 A $=$ =CHRRLIE EROWH"
$20 \mathrm{~L}=\mathrm{LE}+(\mathrm{A} \boldsymbol{*}):{ }^{\prime} \mathrm{r}^{\prime}=1$
30 FOR $X=L$ TO 1 STEF -1

60 FOR K=1TOT5:HEXTK.X

A much more dif+icult "final Exem" would be to make EHFRLIE BRCWN \equiv lither down $a+$ lisht of stairs and of onto a lending usins two midde strins functions workins tosether.
 di $=0$ layed:

```
10 %=INT(FND(1)**)+1
20 FOF I=1TO1G*RNI\1)
```



```
40 HEXTI :GOTO1G
```

If this solution bounces off the tov of your soreen too moh, add a coun le more (cod) to the strins and change the 4 in line 10 to a 6. Also try chansins the 1 in the MIIf function to 3.

By now your imasination should be stirred about the intrisuing possibilities in the use of MIIts. 'rou oan oreate false oursors or soinhins sembols in the window of a slot machine. Have fun!
(Fub, note: I suess I passed Gerry's final exam. I urote a prosram which causes CHFRLIE BROWN to come out of \exists slidins door at the tor of a flisht of stairs. These letters then maroh down the stairs ster over eash other and line up on the lower landins. '

b's Jemes F. MoArthur
I have sotten some insuiries gbout hou to modify SEARCH for the Version 2 FETs. This probably wont be ver"s hard to do. exoest that I don't have one to experiment with. althoush I do have considerable information for the new system.

The wresent version of SEARCH uses nart of the EASIC inwut buffer. which $i s$ in base zero on the Version 1 FETE. This ares is fairly sefe to bse, most of the time. Unfortunateles amons the man's oherres Commodore hes mede in desisnins version 2 is the relocstion of this buffer to other memory loogtions. This means there $i=$ very little pase zero memor"s to olas with.

To modify SERRCH for the new sestem. I will heed information on what areas in pase zero can be used without malkins the FET ato crasy. Soecificelly. I need a blook of four adiacent butes and three sinsle butes. for a total of nine butes. These butes must not be afferted but flostins point zoomblator orerations. Ferthes somene has this information and oould rease it a lons.

In the meantime, here $i=a$ modifiostion to make it poseible to stor SEARCH with the STOF kes. At the time thet I sent gEARCH to The FFFEF, I didnt know how to scueere this feature into the 198 butes avai lable. Singe then I have fourn a wey to fit it in by rearransins a few thinss. With this modifiostion GERECH $i=196$ butes lons.

Ster 1: Retrae line 130 三 Ehouri:

Ster z: Ie lete first 16 ghareoters in duotes in line 140.
If 'uou haue suscestions or atestion plesse let me knou at: 2240

The Detober 1979 issue of The FFFPER contained a soreen dume subroutine for use with the Commodore printers. The proaram had a problem in that it would not respond to anthine within auote marks. Carl Hi ldon of Commodore Canada ave me an idea for a fatcer) Ecreen dumb routine which I will call sereen cove. The routine I have deve lowed does not pose a mroblem with auote marks; is Eomewhet faster than other kublished routines and sives the user visual indiostion that a 'copy - no oopy' decision is readired.

The sroaram listed $i=$ uritten for the old ROM PETE, however, Table 1 gives the modifications necessary to use it with the usarade forls. It uses the concert that the screen is a losical device and may be orened and aceesed in the same manner as a data file. Each character on the soreen is read throush the use of the GET\# cominerd. The GET\# commend 'sets' the character displayed on the screen in ASCII format. There is, therefore, no need for an's conversion to FBCII within the subroutine. This makes the subroutine faster than others.

The subroutine faithtully remodues each character on the soreen (recognizing that reproduction of srabhics characters reauires a compatible printer.). However, the soreen imase itself may scroll us as the characters on the last two lines are read. This is not usually a problem since the imase $i s$ on hard cose. One feature $i=$ that a visual indication that the subroutine has been called $i s$ given. This $i s$ acoomelished by the use of a simulated cursor at the lower risht hand comer of the screen. This is flashed to attract sour attention and allow sou to make a cops-no oops decision. I sou strike a " F ' the the soren cowy routine is executed. An's other key will allow the prosram to resume execution at the point where the subroutine was oalled. This permits the user to insert the subroutine call anduhere in the prosirm and ensure that the progran will not moaress past the desired point while at the same time providins a pasitive indication that the desired point in the prosesm has been reached. Ones the 'oosy-no cosy' decision has been made the oharater orisimelly acoubyins the lower $r i$ oht hand oorner is rev laced and the flashing dursor is removed.

My printer is not a Commodore model and does not have ar:ashics oasability. For this reason I have included the line of code at e36eg. This code examines each chareoter and brints a swee for each srawios character found. This maintains relativity of the printed cops althoush the attractive argshics mou mas hove seent hours to deve low for the soreen will be lost. It, in line G396日, sout revlaoe \&...THEN
 instead of a grace. If you have a printer casable of reproducins fET srawhies, homever, sou should delete line 6960.

Fecuse the burpose of the oudina may not be obuious to everuone. I have included the following desoristion of the purposes of selected lines of the subroutine.

Line Ho.	Description
63909	Osers the soreen (device 3) and erinter (device 4)
63905	Os losiosl tiles 1 and 5 reswective ly.
	in the lower risht hand comer of the soreen.
63910	Establishes the wosition of the flashins curgor as the lower risht hand corner of the esreen.

Turns the flashing cursor on.
Turns the flashing cursor off and rev laces the orisinal character lower risht hand corner.
63945 Obtains the lensth of the line beins printed. This will be 39 if the line contains less than 40 charexters, else it is 79.
63950 Uses the line length obtained to set the number of iterations for the inner (JJ) loow. That is to say the number of characters to GET for a line on the soreen.
63955
63960

63970 GETE the next character from the screen. Exchanges srachics oharacters (for printers not cabable of PET grachics) for a space. Omit this if 'your printer is comoatible with PET grawhics. C loses the inner loow and forces a carriage return at the end of each line. Besins examining the next line (next iteration of outer (II) loow).

Listina

1 REM SCREEN COP' B' J.R. BROMLEY
2 REM JANUAR'Y 1980
63900 OPEN 1,3: OPEN 5,4
$63905 \mathrm{CH}=\mathrm{PEEK}$ (33767)
63910 FOKE 224,192: POKE 225,131: POKE226,39
63915 POKE548, 0
63920 GET GG\$: IF GG\$="" THEN 63920
63925 IF GG\$ $\mathbf{C l}^{\prime \prime}$ " THEN POKE 33767, CH: G0TO 63975
63930 POKE 548,1: POKE 33767, CH
63935 FRINT " (home)"; REM CURSOR HOME
63940 FOR II $=0$ TO 24
$63945 \mathrm{LL}=$ FEEK (242)
63950 FOR JJ $=0$ TO LL
E. 3955 GET\#1. GG $\$$
$63958 \mathrm{GG}=\mathrm{ASC}(\mathrm{GG} \$)$
63960 IF GG<32 OR (GG>127 AND GG<193) OR GG>218 THEN GG $=$ CHR $\$(32$)
63965 PRINT䉼, GG\%;
63970 NEXT TJ: PRINT CHR (13) : $: ~ N E X T ~ I I ~$
63975 CLOSE1: CLOSE5
63980 RETURN
TEble 1

Line No	Orisinal FOM	Ulosrade ROM
63910	224	196
63910	225	197
63910	226	198
63915	548	167
63945	242	213

Location 33767 is the sane for both versions.

I use cassette taoes rather than a flopey disks for two resens:

1) Poverty: I can live with the longer time locatins and loadins when I comoare the arice of a disk drive with a cassette.
2) Rationalization: Disk drives are a passing fad.

These excuses will change if and when my finances improves in the meantime I would like to make the use of takes easier nad more reliable. These hints are a collection from many sources and my oun experiences.

TAPE QUAL I T"

This is a combination of rood tave in a sturdy housing, no five for $\$ 1.00$ specials. For master program tapes, c-30 and c-60 lengths seem the best. C-90 are not really necessary and usually have thinner tane which stretches more easily. TDK brand has served me well.

For programs in regular use or as current data files, $0-10$ Is are the answer and they can easily be purchased of sood cuality and at a reasonable price. The shorter tame allous easy aceess to both sides for more economical use of tase. Computer Way, Madison WI supelies C-10 AGFA tapes in a good housing at about \$1.00 each. I have 50 or so in constant use and have had no problemis.

TAPE STORAGE

Always store tames in a box, hard or soft, and then in some sort of storage rack. Never touch the tabe, rewinding will keep srubby finsers off the tave and will leave on ly the leader exwosed. On master prosram tapes and those used to store tawe fi les make sure to krook out the record-orotect tab on the back of the cassette. If you have to add to the tame later a piece of transwarent tave over the ho le will do the trick. Meanuhi le this will krevent the not so masical disaseearance of programs. If reusing tawes for data fi les. I sustest the use of a bulk eraser. This will ensure you do not read unwanted data from the orisinal tape.

CASSETTE HEAD:S

Clean and demasnetize your oassetee deok tope heads reaular ly. This alone will reduce proklems. The freatenoy of eleanins will demend an hours in use, but weekly housekerping on the tage heads is well wor th the time. A de-masnetizer for about 10. Qh, a low residue oleaner, and a box of Q-tics is all that is needed.

The susgestions above may seem commono lace and not worth reveatins. but if you have agonized over a Eorambled prosram due to bad tase or been unable to estak lish whether the readins of faulty data is the prosram or tace, you know these sters are worth the time. The final suggestion presented here is offered with no zesurgnces berond the fact that I have used it with no ill a.ffects over the nast yesr. This surgestion involves a modification of a second cassette deck which will probably void your warranty. I rewort here what it did for me and if the idea is not orisinal then it is a case of reinvention not borrowing the idea.

TAFE HEAD FL IGHMEHT

Tave head alismment when done by sour dealer with his alishment tape is acourate and should cause no problems. When using tabes from other machines of dubious alisnment or some tapes not in use for a lons time problems mas ocour. One commerciglly prepared tape ot twenty uti lita prosrams would not load three of the prosrams easily. These Frosrams 三eemed to be of slishtis different alisnment. fttemotins to solve this rook lem led to fittins a miri-jack to a second cassette deck and usins ari grin lifier and seeaker as an alishment aid. This may Eound like owerkill, but I G an now reat most ualid taves. I carn also be sure thet my tares uill losd on my friend's machines. This is particular ly imoortant when exchansins tapes throush the mail. This sustestion should onl's be imblemented if you have two cessette decks and the first remaine alished to 'sour dealer's etandard. ©Hote: Parts numbers siven are Fadio Shaok's.)

Femoue the caseette deck from its case. In the upper part of the ase there $i \equiv$ a mall hole couered by the white metal strip that labels the Ewitohes on the cassette. Carefully drill throush the strim uith a small bit and enlaroe the hole with a small fi le. Make the hole lar en enoush to acoopt a small screwdriver. This hole mill allow Eoces to the adiustment sorew when the elay button is deresesed.

