

ROCKWELL INTERNATIONAL
CEDAR RAPIDS, IOWA
Vo1. 0011, No. 0001
May, 1979
Address Correspondence to: Bob Gehring, 137-138

COMMODORE PET -- COMPUTER OR A TOY?
Collins opinion generally divided by the Mason-Dixon line.

Bar-graph of internal
Random Number Generator

From Blackjack 2 game

Previously owned calculators wanted:
HP-67 or 97: Stanley J. Smith 137-138, X2441.
Scientific, prefer HP, \$10 - \$20: Gayle Buroker, X4087.

TIME TO RE-UP
To continue receiving this dandy document on the care and feeding of personal analytic engines, see the last page.

THE PET 2001: COMPUTER OR TOY?

Our co-workers in Dallas think highly enough of the PET to have arranged for a discount to employees ($\$ 720$ instead of $\$ 795$), and for payroll deduction, and no carrying charge on the payroll deduction. As you can see, much of the math, scientific, and engineering software for the PET was written in Dallas. And Dallas has set-up a system---through Wanda Fox---whereby software and cassette recordings of any of their listed programs are available. Here in Cedar Rapids a few have taken the PET serious enough to have placed one in Building 106 and six in Building 137, all avaible to employees for company work. Since the start of the payroll deduction plan 309 PETS have been bought by employees, with 42 of them in Cedar Rapids. Evidently some of us--who have full access to all the computers within the company--still want a PET in our homes.

Why, not a computer

I believe that most of the reasons why the PET was not considered a computer have now been taken care of between Commodore and the PET users groups. In the beginning Commodore seemed to feel little reaponsibility beyond selling the unit. No technical documentation such as principles of operation or schematics were avallable, and even the instruction manual was merely a few-page pamphlet. Now Commodore makes a diagnostic tape and schematics available, and they've improved (a little) on their instruction books. Today there are enough PET owners, clubs, and publications that just love to talk software, so that problem no longerexists. Before, there was the bare PET. Today, floppies, printers, other peripherals, and added memory are available.

The question of computational accuracy is, to me, still unanswered. Perhaps, if Number Cruncher readers want it, we can organize a show-and-tell for PET owners and potential owners. Or---again if there is sufficient interest---the Eastern Iowa Computer Club could be persuaded to have a meeting devoted to the PET.

One frustration we at Collins have, is that the PET uses a 6502 chip; but all of the software development at Collins, software that would be nice to utilize, is written for the 6800 chip.

For a thorough evaluation, read "PET's First Report Card; An Objective Evaluation", Kilobaud, May 1978. But remember that at this early date Commodore had not taken care of things that they now have.

Some "Unlisted" calculator programs

The following are some programs I've run across that may not be listed in the Current Awareness Bulletin.
"HP-67/97 Tracks Communication Satellites", Electronics, March 1, 1979
"Replacement. Analysis In Your Pocket", Industrial Engineering, October 1978. (for the SR-52).
"Computing Calculators in Communications Engineering Design," Mobile Times, March 1979 (for TI 58 and 59)

HP-19C/29C Programming Problems

The Queen Board game on pp. 52-54 of the applications book will work if you add step 49 "RCL 2", and change step 79 "GT09" to"GT05".

Bob Miller 108-715
Rockwe11 AIM-65 User Report?
Perhaps in the next issue we can have a report from someone in Cedar Rapids who has one of these machines.

Eastern Iowa Computer Club

For those interested in seeing what this club is all about, visitors are welcome to their 7:00 P.M. meetings on the last Sunday of every month at the REC Building in Marion. They have a flea market from 7:00-7:30 when their regular meeting starts. Presently their club project is building MODEMS so their computers can stay at home and still talk to each other. In the future they see building a central system to handle message switching between the stay-at-home computers. In May the 100 sum members are planning a software contest. Presently there are about 6 members with PETs.

If you'd like a copy of their newsletter drop a card so stating to:
Eastern Iowa Computer Club
Box 164
Hiawatha, Iowa 52233
"Next Week We (Pet users) Gotta Get Organized"
There has been some interest in having a seperate Collins Users-Club for PET users. If you are using, or intend to use, the PET please answer the lastpage questionnaire as to:
(A) The Number Cruncher being adequate as a users club.
(B) PET users need their own group.
(C) PET users should join the Eastern Iowa Computer Club.

PET Basic for HP (RPN) Calculator Users
An introduction to BASIC programming for those who are use to solving problems on an RPN type calculator.