In the lower port of the case, fit a hormally owen mini-jack (RS \#274-297 where it will bue out of the was: the umaer risht is sustested. To wire the mini-jack, place the cassette with the buttons tougrd wou. The oommon or sround lead should be connected to the umoer. left of the $F \mathrm{C}$ bogrd. There are two leads from the underside, gellow and black. The other lead झhould be connected to the lower risht of the FC bogrd at the third solder joint from the bottom of the board. It $i \equiv$ the innotion of two resistors on the underside. Now dress the leads out of the may and reassemble the gassette olayer. Connect the deck to the FET and LOAD a rrosram as a oheok. After it is LOADed tyoe FRIHT PEEKESOO, ST for old PETS and FRINT PEEK(192), ST for the new
 seseette, and when the FLA'r butoris debressed you can hear the tawe; this allows gou to careftlly adjust for maximum olear sound. Hou will hear a steady tone, followed bey data. and then another steady tone and
 FOUHI and LOADINI by the time sou hear the start of the second steady tore. In most oeses it will recuire only a slight adoustment to alisn to another meohine. When sou have finished sou oudd realisn to a tane reourded or the first esesette deok.

If you tres this modifiostion I would like to rereat the following

1. Keer the first tare deok alizned to the corroct standzard as set b'y sour dealer, ヨrod uEe it to write 'sour mister files.
2. If sou haue ohanged the alishment on the second deck, wou should reselisur it usinst tare reoorded on the first deck.

These sustestions should helr auoid uritirs a tare with yarying alisnment. This, of gourse. wes the problem sou were treins to solue in the first place. I would welcome gry Eussestions or coments via The FAFER or to me direotly at FO EOx 2211. Dartmouth. N.S. B2N 3'V2

Tyoe: Software
Model PET: all models without disk and with 16 K RAM
Source: Eastern House Software 3239 Linda Dr Winston-Salem, NC 27106
Price: about $\$ 80$ depending on options bousht
The FSSM/TED is an assembler and text editor packase auailable for old or new ROM PETs and is written entirely in 6502 machine lansuage. A Grawhics Comolier is avai lable as an assembly proaram to be loaded by RSSM.TED. Fin enhancement which comes with the comioler reduces the interference between FET ERSIC and ASSM.TED in base zero

ASSM,TED documentation is very complete and well organized so the besinner can so from start to finish with a FET to try it out. Be prepared to swend some time unless you are a protessional prosrammer who already knows what to expect from assemblers and editors. You will need at least 16K of RAI to use the prosram althoush the more the better. TED could be used by itself as a text editor. It works by numbering the lines of text. To chanse a line you dan use the PET's screen editor but the order of lines consins or moving of lines is done using TED commands. When the text is ouput the line numbers an be suloressed for assembly prosrems. TED is nice but its RSSM the assembler, that really makes the rackase worth the price.

RSSM uses a.ll the standard 65% mnemonics and formats. In addition. it has MACRO camability or the abi lity to urite a secuerce of code and then call it by name. Ouer 20 psuedo-ors are aui lable. When assemblins you may continue even after errors ocour. Thirty six different errors are detected and the asembler diswlas them as they ocour. The enhancement auai lable with the arachics comeiler also allows you to incorporate macros with ASSM TED and also incorvoretes a librery of labels with their addresses. This allows you to use your favite PET overtaing system routines. All this is put into memoryso that you need on ly tyme it once.

Once you have composed sour assembly prosram with TED you can save any lensth of text to take or disk. Th Assmebler will then set the text from memory, tape or disk. Once the assembler is done sou save the assembled program using the FET's TIM MONITOR. You an use one address to store the machine lansuuse but force the assembler to use another base address for the code. This allows you to mut it aryuhere sou want and move it later to a more permanent address. Finalle if you have two tane decks you can urite moveskle code. A listins of a RELOCATING LOADER is provided with ASSMTED. This sroarm loads the machine languase wherever sou want it. It takes the code, caluoulates the true addresses based on that location and muts it in memory.

The Graphios Comoiler is an assembly larisuase text rowrom for ASSM/TED to zesemble. You urite sour sraphics prosran in terme of the comeiler's functions. These are: straisht lines at ansles sub Epecify combosed of symbols sou seoify for lensthe sur sintins of strings of symbels, getting inwut from the kespoard. verious conditional branches and several wass of setting the values of variables. All this is done with sumbels in elace of numbers. You can move the cursor all over the soreen in either absolute or relative terms (by siving row and column. not true address). This can be intersoersed with timed delays. Some same writers amy find this
interestins as it stands. Wy oun vieu is that the oomeiler is tieftl mainly as an examole of an assembly prosram that allous you to invent your own lanswase and compile it so that you end up with a prosram in machine languase.

These prosrams are not expensive if you fisure the time the's will save the serious prosrammer. The's could inorease sour outrut ten to fifty times and reduce sour asgrevation by the same amount. They re very hish-powered and professionsl. The prosrams tave more memory then some may have but are worth every berrey for those who wish to ster ur to a more powerful and efficient prosramming level.
(Pub. Hote - A more powerfal and more expensive disk based version of this rackase is now auai lable. Watch for a comelete review of this packare in the next issue.)

You try listing the prosram you just bousht and as sou do lines apoear without any line numbers! They just hans there in mid-hrogram! Other lines have numbers but nothing following them. fotually this technicue is ounte simole. One reason for using it is that it is a nice way to add your name and other information to your prosram. This really can imoress 'you friends especially those who don't read The PAPER. Secondly, sou can hide some imoortnat information in these lines if you don't want 'sour prosram changed by others easily.

To perform this mirac le follow the directions below exactly.

1) Tyoe: $100 \mathrm{REM}:$?""
2) Now hit the DELete key to delete the second ouote: 100 REM:?"
3) Hit the INSerT key 10 times; then hit DELete key 10 times
4) Now t'joe your name or another messase.
5) Now list just this line.

Your name should now be hansing in mid-air without a line number. To make a line which shows nothing at all in a list you oan follow the above procedure but do not add an's name or messase. If sou moke a line 110 like this your name in line 100 will be sebarated from the rest of the prosram by a blank line.

How 'fou oan exweriment with different line numbers, warious messases and hidden information. Remember however, since the line number and much information disaroears sout cannot make corrections once the line you typed in leaves the soreen. Tyne these special line one at a time and then list them to see what thes look like. If there is a mistake you can correct it in the or isinal line sou troed.

To make some imortant information nearl's inuisible is fairly simole. Eefore the FEM in a disaspearinst line place the important orosram information. 'rou misht want to set an imoortant yariable to some value; w=100. For each oharacter in this information hit an extra. IHSer ${ }^{-1}$ and an extra DELete in the prooedure desoribed.

This procedure is far from foo lproof. People who are looking for it may be able to read the information especi三ll'g if the line $i=$ lons. A listins to a printer will also show the entire line. If gou have groblems make sure sou followed the directions and then contant me uia The F'APER.

by Foy Fusdiedcer
Way back in Issue 10, volume 1 (Dec 78) of The PRFEF, there эoweared a brief article entitled "Rutomatio Repeatins Keys" submitted by The Software Shope. The article is on pase 27 . for those of you who save valuable relics!

The program was a sem...the fact that reweatins kens is desireable is attested to by the fact that Conmodore built a version of that feature into the 8000 series machines. Unfortunateles, I felt that the article left something to be desired. It mrouided a prosram that worked, but no explanation as to HOW it worked. Fur thermore, it uorked on l's on the old Version 1 FETs with the small keyboard.
 described chanses which would make the prosran work on the Wersion 2 FETs (which Commodore now calls BHEIC 3.0), and save some narrative exo lanation about what makes the prosr am tiok. However, from my point of view. Wayne stoped a little short.

To make the machine lansuase orosmam understandable, Eeveral items are very he loful, if not absolute ly essential.

1. The Code (the numerical contents of specific memory locations, to which control is transferred to accomolish the task). The orisinal articele did this in the most minimal manner throusth a BASIC prograni and a combination of FEAI, IATA, and FOKE statements that did more to hide the was it worked than reveal it. Wayne did better by talking about operations codes and changes in the prosram, but din't tie it down by showins the who le prosram tosether.
2. The operations (very olosely related to the code...statements like ADD, STO, LDA, etc., that have meanins to the $A \equiv s e m b l y$ Lansuase Programmer, and are described for our commuters in the MOS Techno losy 6502 Frosr 3 mming Manual and a number of laterbooks.) If you re usins an assembler (and the best I've seen for the CBM products are those by Eastern House Software), then you'll recosnize this zs the Essembly lansuase listins sou put in. ard the faot that the assembler sives it book to you with the machine language exuivalents.
3. A narrative desoriotion. preterabl'y keyed to the asembly listing. This mas oover desian and losio irformation. but must at least provide operatina instruction and the oarameters whose values may be ohansed to alter the performanace of the prosram.

This article provides an examole of what I mean. althoush the narrative it orovides is most limited (no use beatins a dead horse!.

THE PROGRAM: The prosram desoribed horein is another yereition which works on Yersion 2 FET,CEM 20G1 seies comedters of ar's memor"s size. It will work with either taoe or di三k \equiv tor ase, but will owse problems if another progrem is entered from tase after this one $i s$ loged, since this FUTO REFEAT KEY'S prosr am USe三 parts of koth the first gnd secord csssette butfers.

THE CODE: Figure 1 Ehows the ualues which must be entered to mabse the prosram work. Values are shoun as the's should be entered usins the built in TIM monitor on version 2 machines.

THE OFERATIOHS: Fisure 2 Bhows 3 dissesembly listins. The main difference between this and the assembly listins is that the former uses no nemes for yorigbles or labels, and in fact is produced baokwards by lookins at the oode and fisurins out what would have to be fed to an zesembler to maje the moDE oome out. That se an oversimelified explangtion.

THE HAFEATIVE: Femember; I 三sid it mould be brief!

1. To turn the zutometio reseatins feature or or off enter Srsene.
2. To chnese the IELA' before reweatims obours. Fore 827. X . 8 is preset at 20. A hisher yelue de lass lonser. If you mave the hanse whi le in the monitor, the hexadecimal equivalent of 845 it 0541
3. To oherse the soed with which the reweatins oharaoter zios arose the screen. ForE E45. $\%$. $\%$ is mreset at 3. A hisher value slows it down. If sous make the chanse while in the monitor" the hex equivelent of 845 i 5341 .

Gee if this hander routine doestr made sour comouter essier to use.

H: 0322-0550	0	1	2	34	5	
H: 632-6329	76	38	H3	9 EII	916	8
4: $032 \mathrm{H}-0351$	91	06	58	0 FII	9760	C9
4. $0532-0339$	FF	IIG	Ec:	960	8120	0
W: $635 \mathrm{BH}-031$	H9	14	EII	163	IIO 19	EE
H: $1942-649$	20	$\underline{0}$	HII	16	CII 20	13
H: $0.54 \mathrm{~A}-151$	E6	QE	H9	3 EII	2163	H_{2}
4, 0352-0559	FF	BE	97	9 ES	8E 20	0.
W: 6 35-6361	4 C	2 E	EE	F 90	FF 60	FF
I1: 0922-0135	1	2	3	M140:	E	
I : 6322	78			SEI		
I : 0523	88			SEC:		
I : 0524	H9	E9		LIIH	= ${ }^{\text {F }}$ E9	
I : 0326	EII	91	60	SEC:	\$0091	
I : 0329	81	91	00	STH	\$0091	
I : 0320	58			CLI		
I : 032 I	60			RTS		
I : arc	HII	97	60	LIIH	\$0097	
I : 0331	59	FF		Liff	= FFF	
I : 0333	110	E1:		EHE	\$6541	
I : 0335	F9	601		LIIA	$=$ 束 00	
I : 0367	EII	20	05	ETH	\$0320	
I : 033 H	H9	14		LIIF	=\$14	
I : 0305	81	21	03	STH	- 0.321	
I : 03 F	110	19		Er HE	\$635	
I: 0341	EE	20	09	IHE	\$0320	
I : 0.944	FII	21	03	LIIA	\$0921	
I : 0947	CII	20	08	CMF	\$0320	
I : 634 A	ED	QE		ECS	\$635	
I : 0340	H9	03		LIA	=\$63	
I : 034 E	8 L	21	03	STH	\$0321	
I : 0351	F2	FF		LIN:	= $\mathrm{F}_{\text {FF }}$	
I : 635	BE	97	00	ST\%	\$01697	
I :085	E 8			IH4		
I : 0.57	SE	20	03	ST\%	\$0320	
I : 65 F	40	2E	E	JMF'		
¢ C EHII						

The Exchanse has finally besun to operate successfully after a few comelications. We have updated the list of prosrams auai lable in an attempt to offer sou better auslity srosrams. This $i=s u$ contains a list of all of the prosmems in the Exchanse with deseristions. Ukdated lists of prosrams awai lable for exchanse can be obtained by sending 50 eents and a self addressed enve loke to the address listed be low. Please allow 3 meeks for de liver's.

The Exchanse is meant to distribute orisinal and noncobyrishted material to subseribers of The Fober for a nominal fee. Cowsishted prosrams may not be submitted and other peop le's prosrams may not be submitted without their asprowal.

Frosrams may be submitted on TAPE or DISK. Disks are oreferable as tares take longer for $u s$ to process. The exchange is intended to be 'one for one' and ho provisions have been made for people who have no prosrams to exchanse.

In order to insure efficiency all mosrams will be sent out to particieants on the same date each month. Frosrams recieved on or before the $1 \equiv t$ of each month will be sent out on the $21 \leq t$ of that month. For examele, if your prosremis received on or before December 1.1980, exchanse prosrams will be mai led back to you on December 21.1980. If wour mrasam is received on December 10. 1980. exchange prostrams wi 11 be mai led beok to you on January 21,1980. This delay is to insure that prosems received are proper ly reviewed and also allows sou to prediet when you will be reoeiving sour exchange covies.

The following procedure will be used:

1) Send sour proseme on TAFE or IISK to:

> Frosram Exohange
> Oro Char lotte Deschames
> Fine Flae
> Linderhurst. Hy' 11757

Include a brief description of each prosram and its souroe. Include a list of specific prosrams sou want from the lizt and $\$ 1.00$ per prosram.
2) Within three dass after your prosrams are received you will be sent a kostoard statins the date received and any other pertinent information.
3) rour tave or di三k will be returned to sou with your requests and our Exchanae List. If we feel people would be interested in sour mosem and it does not duplicate any erosram on the Excharse, it will be inoluded in our list. tou will receive one prosrem for eah non-cosurishted progresil sou send u.
 iminediately so thet they oan be removed. Many krosrams list unknown as zuthor since no name wes included within the prosr $\begin{gathered}\text { mi. If you }\end{gathered}$ recosmize a brosram. please send us the author's nane. If you have any Euscestions to improve this process please let us know. Inkut is we loome.

Educational

Ore Iricill	Comito	simele drill with 4 basic owerations student pioks one number
Eallon	unknown	throush a dart to hit a balloon, estimate decimal fractions on number line
Funct	Furry \& Anse 1	sunctuation drill. essey to change oroblems in IARTA statements
Voo	L Eraun	hansman-like same with definition of word ine luded
Dart Est	unknown	difficult math oroblems reauire accuarte estimates within time limit
Primer	Lunknown	deduce numbers in a multiplication problem
Who	unknown	ask set auestions to uncover identity of biblical fisure, adpatable for many situations
Fssembly	J Woelfel	simp le introduction to idea of assembly lansouge
Points	J Comito	drill in how to plot points on coordinate * lane
Slowe	J Comito	lab exercise to teach slowe form of pauations $y=m \times+b$
Esuations	J Comito	drill to test slowe form. $9=m \times+b$
P lot.	J Comito	sou sive PET equations to plot, it aives slowe and olots
Trip Cost	unk nown	estimate trio cost siven itme costs and number of days
Siœue Knisht	unknown R Bressler	sraohically finds forimes from 1 to 1000 sraphically illustrates Knisht's tour
Marta les	M Ose lsb's	of 3 ohess board droos marbles to illustrate distribtuion according to laws of probability
Fraction Morse Oreston	unknown H Sherman F Bressler	shoot arrows at target estimate fractions morse code praotice travel alorsy the Oreson Trail. balance food and other needs, no sraphics, instructions ealled Pioneer
Kingdom	R Bress ler	manase your lands well to maximize profit and minimize revolt
Civil	F Eress ler	Fisht the famous w.sr as the Confederacy, decide distribution of money and your stratesy
Tur"y	F Eress ler	choose a 12 person jury given leal observations, NOT GUILT'r'
Stooks	Lriknown	buty and sell to make your fortune
Elect 1	Huntimston II	simulates elections of 19 th century, you determine points for image, issues and partes affliation
Eleot 2 Water.	Huntinston II unk nown	simulates the 20 th centur's menase water supply of a small town for
	-nkom	asrioulture, industry and home use
Hэnmurgbi	unknmon	ean sou do better than the orisinal?
Epidemio	unknown	simulates disegee in population
Life 64×64	F Couitz	Game of Life, old PETs only
Superlife	Eartonemith	grother version of Life for old PETs

Function Mochine	F Foute	sou put in a number，it spits ore out discoubr the FULE
Fals	Lratomorn	prosem the darner to perform in the
Metches	YMills	tyle $3 E$ man＇s matohes as you want but dont take the last one
Fractior Tarset	E Finser	drow bombs to hit a freotion on 3 かumber line
Gues： Freotiori	E Finser	sutes the serret frastion on the number line．200me in $\exists E$ sou set oloser
Elocks	unknown	dizuower the attributes of sets
Essels	勺 Mills	suldes the 3 disit number secuence PET hes ohosen
Ei．ames		
Harı：man	¢ Eommers	traditional same with sreat ar aphios．
Fowe Show	unkroun	soud tarsot same with sound
TErik：Wars	unkrown	two player action same controlled from kenbord，hunt and destronen enemy tonk
Snate	F Fome	minuper＇your ever lensthenins snalce to Eurround the obsoment
Charse 9	F Ereseler	reorder a random arranament of the diaits 1 to 9
Chase	unkrown	Eucde the olumser robots gnd live to
Star Wers	R Eress ler	＋ly doun a narrow Esnon，evade the Enem＇y +i shters and release sour missle
Tr \＃sperer	F NEthansorn	trase the wolf with sour three hunters before he sets to the sheer
Lbamer	untrown	fire dour retro rovets to land the lumar lander．
	F Fome	the porular dice syme for one good シryshies
Osero	Luknown	one version of Othe llo
Othe 1 lo	IK Jotinson	plays aretty sood arae，has been Ereeded be with some aduanced reley
Howe	I J TEミE®	a harsman wersion where the FET or
Ereskout	IK Tohtient	
Heish	L．frkrown	mashine langusab routines，old FET losic abme to determine the relative
Easeball	F Eress ler	presents randori number pitohes＊
Si mor	Lnkriour	＂ou met hit＂：no sumbies repeet arandom lizht grid masical pottern $\exists \equiv$ lons $\equiv E$ you ajn
	－ntramurn	place Elashes to gontrol peth of bell．hit the tarsete difficult
Wray Tras	Laththomi	三nother uersion of Snake，Snake
Loprast	Brikrown	
		Eard Eumbols
Klinson	Lnkrown	Eurround the enem＇s with Ehots zs
	1 Ejser	he tries to esome dont hit him soud srowhie hores reoe

Gial lery	F Weiler
Slot M	M Richter
Ir all Poker	E Wuchter
Srace Shooter	I Howe
Star lanes	Lunkrwoun
SITTT	Luknown
Hatson	s Iruins
Amazin	H Koch
5 Ir ${ }^{\text {am }}$	If Howe
Zone X	R Bress ler
Fress Uns	R Bress ler
Tolser.	unknown
AFO	unk nown
Inwaders	unkrown
1000 Mi les	unk nown
Solitaire	Unknown
Fiobut	C. Sommers
nominoes	M Fichter
Sink	M Richter
Subs	Luknown
Inam Buster	E Williams
Srades	F Revis
Termite	H Sherman
Emporer	Ephinx
Inst Enard	unkruown
Smadeile	M Ose lsby
Firball	E Taxser
Erimorer	II Ford
F'yr \equiv mid	5 Horomitz

turn over the 52 cards of the deck. try to make as man's matches in as feu turns as possible shoot down PET graghics sumbols zs they move sbove your surn exsel lent slot machine simulation. whee ls "turn', coins come out 'you asainst the house, sood srawhics line up the spaceshim in your sishts, fire sour laserse seversal options build an emoire by carturins ajoining stars, bosrd same
3 dimersional tic-tac-toe, slow but with sood sranics
a Mestermind-like same usins orimes and suspects
ereates a random maze on the screen. times your escane olay asainst the odds, shows odds trey to find the intersection of four solored zones
two olayers try to caoture as many pess as possible undersround olassic, try to emoty a waterpipe without choking. sraohics release balloons to down a UFO, sit book and see what hapoens powular arcade same uritten in machine lansuase, difficiult with superb sraphics, shecify sour machine version of Mille Borne, card same with travel motif, first to score 1000 wins, olay asainst the PET
مla'ss several version of Patience. ok sraphics, all cards displayed evade the robots or fry them on the fences, difficulty adjust to your level sood sraphics in simulation of standard same of dominoes very sood same of Batt leship, sraphios. Fet olays suprisingly well release depth charses to sink subs be low. sood ar-arhics
release bombs from different altitudes to breal the dam, sood srawhics sood yersion of the game arainst the FET, sood ariarhios. PET hard to beat random termite eats its was around board, plaser sobbled wins
manase sour kirisdom to make a profit, don't male the measenst mad
throw darts with one of three motions use your bulldozer to level a sandoile slou version of the game, fairly easy aduance around the board, two players, takes some daring to win
a sood version of the solitaire same

Metrics	R Bressler	a simple program that converts a person's weight and height to metrics
Biotimer	R Harrigan	caloulates and diswalys biorhythms
Titler	5 Iruins	displays 4 line of LRRGE characters from user's inmut, sood for video
		titlins or other disclays
Break Euen	Commodore based on fixed	analyze break even point for sales and variable costs
Fi lehand ler	PET Gazette	tase file handling prosram; read, write or add data to file; OLI ROMs
TIM	Commodore	machine lansuaste monitor for OLI ROMS
Hi	B Eisenberg	potot HICE histosrem of rendom numbers
Renumber	B Honders	renumbers prosrems lines; OLD ROMs
Weekday	1 Dussam	esloulates day of week; 1900-2000
Bigtime	Commodore	displays time in lerse digits
Subs lot.	unk nown	uses ausrter sausres to plot your function; function must be scaled
Framer	unknown	several ootions to surround sour text with 3 border for hishlishtins
Dec Format	unknown	line us decimal points in $\$$ gmounts
CMC Format.	unknown	align decimal points or risht justify numbers to printer.
Mod Clook.	Lindsey/RHE	Ena los olock fase showins time and AMIPM: disolays time in most maior oities: set alarm or aspointment.
Tare Sucoess	unk nown	urite and read data file tases easily
Hon-list	Linds:	mave lines dissopesr with this short subroutine ; will not list in merinter
Stow Key	unknown	disable stop key; OLI ROMS
Routines \#1	various	routines tested for old ROMs; includes line erase, line delete, line numberer reseat key in BASIC and ML, find. outline, look at FET charecter, de lete
Routines \#2	ysr-ious	routines tested for OLD FOME: includes innut, oase converter, keubard buffer contents. ML soreen filler, self listins brosren, upper' lower reverse
Grashix	W Suan	excellent routines to help in arephic presentations: OLI ROMs
Futouriter	unknown	automatically urites data lines into prosrem. useful technidue
List Proteot.	Lnknown	olaoe a Erecial REM after Each line. rum the subroutine and the lines uanizh
Tupewriter	1 Richter	Emell word processor, worke form tores
React.	1) Heluze.	test sour reaotion time
Ifait Sparn	R Eressler	remember arid reveat seduences of rendom disits that stet lonser and lonser.
Letter Span	5 Iruins	repeat ever lensthenins letter
		secuences, formard then reverse
NFL	E Eurthardt.	predicts probable HFL scores sout must enter a LOT of data
Samm le F lots	unknown	srash of various functions displeutad oontinuously on Eoreen
Cursor Deal Suk	G Yob unknown	tired of the seme old blinking bos? card dealins subroutine