BASIC would be learned by programming the PET to do what you now do on your handheld calculator plus providing graphic display, programming capability, and data storage capability. As an example, how do you do complex arithmetic on the PET? FORTRAN does it neatly, the RPN calculators do it acceptably, and BASIC
doesn't do it at a71. So you would have to learn how to make the best of the worst situation. This learning and experimenting process will yield a familiarity with BASIC that should be of value in programming desk-top computers such as the HP-9825, HP9845, and any large computer using BASIC.

The course would probably be held two days a week from 4:30-5:30 or during lunch breaks. If you're interested, so indicate on the last page "re-up" sheet.

Low-Cost Home Computer Sales

Electronic News, 3/12/79 quotes a Dataquest study of low-cost home computer sales:

Radio Shack	100,000 units
Commodore	25,000 units
Apple	20,000 units
MITS/Pertec	3,000 units

PET computers Available for Company Work

There is a PET in 106 and five in building 137 for employees to use for company work. In 137 they are located in the Automatic Test Equipment lab, Reliability, the computer terminal room, and two in engineering areas. So heres a chance to (meekly) show the 1100/80 that you can be a little independent.

Micro-Software News

A new newsletter is being published to inform employees of new additions to the Micro-Software Database on file in Dallas. Requests to be on the mailing list should be addressed to Wanda Fox, 407-120.

As a service to the Cedar Rapids ROCKWELL-COLLINS personnel, the Information Centers are now ordering programmable calculators and microcomputers on a twelve month payroll deductionrplan. This plan is offered at no interest charge. Following is the current price list:

Manufacturer	Retail Price	*Employee Price
Commodore		
PET 2001	\$795.00	\$720.00
Hewlett-Packard		
HP-67	\$450.00	\$373.50**
HP-97	\$750.00	\$622.50
Texas Instruments		
TI 59	\$299.95	\$239.95
PC 100A (Printer)	\$199.95	\$159.95
Rockwoll Intemational		
IK Byte-Memory 4K-Byte-Memory	$\$ 375.00$	$\begin{aligned} & \$ 325.00+\$ 4 . \\ & -\$ 390.00+\$ 4 . \end{aligned}$

* Employee price does not include state and local tax.
** Depending on volume ordered the discount may be either 16% or 17%.
Order forms are available from:

Jan Gorman	106-216 Information Center	x2138
Debra Hawes	137-127 Information Center	x2343

December 14, 1978

The following programs may be ordered by contacting Wanda Fox, Dallas Casnet 437-2330 or by sending written request to 407-120.

Programs in BASIC
ACCESSION NUMBER
001203
001231
001232
001245
001246
001247
001248
001249
001251
001252
001253
001335
Programs for PET
001227
001230
001244
001283
$\rightarrow 001306$
Programs for $\mathrm{HP}-19 \mathrm{C} / 29 \mathrm{C}$
001271
001272
001273
001274
001275
001276
001277
001278
001279
001280
001281
001282
001284
001285
001286
001287
001288

001250 Interest Rates for Various Interests with Different Compound

TITLE

Inventory
Function Approximation
Fast Fourier Transform Subroutine
Bond Yields
Financial Projections
Financial Projections Plotting Routines
Annuities for Payments and Withdrawals for Loans
Profit Analysis
Rate of R tirement Pay
Savings Account Accumulation
Population Projections
Fast Fourier Transforms

Microwave Network Analysis
Formatting Dollars and Cents
PET Broadband Matching
Base Conversion
6502 Assembler for PET

Resistive/Reactive Circuit Calculations
Impedance of a Ladder Network
Standard Resistance Values
Exponential Growth of Decay
Equations of Motion
Kinetic Energy
RPM/Torque/Power
Black-Body Thermal Radiation
Conservation of Energy
Mohr Circle for Stress
Polynomial Evaluation Real and Complex
Sine Cosine and Exponential Integrals
Cubic Equations
Synthetic Division
Hyperbolic Functions-Inverse Hyperbolic Functions
Polynomial Evaluation Real or Complex
Roots of $F(x)$ Equal 0 in an Interval

ACCESSION NUMBER

001289
001290
001291
001292
001293
001294
001298
001302
001307
001308
001309
001310
001311
001312
001313
001314
001315
Programs for HP-25
001201
001266
001295
001299
001300
001387
001388
001394
001395
001396
001400
Programs for HP-67/97
001205
001228
001229
001254
001296
001297
001301
001303
001304
001305
001316
001364
001365
001366
001367
001368
001369
001370
001371
001372
001373
001374
001377
001389
001390
001391
001392
001393
001397
001398