Real Cursor II Haluza

Peses	unknown	nice demonstration arosr EmE convert between hex, decimal. outal and binsre bases
Mach P lot	unknown	ML fest olot routine: OLD ROME
MEM Explorer.	Luknown	disklays 20 consecutive bstes of memory at a time: OLD ROMS
Sort Routines	unk nown	includes auide buble le and shell sort of randomly aenerated numbers
MFO°	unknown	keers mey recoros for cers on tewe
Ilisityb	unknown	Fhows different wase to print a amounts
A lphasr aboh	unknown	oreate and display piotures for each letter of the almhabet
Oresan	I Butterfield	turns the PET keyboerd into a musioal keyozard, record and o laybeok musio
Fandom Music	unknown	P lase randomly senerated CBS notes
Joslin	urknown	clays a Soott Jowlin selection
Trens Music	unk nown	olaus transitional musio which sounds like the notes be lons tosether
Each	Lnknown	diselas notes which move us and down as it plays, enter your oun notes
LSE Music	E Friedman	olas LSB music, has better tone than LSE. ML routine
Star Theme Superase	BC Computing CC	olays theme from star Wers draws nice desisns baced on wol.zr
		coordinates, you inwut some info
Doodle	uriknown	draus random wattern of scuares
Fatterns	unknown	choose yarious oharacter patterns to oreate a summetrio desisn
Scuitss le	Commodore	oreates a random wattern
Soope	unknown	produces a kaleidoscoee in BREIC
Monor \ddagger il	unkriown	bui ld a train traok and send the train on its way, add cars or increase soeed
Soiral	unk nown	random charaoter Erirals out from center
Casoades	RC	balls fall to fill swaces in Erandom 'maze', low skots fill first.
Weather	CO	oreates rondom patterns of rain. snow, and lishtrins
Gizmo	CC	creetes remodom Indiヨn rus petterns
Arohor	CC	suncrates rendom ashor isms from dete
Anlist 182	unknown	make a prosram which does nothins when run but bounces a ball whan listing

The prosrams here represent the or isinel work of maris authors. Some prosrams oome directly from subscibers to The FRFER or membere af LIFs. Some prosrems are from masazines and. in ment esees, heve been modified extensive l's for the PET. Gther software hes been obtained by exchansing prosrams with other prosram exohenses. Our intertion is to distribute only those prosrems which the authore want us to distribute. Fry prosr an which an author does not want on the exoharise will be immediatel's remoued. To he be expand the exoherse we need new prosrome. The only wey we can set hew brosrems is fromexoharges. If
 sour friend to write a prosrem and send it to us. This is the onl's was we c an zrow.

What a plescure it was when I sot the phome eall from Falph Bressler tellins me that The FAFEF mse to resume publication! A bis "Thank You" to all concerned. Man's of us had reelly misesed the awai lablity of a publication inbetweer the yer"y small ard lowal tyme of neweletter and the bisy slige monthly or bi-monthly masasine. That area once filled by FET UEer notes Giene Eesls, now busy with AE Computers', FET Giazette (Len Lindeas). and The (PET) FHFEF: TErres Laudereau). had slowly duind led doun to mothins. We were left without a person to merooriture of publigation and its sood to have one beok.

Acoording to my records, the last $i \equiv s u e$ of The FHFER thet Erriued
 Since Ralph said thi written all over it, Eeveral feots must be deducted:
(1) This must be I msue 4 , folume 2 . grad
(2) Either
(a) We had a ver's late Eummer this dear, or
(b) It took lorser than ariticibated to set this issue out (somehou. I suspect this alternative is more like ly!).

Here's a auick undate on what I've been doins for the last sis to eight months. Micro Software Systems, which I founded in 197 i is hou operating as a division of Virsini Migo Sustems. Inc. In addition to software, we manufacture interfanes for printers and externel uideo monitores and owerate aretail store in Woockridse. wh. Dur phone number $i s$ (303) 491-6502. I an no lonser associzted with International Technical sestems althoush we carry ard endores their produrets. Finallys. I remain a consultant for Edumatios. Inc. of ogeanmort. HJ. Their Domeuter Form in Red Eark $H J, i s$ an interestims oombination of communter educationel facility and combutins center. grod retail outlet. If 'zou live in Hew Jersest it s morth uisitins.

Now on to the Dbeeruations!
There is a \equiv lisht inconsisterney butween reses 2 and 3 . In the General Information blurb, we are aduised that "all gontents of The PAPER are oopyrishted..." whi le the Editor's Notes ori the hext pase
 "soburishted"). Time for arolios foddel
 set the latest word, strai sht from the LIFS!

With respeot to the Eross Referehoed Memory Mas. I haue several comments. Ever"sorme should be 三ware of the excellert material by If Butterfield that has been doumented in geverel plages. Iri zddition to the orisinsl and "hew" 2001 combuteres we now heed information on the

 would be helpful if all listinss were siuen in both decimal arod how. as done in severel other uersions of the memor's mive.

 suraged to tale "ouer fe minuets to rum". The point $i \equiv$ well made,
however, and we'd onl'a add that whi le machine lensuase $i=$ generelly much audicker to run, its much \equiv lower to desian and $f \equiv r, f=3$ gower to debus or modif's. It s another tool which. when arpropriate to the task, can be most yaluable...but it would be a mistave to try to do Ell of sour work in ML.

I enjoyed readina Bill Eatoher"s article on "The Evolution of a Fuzzle". My entry, Bill, is to tyee ABELINCOLH*, where 3 stands for 3. Fhifted Erace (hold doun the shift key whi le you press the space bar). It results in the output sou reauired. I misht not have thousht of that so auiokly, but I had just sorie throush a difficult prosram debussins exereise. where some inadvertantlyshifted soases fouled up the alphabetizins of a list.

In Doug's second article on machine larsuase prosramins, he came ver's close to describins the operation of an assembler fa program that turns mnemonic instructions like LDA, STA, and so on, into the aspropraite machine lansuase codes). assemblers make the seneration of machine lanouase prosrams much essier. An'uone who thinks he misht need an assembler should be aumare of the ones produced by Esetern House Software (their ad is on rase 44 of the issue we're talkina about). I have used and evaluated several of their hish speed assemblers ur-itten in machine lansuase, and they are the best I've seen.

The value of an assembler $i=i l l u s t r a t e d ~ i n ~ J i m ~ F o w l e r ' s ~ a r t i c i l e, ~$ which (intentionally) avoids using it. The BRSIC READ/POKE commands and strings of numbers is obvious ly very alward. slisht ly better, and Eatisfactory for very short routines is the built-in monitor on "new" 2001 series (SY'S 64785) or 8000 series (S'r'5 54386). Nonethe less, for ans machine lansuase prosram of sisnificant lensth, threre is no substitute for a sood assembler.
A command structure suported in some comouters, but not Commodore's is the IF...THEN...ELSE... JoAnn's article e"Not Ifs Ands or Buts") reminded me of a technisue orsinally brought to my attention by Bob Kaiser several jears aso. The key fact that he pointed out is that if sou use colons (:) to out multiole statements after a single line number, and the first statement $i s$ an IF statement, then RLL the statements followins the IF uill be executed ONL'T' when the IF-COHDITIOH is true ©that caused some hard-to-find problems, back in the "ear l'y daus" of 1977-78). Malkins the last staement in such a line a GOTO allows us to do the IF...THEN.. ELSE...as in the examole be low.

10 INFIUT $\mathrm{H} . \mathrm{E}$
20 IF $\mathrm{A}=\mathrm{B}$ THEN $\mathrm{C}=10: \mathrm{D}=12: \mathrm{E}=\mathrm{C}+\mathrm{D}: \mathrm{GOTO} 40$
$30 \mathrm{C}=9: \mathrm{I}=11: E=\mathrm{C}=\mathrm{BI}$
40 FRINT E
50 ENI
If the inouts are equal, the prosram will print 22 as gri answer. otherwise it will print 99. Try it!

Falph. I dissaree with the phi lososh's you present in "BRSIC Does It Eetter". I asree it is best to do in BASIC what is done best in BASIC ©uhich $i s$ most everuthims!), but just as there are some thinss done better in machine lansusae, others are done best with FOKE or SYG that depend on kui lt-in tskes or find routimes. A sood examole is the stoo key disable: se you point out, there $i \equiv$ no way to do this in BREIC. A fou points mertinent to the sug2 gre shoun be low.
a) Stor key disable: FOKE 144. 83. Re-enble with FOKE 144,85
b) Most low memory loostions are the same as in the "hew" 2001 s
c）FRINT PEEK（50063）returns a value of 16日，which can be used to adart prosrans automatically to EASIC 4.0
d）The soreen contains 2000 loostions rather than 1000 found on the 2001 series（incidentally，this serews un the diswlas of most＂standard BREIC Erosrams＂as badly as it does ones which use FOKEs，beoause prosrammers derended on the 40 －golumin limit to dume the remainder of lons 三trinss on the followins liness．
e）To shift the 8032 Eoreen to Eondensed sroshies mode，ho ld EOTH shift keds down and press the＂2＂in the tor row af the alphabetic keyboard．

There was one real gem in thet artiele－I had never before sean the use of the＂a＂after a GOSUB or GOTO to introduce a FEMark．A kudo to Ralph．．．I don＇t set meng surprises of thet sort these daus．

Johnn．I＇d like to pick a nit with wou！rourve written a fine article on the desisn and ime lementation of \exists sood prosram．then titled it＂Writines ．．．＂．Good prosrammins demands sood desizn．arod a． precise arrensment of proper comporarts．Writims ean be imprecise arod still be considered sond．Let＇s desoribe orose as orose and krosroms as systems，the two are more different than they are alike．Ey the was，I liked the article．

An addendum to the＂un－authored＂article entitled＂Fretty Frinter． Listing＂：To set＇sour listing in usper＇lower ease rather than graphicscupper case cand this will work only if sou have a citt 2022,2023 with＂new＂ROMs＇，use the routine shown below．I belisue I sot information necessar＇s from Cursor，Goleta，CA．

OPEN4． 4 ：OPENT，4， 7 ：PRINT\＃T：＂F＂：CMII4：LIST
The article on Mersins Frosrans contained some pitfalls．The FOKEs given on rase 41 were for the ancient（orisinal）RoMs．If you have a newer machine，use the memor＇s mas on pases 4－6 to oorrect them．When I tried to use the teohnicue Ehown on pase 41 on my orisinal FET，the FILE SAVE bus fouled thinss use so it took some fiddlins to set thinse to work right．MEM－EXPLORER and MICRO SET I from Micro Software Systems inelude those routines．It you on ly merse yery short routines． you should be able to avoid the bust．

Althoush I m used to seeins ads scattered throushout a masaxine，I liked Eeeins them all tosether at the beok of The PAFER． Unforturately，inflation has talen its toll．ano the an from Micro
 are now $\$ 9.95$ ．ALL of the prosr छns छre augi lable for the gede geries． and oan be furnsihed on 2046－di三k formet for an adeditionsl \＆ 5 to oower the cost of the disty．Hew orosrems beins finslized roum include

 Budset prosrem tai lored for either geg or $2001-3 \mathrm{~g}$ desished bey Mike Johnson，with heaus sharehootins bu wous trulys．

This colum has srown lonsor than usual．．but with a doukle $i=s$ ate．I supose that $i=$ to be expeoted．Flezee sernd in sour comments． oriticismes or suestions．

Dverall，the first＂neu＂$i \equiv s u$ of The FAFER lools sood．Tereesettins would be nioe，but the dot matrix printins $i=$ readable arod consistent．
 products．Exaitire times are gheat，gho I loor formard to porticiagtins in then uith all of you．

There are times that you want to be able to record data in a prosram for future use. This often ogeurs when you are doins students arade averages. Your choices are to either store the srades in DATR lines in the progran or to write the information in atile. Writing a fi le reduires a cassette toree or disk. The first is unreliable sud the second expensive. DATA statements in the orosram are far simoler but mean that the person enterins the sredes must know some prosramins to change DATA lines. You cannot dse a simole INFUT since the information entered this way canot be recoroded with the mrosren. A data file on tape solves this problem and $i=$ more professional since it does allow the user to INFUT data which is then recorded. These data tares max aet lost and readins these tares back sometimes is aroblem. For large amounts of data a tace or disk $i s s t i l l$ the best idea. For Emaller amounts of data the followins techricude is useful.

The object of this prosram is to allom the user to erter arades using INFUT, RERD previous srades from IIATA statements and fisure the average and hishest srade. The data which wise INFITT is then automatically entered into a line in the wrosram. The user then need only perecord the prosram and does not have to uorry glout ohanging the prosram himself.

The prosram prouided mast be used in several different wass althoush srading is the use mentioned. The technigue of automatic data Entry can be adoted for use in men's different situations. The followins is a brief commentary on the prosrem with oomments prouided for all but the most obvious lines.

LINES 220-240
These lines make the prosran smart" so the prosram knows which ROMs it is working on. Line 220 will set FT (for PET tape) to 0 for the old ROMs and 1 for the new. The next two lines set KB (ke'fboard buffer index - \# of keys pressed) and EF (buffer position - where the keys that hawe been pressed are storedy.

LINE 250

This line RERDs the first piege of data which $i s$ alwass in line 510. It then adds 10 to the number it read. HL then represents the NEXT LINE in whioh data can be reoorded. As the prosram $i \equiv$ used the number in line 510 will inorease.

LINES 260-290
Line 270 RERDs any srades in IATH statements if there are aris. If G (the srede) $i s$ grester than 1 gh the prosrem stose READins and soes to IHFIIT. Line 280 determines the hishest yrade (H). Line 290 galoulates the total of the srades (T) and the total number of sredes (N).

LINES 310-346
Line 320 allows new srades to be entered uia IPFUT and terminates if a srade sreater than 100 is entered. Line 330 asain cheoks for the hishest arade. Line 340 totals the number of INFIT arades (HG) and sets up an array of innut srades (G(HG)). It also totals up the srades and increases the total number by 1 .

The first tur lines orint out the auerase arade and the hishest srade of all the srades IHPUT or FEAI. Line 390 ends the wrosram it no new arades (HG) mere inmut.

LINES 400-440
Line 400 rearints line 510 on the soreen $3: 3$ DATA line. The IATA is HL or the next line auai lable for same data next time the prosram is run. Line 410 prints a IIATH line on the soreen which has as its line number NL. The next three lines PRIHT the srades ertered by IHFUT separated by commes.

LINE 460

This line FRINTs a IRTH line whose number is 10 more than NL. The information in this line $i s s i m e l y g 9$. the terminator for READing yrades.

LINE 470
This line is really the heart of the automatic enterins of the PRINTed DATA lines in the prosrem. First, the cursor is homed and left on the first line with a semi-colon. FokE KB. 4 fools the PET into thinkins 4 keys had been hit. The FOR-NEXT loow then tells the FET that the four keys it thinks were hit were EARRIRGE RETURNS. It does this by olacins the RSCII code for carriase return (13) in eaoh of the first four positions in the keybogrd buffer. The combuter responds but CRRRIRGE RETURNing four times gnd enterins the three IARTH lines thet were FRINTed on the soreen.

There are some limits here which misht be ohsased when the heed arises. As it is the program will only allow the user to enter as mant srades as will fit on one IRATA line. The only oaloulations are the averase and hishest srade. Also the memory locations reterenced must.
 memory mas to make these adartations. I howe this explanetion stimulates other bses which I howe sou will let me know zbout.

```
    Li\equivtin`
    100 REM IATA REYISE
    110 FEM RHLPH FREGELEF
120
130 FRINT"`glroIRTA REYISECg|y"
14G FRINT" THIS FROIFAM HILL FEAI GRADES
150 FRINT "FFOM DHTA ETATEMENTS AHIII THENH
160 FREINT"FLLOW IHFUT OF NEN GRATIEG. THESE
170 FRINT"HEW GRAIES WILL AUTOMATIGALL't'
180 FRINT"EE FUT IN IIATA STATEMEHTS. THE
196 FRINT"PROGFAM CALCLLATES THE FNEFRGE
2 0 0 1 ~ F R I H T " H H I I ~ H I G H E S T ~ G R E I I E . ~
210 [015UE480
220 FT=FEEK(50003)
230 IF FT=0 THEN KE=525: }\textrm{EF}=52
240 IF FT=1 THEH KE=15S: EF=E2S
250 FEAD NL: NL=NLL+16
```

```
260 PRINT"(olr)READING GRRDES...
270 REAID G: IF G) }100\mathrm{ THEN 300
280 IF G3H THEN H=G
290 T=T+G:N=N+1: GOT0270
300 G0SUB480
310 PRINT"(0lr)INPUT NEW GRADES (999 TO STOP)(dn)"
320 INPUT G: IF G`100 OR GC0 THEN350
330 IF G>H THEN H=[j
340 NG=NG+1: G(HG)=G: T=T+G(NG): N=N+1: GOTO:320
350 PRINT"(clr)PVERAGE ="T/N
360 PRINT"HIGH GRRDE ="H
370 GOSUB480
380 PRINT"(clr)(dr)"
390 IF NG=0 THEN EHD
4 0 0 ~ P R I N T " ~ 5 1 0 ~ I N T R " F H L
410 PRINT NL"DRTA";
420 FOR I=1 TO NG: PRINT G(I);
430 IF I`\NG THEN PRINT "(left).";
4 4 0 ~ N E X T
4 5 0 ~ P R I N T
4 6 0 ~ P R I N T ~ N L + 1 0 " D A T A ~ 9 9 9 " '
470 PRINT"(hm)";:POKE KB,4: FOR I=0 TO 3: POKE BP+I,13:NEXT:END
480 PRINT"(home)(23dn) HIT SPRCE TO CONTINUE"
490 GETSP$:IFSP$=""THEN490
500 RETURN
510 DATA 510
520 DATA }99
```


LIP:S Cartest 枋immers

This article comes about 6 months late but the students involved should be recognized. The Long Island PET Society held a programming contest and over 30 programs were submitted. They were judyed by many different people usins a point sustem. Most of the programs were submitted by elementary school students and prizes mere awarded for first and second in srachics and non-arawhics oatesories. All winners were from the Half Hollow school district.

In the arawhics category James Moon. a six grader at Sisnal Hill school, took first olace for Combat on SRL400. This prosram recuires manual dexterity and careful slanning as the user tries to manuver his cannon to fire at a movina reflector. Second place in this category was taken by Indy 500. This program was written by Robert Bader of Chestnut Hill and liavid Plass of Fammok, both are sixth araders. This prosram simulates the famous car race.

Fassword Plus took first olace in the non-srachics eategors. Stephanie Eoodman and Amy Zelanko, sixth araders at Sianal Hill, collaborated on this prosram. A series of olues is presented to he lo the players suess a hidden word. In the same oatesor's. Joan Gelin. a sixth srader at Chestnut Hill, and Marni Rosenblatt, a fifth srader at Faumanok, took seoond olace. Their prosiam, Hidden Letter has the user try to identify a hidden letter as individual sesments are revealed.

Bill batcher, a computer teacher at Half Hollow, exclained that these students learned prosramming as part of the district's Academically Hish Aptitude Prosram. Under this prosram, aifted students from all of the district's elementary schools spend one day a week at the AHAP onter. This prosram should serve $3 s$ a model for elementary gifted and talented prosrims.

I used this useful routine in a couple of my prosrams．It could be made more flexible by allowing you to choose watit chunks of lines＇uou want printed．Substituting＇FOR SY＇＝A TO B＇for＇FOR S＇＝0 TO 22＇and inouting values for A and B should do the trick．The program now prints everything within suotations．

20 REM 米＊
30 REM ：DEVELOPED BY SHAWN GLISSON
40 REM＊SAN DIEGO FET USER＇S GROUP
50 REM ：ORIG BY D．A．COSTARAKIS
60 REM ：THE PAPER OCT ‘T9 v3 ISSUE 8＊＊
65 REM＊CHANGED EY B．＇v．HALUSCHAK＊
70 REM＊BOX 490，TERRRNCE，EC V8G 4B6＊
80

100
130 REM＊＊CAN RLSO PRINT RNYTHING IN QUOTES＊＊＊
140
150 PRINT＂HOW MPNY LINES PER INCH ？＂；
160 GET $X:$ IF $X=0$ THEN 160
170 REM＊＊LIMITED TO MAX OF 9 LINES／INCH＊＊＊
180 PRINT X
$190 X=144 / X$
206 CLOSE 9：OPEN 9．4：CMD9
210 CLOSE 6：OPEN 6，4，6
220 FOR SY＝0 TO 22
230 FOR SX＝0 T0 39

240
250
260
270
280
290
300
310
320
330
340
350

IF SL＜ 32 THEN $\Psi=0$ ：GOTO 300
IF $S L=32$ THEN $Y=Y+1$
IF $Y=80$ THEN $S Y=22$
REM＊＊＊IF $Y=80$ BLANKS ON THE SCREEN PRINTIHG STOPS＊＊＊
REM＊＊SAVES TIME AND PRPER IF MOST OF ECREEN IS EMFTY＊＊＊
IF SL＞127 THEN SL＝SL－128
IF SL〈32 OR（ 96 OR SL ）＝SL THEN $S L=S L+64: \operatorname{OOTO} 330$
IF（SL OR 95）$=95$ THEN SL＝SL＋128
POKE 205，0

PRINT\＃6，CHR \ddagger（ 8 ）；
NEXT SX
PRINT\＃9：NEXT SY
PRINT\＃9：CLOSE9：CLOSE6
END：REM 料 OR RETURH＊＊
Microview courtesy of Central IL PET Users by Iim Oldfield

MICROTHELLO， 16 from AB Combuters．Challensins to impossible．A must for эngone interested in othe llo．Combination of ERSIC and ML makes it FAST． 5 levels of rlay；level $5 \mathrm{i} \equiv$ nesrly imoossible．UEe a blinking cursor to moue and watch the PET ョnel＇ヨxe the boerd．as it thinks of a move．Man＇s built－in options．
by Jim Fowler

II. Number System and Loading

The assembly language for the 6502 micromocessor has a vocabulary of 56 'oncodes' or kinds of oberations which translate to switch settinss in the microwrocessor. Many of these can be used in different addressing modes to specify where the next word of data or command is in memory. There are a total of 11 address modes although not all commands use all these modes. This amounts to a total of about 150 useful commands you can give the microprocessor. That is a rich lansuase - far richer than RASIC. When you have uritten a program you will have to translate it into machine lansauge. The processor 'knows' onl'y binary words comrosed of exactl'y 8 bits or binary digits which edual one byte. The pattern of bits in a byte represent, a series of electrical signals that are either a volts, sumbolized by 0, or +5 volts, sumbolized by 1. How do we translate our program and then enter the words into PET's memory where the erocessor can get at them?