TITL.E
3X3 Matrix Inversion
Base B Arithmetic
Gaussian Quadrature (Finite ab $F(x) D X$)
Gaussian Quadrature (Finite A $F(x) D X$)
Bessel Function $(J(x))$
Gamma Function
Hexadecimal to/from Decimal Conversion
Bubble Sort
Direct Reduction Loan Amortization Schedule
Internal Rate of Return
Straight Line Depreciation Schedule
Sum of Years Digits Depreciation Schedule
Variable Rate Declining Balance Depreciation Schedule
Crossover Point Declining Balance to Straight Line Depreciation
Nominal/Effective - Effective/Nominal Rate Conversion
Lease Versus Purchase
Break-Even Analysis

Thyristor Conduction Angle/Output Power
Normal Probability Functions (Derivatives)
Factor of an Integer
Hexadecimal to/from Decimal Conversion
Numerical Quadrature Integration
Probability Function Chi-Square
Probability functions Poisson Individual and Cumulative Sum
Negative Binomial and Cumulative Distribution
Binomial and Cumulative Binomial Distribution
Hypergcometric and Cumulative Hypergeometric Distribution
Bessel Functions, First Kind, Integer Order

Bridged T Resistor Analysis for Thin Film Trimming
Signal-to-Noise Detection for Target Detection
Radar Parameter Equations
Sound System Design
Four Dimension Curve Fit
Successive Bisections
Numerical Quadrature Integration
Sunrise/Sunset
Newton's Secant Method
English to Decimal Feet Conversion
Dual Radial Position Fixer
Put and Call Option Fair Values
Call Option Evaluation
Routines for Option Writers
Empirical (Chicago Board Option Exchange) Call Pricing
Warrant and Option Hedging
Bull Spread Option Strategy
Butterfly Options
Stock Price 30 -Week Moving Average with Data Storage
Exponential Smoothing
Multiple Linear Regression
Curve Fitting Selecting Best Function
Analysis of DC Parameters of Current-Mirror Circuit
Calendar Algorithms
Federal Income Averaging Tax
Curve Fitting
Curve Fitting
One Card Curve Fit
Sidereal Time
Base to Base

Programs for Rockwell Model 960
001208 Quantitive Addition
$001209 \quad$ Pseudo Random Numbers
$0012.10 \quad$ Permutations and Combinations
$001211 \quad$ Spearman's Rank Correlation Coefficient for Ranked Data
001212 Chi-Square Distribution
$001213 \quad$ F-Distributuion
001214 Student's T-Distribution
001215 Inverse Normal Distribution
001216 Cumulative Normal Distribution

Programs for TI-59 (continued)

ACCESSION NUMBER
001344
001345
001346
001347
001348
001349
001350
001351
001352
001353
001354
001355
001356
001357
001358
001359
001360
001361
001362
001363
001378
001379
001380
001381
001382
001383
001384
001385
001386

IITLE
Fight Man With Wind
filght ilan and Nevifation
Long Range Flight Plan
Atmosphere Speed Temperature and Altitude
Predicting Freezing Levels Lowest Usable Flight Levels
Wind Components and Average Vector
Wind Triangle
Dead Reckoning
Rhumbl ine Navigation
Great Circle Fiying
Line of Sight Distance and DME Speed Correction
Position and Navigation by One VOR
Area Navigation
Course Correction
Rate of Cl imb Turn Performance
General Weight and Balance
Customized Weight and Balance
pilot Unit Conversions
RNAV Flight Planning
Time Zone Conversions
Testing Differences Between Proportions
Histogram
Equation Solver
Single Stage Model Rocket Performance
Cubic Crystallography
Lighting Calculations by the Lumen Method
Computed Constants of a Circular Light Polarizer
RPN Simulator
Stop Watch Timer
Programs in BASIC
ACCESSION NUMBER
001486
001487
Programs for PET
001488
001489
001490
001492
001493
001494
001495
001496
001497
001498
001499
001500
001501
001502
001503
001504
001507
001510
001511
001513
001514
Programs for HP-25
001431
001432
001433
001434
001435
Programs for $\mathrm{HP}-67 / 97$
001427
001428
001429
001430
001470
001471
001472