Fortunately, this LOADING orosess is relatively simole. To understand how it works we need to understand the hexidecimal number Esstem (HEX). FET's communication with the outside world could be in Ens number sustem. BASIC uses decimal or base 10 but for machine lansause HEX or base 16 is more efficient, convenient and compact. Besides the disits 日 to 9 HEX uses the letters A, B, C, D, E, and F, to \equiv tand for decimal 10, 11, 12, 13, 14 and 15. Thus 10 in hex is 16 in decimal. Frecuently we use a dollar sign (\ddagger) to signif's a number is in HEX.

Since we are so used to counting and uriting in decimal it is hard to think in HEX. To he lo convert hex to decimal and vice versa a chart $i=$ included. In the chart the sumbols on the risht remesnt the left disit in a two disit HEX number and the numbers across the tor represent the risht disit. To convert hex to decimal just find the row and column then read the decimal exuivalent. To go the other way find the decimal number in the chart and then look across for the left HEX disit and us for the risht one.

What we need now is a way of tyoing our program into the PET. A larse combuter system would have as one of its 'utilities' a program alled an ASSEMELER. A yood one would allow you to tyoe assembly lansuase minnonios directly into memory. It would then read what was tysed, point out ERRORS then assemble the inout you save it and turn it into a machine languase prosram. One advantage to using assembly lansulue $i s$ that it is easier to remember what the commands mean since they are abbreviations for their functions. Also most assemblers allow yout to sive names to conimonly used memory locations. The FET actually dons this to sour ERSIC prosrams but keeps no record of the machine languase prosram it oreates. Instead it translates BASIC into machine larsate piese by piece and once a chunk has been executed it is forsotten.

We can wse the Commodore TIM monitor to enter machine langauge code directly into memory. The new ROM machines have the MONITOR resident in ROM and sou call the MOHITOR by using S'sig24. It also comes uo whenever a machine lansuase prosram executes a BRK (the BREAK instruction. If you have the old ROM PET then you must load the TIM monitor from tawe. Ever'stime sour machine language program 'erashes' you milst reload the monitor and your prosram. I have written a little
meohine lansuase prostan called por that stas in the second csesette buffer. The listirs $i s$ included here.
 best to add areset button to your PET. It $i=$ hard on the PET's innords to turn the wouer on and off freduent ly and, of ourse, this means =ou lose wour prosrem. HEW EURGOR from International Technical Eseteme allows sout to regover oontrol of 'your FET without losins yourprosrem. In fast, even BAGIC mosrams are oreserved. This only works on the new Fom PETs. Frother must $i \leq$ a sood book or maohine lanseuse prosramins. The most combhensive buok is E502 Assembly Lansuase
 heloftal $i \equiv$ the FET Machine Lョnseuse Guide molished by ABACUS softwsre. This book siues mens exane les ghod shows how to use PET's built in routines. Finslly, hand assemblins even small machine lansedye mrosrems $i \equiv$ borins and leads to ment mistabes. fri assembler $i s$ yery handy and a must for larger prosems. There are two asemblers I recommend hishly althoush they are very different. The IABM or TRSM Rowser by Ejuer Entermeies is uritten in EREIC ard hes a price tas of $\$ 15$. The HRETED Reolsse bu Esetern House Eoftusre is uritten comeletely in mathine laratuase arod cost about $\$ 170$. Both work. Eskers woraram is fine for besinners whi le wery adwanced prosrammers will like the MRE, TED. Eoth have versions aui lable for tare or disk. Gee the comments on both of these kroducts in this issue for more detai ls.

$L i \equiv$ tins

1 Q日 REM THIS FROGRAM GEHERATES MOH* A LITTLE MOHITOR FROGRAM
110 FEM THAT STHYE IH THFE EUFFER 2 FOR OLD ROM PETS. LOAD:
120 REM THIS; FUIT CLEAH THFE IH \#1; THEH *RUH* AH FOLLON
150 REM FROMFTS. THE THFE AILL HAWE MOH' OH IT. LOAD "MON*
140 REM UHCE HHII IT 15 THERE UHTIL FOHER IS DFF. ERCH TIME
150 FEM TOU FESET A ERE' FOKE 540, 3: FOKE 539. 144 WILL SHOW 160 REM 'TOU FCC:UFILLATOR, \because FHI 'T REGISTER, STRTIS. FROG COUNT 17G FEM HI, LO FHI ETACK FQIHTER IH THAT ORIER. TO USE MON 180 FEM T'TFE S'S 82E. THEN ENTER HDIRESS HS TWO DIGIT HEX
 195 FEN TO LOHI OF G TO EEE THE HEST 8 E'TES. RETURH RLOHE 260 REM EKITS TO EREIC.

```
210 FOF I=1 TO 1G: FEFII H.&: FOKE F.&: HENT
```

 250 IFTH $2816,77,2617,79,2816,76,249,0,250,11,258,3,247,58,248,3$ 240 IIHTA 229, 1.236, 4
25 E IHTH $234,234,234,32,213,3,133,7,32,213,3,133,6,32,210,201,160$
260 DHTA $1,177,6,74,74,74,74,32,189,3,177,6,41,15,32,189,3,230$
270 IIATA 226.206, 192. $2.208,233,22,232,3,201,83,208.6,32,177,3,76$
200 IIATH $71,2,201,76,206,299.160,0,2210.201,169.145,32,210,255$
290 IATA $32,213,3,145,6,230,226,200,192,8,208,244,32,177,3,76,71$

35 IATA $48,2,105,6,32,210,25,96,32,232,201,58,48,3,56,23,7.96$
34 IATH 32, 202, $2,10,10,10,10,139,1,32,202,3,41,15,5,1,96,36,36$
3 IIRTA 152, $2,32,22,25,240,251,201,13,208,3,76,139,195,32,210$
$36 \mathrm{DATA} 25.13 .4 .104 .168 .165 \cdot 4,96$

				Te：	i	rinca		三	1							
	刺	\＄1	\＄2	\＄3	\＃4	栜	者 6	\＄7	封	$\$ 9$	\＄	如	轹	\＄11	轹	轶
事	9	1	2	3	4	5	6	7	8	9	19	11	12	13	14	15
\＄1	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
\＄	32	33	34	35	36	37	38	39	49	41	42	43	44	45	46	47
\＄	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
\＄ 4	64	65	66	67	68	69	76	71	72	73	74	75	76	77	78	79
\＄5	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
\＄6	96	97	98	99	109	101	102	103	104	16.5	106	107	108	109	110	111
\＄7	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
教	128	129	130	131	132	133	134	185	136	137	138	139	140	141	142	143
\＄9	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
㙖	160	161	162	163	164	165	166	167	168	169	179	171	172	173	174	175
韦	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
\＃ C	192	193	194	195	196	197	198	199	206	201	202	203	204	205	206	207
\＄D	208	269	210	211	212	213	214	215	216	217	218	219	220	221	222	223
㭏	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
㭏	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

by Stan Si luerman
Ture：Software
Mode 1 FET：any model
Souroe：Krell Software
21 Mi lbrook Dr
Ston？Erook． $\mathrm{NH}^{\prime} 11790$
Frice：$\$ 59.95$ for 7 prosrams on 4 takes
It＇s a pleasure to write a review of a software package that does what its desoription imolies．Krell Software advertizes and delivers a set of 4 tivoes（PET，TRS80，APPLE 2，and AFPLE 2 PLUS）which present＂a uirtually limithess series of duestions and answers＂based on oast SRT examinations＂with scomins rrouided in accordance with the formula used by the Collese Boards＂．

In Hemostead．we ordered a set of the tapes and promptly recieved the tares three meeks mrior to the Getober SATs．Students were informed of the tares existeroe，but due to time arid staff limitations，no attempt wes made to provide teacher reinforcement．The results of the GAT for test sroup were compared with a control sroup （normalized as per prior GRT）．We noted a 72 point increase for the test srous ard only a 22 point inorese for the control groun．The auersae los time per student was 90 minutes．

The one problem we experienced with this packase is the consistenoy af logins．The brostams ontain data fi les and sour heads must be in sood order to set relieble lous．The Krell peore hawe indicated they are zoins to disk ard haue ohersed tyoe sumeliers to insure a sood load．In addition．the are mrerearins an educator paokase which will contain arill Exeroises，gnswer anclessis．eto．

Krell $i \equiv \exists$ somean＇s that $i \equiv$ committed to gedelity line of usEFUL Grd eniousble educational Eoftware and I for ore will be lookins for future releges．They already have arinteresting adventure tive same．

Here is a little prosram I mut tosether when I needed to relocate a machine lansuase prosram．I knou that there are ML prosrams to do this fieter：but nobods ever publizhed idiot－moof＂directions for this．

10900 REM MACHINE LAHGUAGE RELOCATOR10010 REM A．FCHTEL， 1980	
10920 IHFUT＂（ 6 lr）LOWER，UPPER ADDR OF ORIG	
10650 IHFUT＂HEW LOIWER ADIRESS EO	
16040 FRINT＂colr）NERIF＇t：＊MEANS AIDR OF A ERANCH	
10060 FRINT＂ORIG 320	
10060	PRINT＂AIDR CODE LSE MSB LSE MSE（cd）＂
$10690 \mathrm{~K}=\mathrm{LH}-\mathrm{L}: \mathrm{FDR} \mathrm{I}=\mathrm{L}$ TO U	
$10100 \mathrm{~A}=\mathrm{FEEK}(\mathrm{I})$ ：FOKE $\mathrm{I}+\mathrm{K}$ ． $\mathrm{A}:$ IF $\mathrm{A}=32$ OR $\mathrm{A}=\mathrm{FE}$ THEN GOSUB 10200 1611 A NEKT：ENI	
16210	$I F K=160 R X=480 R K=1120 R X=1440 R X=300 R X=1750 R X=2080 R X=240$ THEN PRTHT＂＊＂：
10220	$\mathrm{D}=256$（ $\mathrm{E} / 256+\mathrm{C}+\mathrm{K}: \mathrm{ME}=\mathrm{INT}(\mathrm{D} / 256): \mathrm{LE}=\mathrm{D}-(256 * \mathrm{MB})$
10230	FRINT I＂＂A＂＂E＂＂C＂＂LE＂＂MB
10240	$\mathrm{I}=\mathrm{I}+1$ ：POKE $\mathrm{I}+\mathrm{K}, \mathrm{LE}: \mathrm{I}=\mathrm{I}+1: \mathrm{POKE} \mathrm{I}+\mathrm{K}, \mathrm{ME}:$ RETURN

The mrosramis obviously NOT foolproof．What can hasoen $i=$ that there is abyte with 3 value of 32 or 76 which is not an absolute jumbe，e．a．a realtive branch of such length．When the proyram encounters this it will misintermet this as ISR or JMP and modify the next two bytes．Line 16210 will alert the user that this has haroened （untried by meself so far！）．The reader oan decide whenther reelacing PRINT＂米＂：by RETURN offers better chances．Remember that then there are eisht velues which outd arise for reasons other than a branch instruetion．Ioes ansone have an ides？the proaranim relocated a 193 bute machine lansuase srostem in 4.6 seconds and shourd 3 JSR and 1 JMF instrustign．Without these it would have been much faster．

by Warren D．Swan
Here $i=$ gn exe langtion for Dous Hernis arna all others who wondered
 tuderstandable enoush ！I discouered this trick about six monthe aso whi le pourins throush the disesembly listing of the FETs BFBIC ghd
 Lu some of the time To augia this I susese sou use the two ommands：HAIT 59456，32，32：FOKE 59458．E2．

First，the two loustione 5945e grot 59458 are looztions that
 port that，Emons other thinse $i=$ used for sumbonizetion of the
 ＂deta direction resister＂for this Iro port．Eart bit of the nife tells whether the oure mondins bit of the I bort will be ar infut or output bit．Each 1 bit in the umf means that the orrespordins bit of

bits 1 through 4 of 59456 are output bits, and bits 0 and 5 through 7 are input bits. Bits of a memory location are always numbered 76543210.

Bit 5 of this port is an insut to the comouter that tells it when the screen is done being refreshed. When the value of bit 5 is 1 , the refresh is done. All PET screen I/O routines check this bit to make sure it is 0, which means 'OK to write on the screen'. Bit 5 of the DDR is initialized at 0 so that bit 5 of the Ir0 port will be an innut bit. However, if we change bit 5 of the DDR to a 1 (which we do with POKE 59458.62), we are chansing bit 5 of the I\% wort to an output bit. It no longer reflects the status of the screen refresh circuitry, but is always a 0. Thus each time the screen print routine soes to 'wait' for the screen refreshing to be finished, it sees a 0 in this bit position and so it goes ahead and puts the character in screen memory.

The WAIT command merely waits until bit 5 of the I/0 port is 0 so that we do not try to chanse the DDR during screen refresh. This is an attempt to avoid 'hansing up'. However, I am not convinced this is entirely foolproof.

If you want more information, such as why it might cause the PET to hang up at all, olease write or call me at: 15933 Grove Rue., Dak Forest, IL. 60452; (312) 687-4876.
(Ed Note: Several sources have told us that using this method is not recommended especially if you intend to sell or trade your prosrams. At the very least it may cause some PETs to 'hany un'. It can cause two pieces of hardware to 'fight' and may damage some PETs.)

Commerts ar wolume 3, 15 sue 4 res
by Francis Turco
I am haroy to hear that The PAPER is back in print. You stated in your Editor's Note that "we we lcome your comments...". I howe that this does not come across in a negative manner. I have always felt if a. magazine yields one or two ideas, it was worth the fee. Your first issue aualifies in that respect. There are, however, a number of thinss that will bear looking into if you are to continue to improve.
(1) The PET printer has a poor cualites ouput and there are portions of The FAPER that did not reproduce well.
(2) The first $i \equiv s u$ is full of tywaraphical errors. More oareful editins is in order.
(3) The Cross Referenced Memory Mas on pase 4 is nice. A somplete memory mas for both ald and new ROME mas be found in "PET/CBM Fersonal Combuter Guide" published by Diborne. Moliraw-Hill. It contains not only the first 1024 memory locations, but also all the EASIC interpreter locations as well.
(4) The artiole on machine lansuase speed on pase 10 contains a serembled line 10日. The swasins at the end was tysed wrons. In the same artiole Listing 2 shows a short demonstration moram. It seemis unnecessary to remove all the spaces. Althoush the combuter does not need the soces, they certainly would make the listins more readjble for human users.
(5) On wase 15, the prosram listing is very easy to read, but use a form that could be executed.
（E）Dr pase 17，the grtiole by Birry Eisher atates there are 24 roms from top to bottom orn the FET Ereer．The FET has 25 rous．
（T）Dra pase 23 line 15，whet does the＂回＂mean in FET EAEIC？
（3）FEEKirg at BREIC orn rese 42 is arinformative artiole and illustrates the use af the USR commend nicel＇s．We have already incoreoreted this idee into our disessembler and have disasembled mortions of Microsofts EASIC interereter．
（9）Grousins the ads in the baok of The FAPER is a sood idea．The＇s are al：o the easiest part of the masexine to read．

 mertion mes made in wour article of technianes for disks．

Thenks for wour Eomments ori our first iEste．We need more feedbeok三ince its herd to art on the comments of orl＇s a feur peove．Here are some thoushts about sour comments．
（1）＇roure rizht about the roor＇readability and reproduction Gualita of the PET dot matrie printer．However，noone hes affered to dorgte a letter auslity printer．©An＇s takers？We are Exolorins ways to improue the duality of the print．
（2）Tumo mave readins herd and sometimes frostrate the use of an athermise stood prostam or ides．We tr＂y to mirimize these kirnds of errors．Please understend thet only tur people tupe． Broufread．retyre ard baste－ur eati issue．We howe our recert oonversion to Horapro III will help．
（3）A memory mat for all impotant logations is meeded for HLL of Commodorese ver ミions．
（4）Liru 100． ma 10 thould read：

$$
\ldots \text { THEN } H=A(I+1): A(I+1)=A C I): A(I)=H: F=1
$$

The 三saces in Listins 2 merent removed．I just ture prosrams that mes from hobit．We＇ll try to include spaces for「Ead．ailit＇s．
（5）To me the $\mathrm{li} \equiv$ ting on mat $15 \mathrm{i} \equiv$ more readable the wat it $i=$ ． The dEer mey erter the comments $\exists E$ REME．
（E）＇res the FET Ecreen does have 25 lines．Alsa，there are $25 \in$ moseible ohargoters mubered 0 to 255 ．Dri wase 18 in the seotra earastash，the lourorests 40 times．Dh the sane pase line 25 Fhould be $+I$ rot．$-I$ ，or the bottom of base 18 line 10 ghould be $E=89$ not $D=89$ ．
三ince the FET will mever see it．
（8）Giad to see that FEERirs at EASIC helped．Femember that it is
 from Microsoft they hed aroterimith FEEK．Hhile gorrectins the moblem thes elimingted the ohect to see if wou were loukins at EAGIE．Ffter Gorrectins the proklem thes forsot to restore this motectior．
（9）The Eds mill rembin at the back of The FAFER Exoert for Eome

（A）Thank for the Gomment on anemodins di三t＋i les．With the wider use of di三ls ョrticles ari usins them to their fullest will be mandetor＂s．

PET and APPLE II Users

PASCAL

ABACUS Software makes available its version of TINY PASCAL for the users of two of the most popular personal computers. TINY PASCAL is a subset of the standard PASCAL as defined by Jensen and Wirth. It includes the structured programming features: IF-THEN-ELSE, REPEAT-UNTIL, FOR TO/DOWN TO-DO, WHILE-DO, CASE-OF-ELSE, FUNC and PROC. Now you can learn the language that is slated to become the successor to BASIC.
TINY PASCAL is a complete package that allows you to create, compile and execute progams written in the PASCAL language. You can save source and object code on dishette or cassette (PET version only). Comprehensive user's manual included. The manual can be examined for $\$ 10$ (refundable with software order).

REQUIREMENTS

ABACUS SOFTWARE
P. O. Box 7211

Grand Rapids, Michigan 49510

PET ${ }^{\text {TM }} 2001$ STUDENT WORKBOOKS

For Classes Beginning to Program
COMPLETE TEACHING UNITS

- Step-By-Step Instruction
(Teachers Can Be Beginners, Too!)
- Daily Lesson Plans, Classwork \& Homework Worksheets, Quizzes
- Hands-On and Hands-Off Exercises
- Group and Individual Assignments

FEED ME, I'M YOUR PET ${ }^{\text {TM }}$ (Beginner-1)
LOOKING GOOD WITH YOUR PET (Intermediate-1)
TEACHER'S PET (Plans, Quizzes, Answer Key)
Workbooks are $\$ 4.35$. Quantity discounts available. TEACHER'S PET is $\$ 4.00$ or FREE with workbook orders of 25 or more.

EDUCATIONAL SOFTWARE

- High Quality Teaching Skills
and Programming Skills
- Graphics Used to Enhance Learning

REWEDIAL MATH PACKAGE (84 Concepts)

 MATH IN SCIENCE SERIESSigned Numbers, Physics, Primary Primer, Elementary Grade topics and More. We Will Send a Price List.

COW BAY COMPUTING

Box 515 - Manhasset, NY 11030
F.O.B. Manhasset, NY

COMPUTER LAND of Nassau

"The Full Service Computer Store"
Come SEE what you've only READ about.
Hardware...Apple...PET...Atari...Texas Instruments...Cromemco...Dynabyte...computers for personal and professional needs...Diablo...Centronics...Spinwriter...printers and disk drives to complete a system.
Software...programs for ALL the machines we carry...programs for recreation, education and business.
Books and Magazines...Osborne...Blacksburg Group...Hayden...Sybex...Scelbi...or pick up a copy of your favorite magazine.

> Watch For New Store In Suffolk.
> Coming Soon!

[^0]
CENTERBROOK SOFTWARE DESIGNS
 "Learning is Fun'"

Remedial Math and Reading
Science, Utilities, and Games
We have over 70 programs in the topics listed above. All programs work in 8 K and there are versions for all PETs. Prices for most programs are in the $\$ 10$ to $\$ 20$ range and special packages are available. New programs are produced every month and custom programming is available.

SPECIALS
(Until February 15, 1981)
Any 6 Math Programs
normally \$90, now only \$60
Science Package - biology \& chemistry
8 programs sell for \$95, now only \$50
NEW Teacher's Grades-normally \$50-now \$35
Basketball Stats-sells for \$50-now \$35
These packages include 5 programs each and completely handle grades and stats. They require a 32K PET, disk and a printer. All programs interact and are meant to be used by new users.
For a catalog and more information write or call:
Centerbrook Software Designs
98 Emily Drive
Centereach, NY 11720
516-585-2402

CBM/PET Computers \& Such!

Northern Virginia's single-stop source for Commodore computers, printers, disks, software, and factory-authorized maintenance. Also providing a wide range of accessories and supplies from other manufacturers.

VMS features:

- PET/CBM by COMMODORE
- SELECTRIC Interfaces by ESCON SYSTEMS Software by MICRO SOFTWARE SYSTEMS
o Printer interfaces by TYPEWRITERS UNLIMITED
- Covers \& Uncrashers INTERNATIONAL TECHNICAL SYSTEMS o Books, magazines, paper, ribbons, diskettes, cassettes, parts

CONNECT PET/CBM TO PRINTER: Simply plug into the interface and use your PET/CBM computer with popular "standard" printers, or add a video monitor for a second display. All interfaces are assembled, tested, and waranteed. No software is required.

TU-65C Use NEC, Centronics, Xymec, or other industry standard parallel printers. Works with disk, other IEEE devices attached. \$129.95

TU-6514 Use RS-232 (serial) printers, like Heathkit H-14. 300 to 4800 baud (please specify rate desired). Includes power pack. \$79.95

TU-PVE Connect your Video Monitor to PET/CBM for second display. Our unique contact extensions leave the user port available for connection of other accessories. $\$ 39.95$

ESCON SELECTRIC Typewriters connnect to PET/CBM, other computers for quality output. We are Northern Virginia's authorized dealer for this nationally known line. Sales, installation, service! Call for details.

MSS Software that has gained an international reputation for ease of use and quality construction. Reviewed in major national magazines, and available for all versions of PET/CBM computer!

Virginia Micro Systems

VISA/MC
14415 Jefferson Davis Highway
VA add 4\% Dealer

Woodbridge. Virginia 22191
(703) 491-6502
inquiries
invited

Riley Enterprises announces....
TOP Quality Vinyl Cassette Holders
12 Capacity in Black or Brown $\$ 2.80$
16 Capacity in Blk,Org or Lime 3.50
Add $\$ 2$ for shipping orders under $\$ 20$
Other types and colors are special order.

75 Pearson Street Portsmouth, NH 03801

603-436-6564

AMERICAN PERIPHERALS
 First In Education
 Printers For PET/CBM
 (all cables and interfaces included)

IBM Selectric Model 50 - IBM letter quality output \$2,200
Xerox Diablo 630 - letter quality, daisy wheel printhead \$3,200
NEC Spinwriter - letter quality, thimble printhead \$3,300
Centronics 737 - high density dot matrix, near letter quality \$1,200
Commodore Mannesmann Tally 8024-132 columns, high speed, bi-directional printing,business applications\$1,750

Upgrade Options

Trade up from your old ROM PET to the new ROMs. You get a large keyboard and an improved BASIC.

$$
\begin{aligned}
& \text { Old 8K to New 8k . } \$ 400 \\
& \text { Old } 8 \text { K to New 16K . } \$ 600 \\
& \text { Old } 8 \mathrm{~K} \text { to New 32K } \$ 800 \\
& \text { Many, Many Other Upgrade Deals Available! }
\end{aligned}
$$

New Items

Interface, software to connect your mark sense reader \$ 500
Filmstrip: Basic Computer Programming (5 Filmstrips) \$ 74
Wantanabe MiPlot - flatbed plotter connects to PET $\$ 1200$
TCL PASCAL - disk based version from Commodore, large subset \$ 300
Tiny PASCAL - from Abacus software, a good start \$ 40
PET-tran - a simplified subset of FORTRAN for the PET \$ 100

EDUCATIONAL ACTIVITIES

Bridge the Classroom Literacy Gap. Two series of full color filmstrips with audio cassettes and teacher's manuals present a systematic approach to programming. The programs provide a set of step-by-step instructions to guide students through the BASIC language. These filmstrips can be used at any grade level to teach students the concepts of programming a microcomputer in BASIC. The manuals include program listings, comprehension questions and program assignments. Both sets are designed by Arnold and seth Friedman.
BASIC for Microcomputers
Includes Getting Started, Mathematical Operations, Loops and Subroutines, Original Programming Techniques and Flowcharting. Designed for beginners in programming.

5 Filmstrips and Audio Cassettes - $\$ 89.00$
Advanced BASIC Techniques
A sequal to the popular series shown above. Topics discussed are String Functions, Data Handling and Arrays, Computer Graphics and Advanced Math Functions. This series is meant for students who understand the concepts presented in BASIC for Microcomputers.

4 Filmstrips and Audio Cassettes - $\$ 74.00$
Both series available for preview.
We also have many educational programs for the PET, Apple and TRS-80.
P. O. Box 392

Freeport, NY 11520

WEST RIVER ELECTRONICS Two New Character Sets

Your PET can now display simple or complex mathematical formulas in standard notation with our Math Character Set. With it the computer can display exponents, superscripts, integrals, square roots and much more. Most of the symbols you will need from elementary algebra to advanced calculus are included. $\mathbf{a} x^{\mathbf{2}}+\mathbf{b x}+\mathbf{c}$ With the Foreign Language Character Set the PET has all the extra characters to create text in Spanish, French, German, Italian, Latin, Dutch, Polish, Czech, and Portuguese.(áéiouñ̄《ic)

Both ROMS now only $\$ 60$ each postpaid available for all new PETS including the 4000 and 8000 series.
Order from:

In USA:
West River Electronics
Box 605
Stony Brook, NY 11790
(516) 246-4894

In Canada:
Kobotek Systems LTD RR 1
Wolfville, NS BOP 1X0 Canada
(902) 542-9100

B. C. COMMUNICATIONS
 The Comprehensive Computer Store

Authorized dealers and factory service Center for Commodore and Apple. Factory trained personnel.

A full line of Centronics printers and NEC Spinwriters.

Before you buy come see what you're buying!

- All models of Commodore computers and peripherals including the new 8000 series 80 column business machines.
- Apple II and the new Apple III business computer. Also Apple peripherals.
- Hands-on word processing demonstrations on the CBM or Apple.
- Most major magazines and newsletters as well as manuals and other computer supplies.

We also offer:

- Word processing services.
- Consultations on systems configurations.
- A place to meet and swap ideas and exchange programs.

SYSTEMS FOR EDUCATIONAL, BUSINESS OR PERSONAL USE Special Discount Offer (Until January 31, 1981) A Big 12\% Discount On All Commodore Products.

B. C. COMMUNICATIONS
207 Depot Road, P.O. Box 228
Huntington Station, NY 11746
(516) 549-8833 or 692-2735

[^1]Finally, MAE - A PET DISK-Based MACRO ASSEMBLER/TEXT EDITOR

Works with 32K PET

- Works with 2040 Disk, and can drive 2022/2023 Printer, and/or RS232/20 ma Device thru User Port.
- 100\% Disk Based, 100\% Machine Language.
- Macros, Conditional Assembly, and a new feature we developed called Interactive Assembly.
- Coexists with Basic, Auto character repeat, Sorted Symbol Table.
- 27 Commands, 26 Pseudo Ops, 5 Conditional Ops, 38 Error Codes.
- Creates relocatable object code on disk.
- Assemble from Memory or Disk.
- String search, search and replace, and inter-line edit.
- Auto line \#-ing, move, copy, delete, renumber.
- Labels up to 31 characters - user specifies length.
- Includes extention to PET monitor (disassemble, trace, etc.), Library of PET ROM locations, Relocating Loader, plus more.

Manual, Diskette, U. S. poetage - \$169.95 (Requires completion of License Agreement Write for details)

Eastern House Software
3239 Linda Drive
Winston-Salem, N. C. 27106

РЕt/Свм UNCRASHER ${ }^{\text {mi }}$

WHAT IS IT? - UNCRASHER" is a two button device that allows PET/CBM users to regain control of a cursor that's been lost due to programming errors. BASIC programs may be recovered. Machine language programs in the second cassette buffer are not disturbed either
WHICH PETs/CBMs? - UNCRASHER' ${ }^{\prime \prime}$ is for all PET/CBM computers that use the "NEW" Version 2 ROMs. (Older model PETs should use the ITS NEW-CURSOR"')
DOES IT WORK? - You bet!!! See the detailed review of the types of crashes and the concept of recovery in the first issue of Compute.
INSTALLATION - Simple, completely illustrated instructions using only a Phillips screwdriver ensure installation in minutes. No soldering or modificaitons to the computer.
OPERATION - Just follow the simple steps-push the buttons and reset the stack pointer-and PRESTO recovery!
And all this happens without powering the PET/CBM down and up.
WHY UNCRASHER"? - No first class computer such as the PET/CBM should be without this capability. Whether your fancy be programming, business, education, or hobby, hobby, UNCRASHER" saves you time by uncrashing your slip-ups.
AVAILABILITY - Now in better computer stores, or order direct from ITS, made by the people who brought you NEW-CURSOR" ${ }^{\prime \prime}$

INTERNATIONAL TECHNICAL SYSTEMS INC.

 P.O. BOX 264 - WOODBRIDGE, VIRGINIA 22194 CUSTOMER SERVICES -
VSi

RICHMOND, VIRGINIA (804) 262-9709

PET

RABBIT

Load, Save, Verify, Execute
8 K in 38 seconds versus
PETs 2 Minute 45 seconds, plus more!

High-speed Cassette Routines work with $8 \mathrm{~K}, 16 \mathrm{~K}$, or 32 K new ROM PETs which have the new Commodore cassette deck (like the external version which sells for $\$ 95.00$). Note: If you have a new ROM PET with the old style lift-top deck, everything but the high-speed cassette routines will work.

- Auto repeat of any key held down, toggle character set.
- RAM Memory Test, convert \#'s to hex and decimal.

12 Rabbit Commands

Note: Rabbit is 2 K of machine code at $\$ 1800$ for 8 K PETS, $\$ 3000$ or $\$ 3800$ for $\mathbf{1 6 K}$ PETS, or $\$ 7000$ or $\$ 7800$ for 32 K PETS. (Specify one of the 5 versions.)

Cassette and Manual - $\mathbf{\$ 2 9 . 9 5}$ (Add $\mathbf{\$ 5 . 0 0}$ for foreign)

Eastern House Software
3239 Linda Dr.
Winstom-Salem, N. C. 27106

DISK MASTER
 \$12.00 On Disk

The first disk cataloging program to be introduced for the Commodore PET/CBM with a 2040 disk. Now you can easily catalog as many as 140 diskettes, forming a large master directory on a single diskette. The program automatically reads the directory blocks of any disk being cataloged, so no typing is involved. File searching, disk ID lists: and other useful functions are also provided.

RIBBONS

for your PET/CBM 2022/2023 printers \$20.00/Dozen

VISA/MC Accepted - NJ Residents Add 5\% Tax SASE For Current Program List

PROGRAM FINDER

$\$ 7.50$ /Tape or $\$ 9.50 / D i s k$

Provides easy means of locating particular programs or groups of programs. Each program is cataloged by name, type (business, games, utility, etc.), author, features, (joysticks, sound, printer, etc.), etc. Two versions available using tape or disk data files depending on your system.

BAKER ENTERPRISES
15 Windsor Drive Atco, NJ 08004

The Lons IEland FET Gouety grod Herkimer Eounty Eioce are
 Etudents in Hew tork stete. The oboective of the gontest is to ihorese interest in prostamins at all levels of commetition. Eech combetirs seornders shoul willohoose its best two teams of two三tudents. These students will then oommete on a resionsl level with uinmere gometins on e state level. Dontacte haue been made in the followins zrese: HEsezt Sutfolk Hestohester, Hertimer, Horth
 Footioster: zrod Egritel Iistrict. Ietails will be zrowned throush the
 gnd The FAFEF. Further information gan be obtaned bu writins LIFS. 98 Emily Ir.. Eertereach, H' 11 BE .

The contest on tll leuels mill ornsist of 5 fiue minute proklems of inoresirg diffictlty. Hinhers will be determined be the lowest. - mulative time to solue these problems.

[^0]: We Now Carry Vector Graphics Products

[^1]: Microphys is pleased to announce the release of a series of twelve programs designed for use in introductory calculus courses on both the high school and college levels.

 The programs are intended for use with a Commodore PET/CBM microcomputer having at least 8 K of storage. Each program is recorded on a C-10 cassette and is accompanied by simple descriptive instructions. The programs retail for $\$ 20$ each. A diskette containing all 12 programs may be obtained at a cost of $\$ 180$.
 Each program generates a unique set of problems for each student. Answers may be generated so that the student may check his own work or these answers may be suppressed. The student then solves his set ${ }^{7}$ of problems away from the computer. When his work is completed, the student enters his code number and answers and the computer will then grade his work, displaying the answers to those cuestions which were incorrectly solved; a percent score and a brief comment reflecting an overall evaluation are also given.

 Individual Program Content
 PC726- Differentiation of Algebraic Functions
 PC727- Maxima/Minima Problems: Part I
 PC728- Maxima/Minima Problems: Part II
 PC729- Relative Rate Problems: Part I
 PC730- Relative Rate Problems: Part II
 PC731- Integration of Algebraic Functions
 PC732- Differentiation of Trigonometric Functions
 PC733- Integration of Trigonometric Functions
 PC734- Integration: Areas of Plane Figures
 PC735- Integration: Volumes of Solids
 PC736- Integration: Arc Lengths
 PC737- Integration: Surface Areas of Solids
 Note: All programs are available from your local computer dealer. They may also be obtained directly from Microphys.
 Educators: Be sure to write for our free educational software catalogue which describes over 140 programs for use in Chemistry, Physics, Math, English Vocabulary and Spelling. These programs are designed for use on the PET with a minimum of 8 K of storage.

 Dealer Inquires Invited
 MICROPHYS PROGRAMS
 2048 Ford St.