TITLE

Arctangent Algorithm
Function Approximation with Two Variables

CAUER for Designing Lowpass Elliptic Filters
B and C PLOT and The COMPONENT for Designing Butterworth and Chebyshev Filters
Transient No. 1 for PET
SVNTHESIZER - Divisor Constants for Phase Lock Loop Frequency Synthesizer
FACTORS - Prime Factors of a Given Number
PADS - Attenuator Networks
FLC - Reactance of an L or C Element and Resonant Frequency
FILTERS - Program for Active Filters-low and high pass
PI NET - Pi-Network Impedance Matching
COIL - Characteristics and Unknown Values
ANT PAT - Antenna Patterns
ANTCZ - Antenna Clearance Area for Skywave Propagation
POLY - Area of a Polygon going in a Clockwise Direction
POLY II - Area of a Polygon with additional units of measure
TV ANT - TV Antenna Length for any Channel
L, T, and Pi Network Matching
Fanio Broadband Matching
Z by Piecewise Hilbert Transform
Recursive Ladder Network
Q Distribution
Q Function Subroutine for Unconstrained Variables

Stripline Near One Plane (Microstrip)-Loss Power Factor
Stripl ine Near One Plane (Microstrip) -Analysis
Stripline Near One Plane (Microstrip)-Synthesis
Stripline Between Two Planes-Analysis, Loss Power Factor
Stripline Between Two Planes-Synthesis

Filter Loss/Mainline VSWR, Single Half Wave Length Shunt Bias Filter Filter Loss/Mainline VSWR Single Ouarter Compensated Shunt Bias Filter
Stripl ine Microstrip Analysis, Synthesis and Loss
Geographic Coordinates to Universal Tranverse Mercator and Conversely Sunrise, Sunset and Twilight
Geodetic Distances and Bearings

Programs for HP-67/97 (Continued)

ACCESSION NUMBER
001473
001474
001475
001476
001477
001478
001479
001480
001481
001482
001483
001484
001485
001491
001506
001509
001512
001515
001516
001517
001518
Programs for SR-52
001444
Programs for SR-56
001436
001437
001438
001439
001440
001441
001442
001443
001448
Programs for II-59
001401
001402
001403
001404
001405
001406
001407
001408
001409
001410
001411
001412
001413
001414
001415
001416
001417
001418
001419
001420
001421
001422
001423
001424
001425
001426
001445
001446
001447
001449
001450
001451
001452
001453
001454
001455
001456
001457

TITLE

Reentry Trajectories
Satellite Orbital Elements
Satellite Tracking
Laser Equations for Propagation in the Atmosphere
Optimum Allocation of Resources
Log-Linear Cumulative Average and Unit Cost
Time Phased Procurement Costing
Cost/Benefit Stream
Normal Function or Distribution and its Inverse
0 Function (Offset Coverage Function)
Linear Programming and 3×3 Matrix
Fourth-Order Differential Equations
Ten Point Gaussian Integration
Three Quadrature Hybrid Conbiner Amplitude Analysis
Transmission Line Matching
Norton L to T or Pi Transformers
Four Complex Functions Program
Quadratic Functions
Products and Displacements
Q Squared Plus One to Parallel Z and Parallelled Reactance
Lowpass to Bandpass Scaling and Minimum Standing Have Ratio

Plot Mathematical Functions with PC-100

Parallel Impedance Addition
Low-Pass Ladder Z-IN
Passive Low-Pass Analysis
Voltage Intersection of 3 Tesistors
Active High-Pass Analysis
Pi Network Impedance Matching
Newton Iterative Solution
Buttervorth Lowpass Filter
Transfer Function of Crystal Detectors

Master Library Diagnostic
Matrix Inversion Determinants and Simultaneous Equations
Matrix Addition and Multiplication
Complex Arithmetic
Complex Functions
Complex Trigonometric Functions
Polynomial Evaluation
Zeros of Functions
Simpson's Approximation (Continuous)
Simpson's Approximation (Discrete)
Triangle Solution (1)
Triangle Solution (2)
Curve Solution
Normal Distribution
Random Number Generator
Combinations Permutions and Factorials
Moving Averages
Compound Interest
Annuities
Day of the Week and Days Between Dates
Checking/Savings Account Management
Degree, Minute and Second Operations
Unit Conversions (1) Length
Unit Conversions (2) Volume, Weight and Temperature
Evaluation of Rosette Strain Gauge (60° and 45°) Data
Combined Stresses (Mohr Circle Calculations)
Convolve Functions in Time Domain
Disassemble Micro-processor Machine Code
Noise Bandwidth and RMS-Voltage Computations
Statistics Library Diagnostic
Random Number Generator
Univariate Data
Bivariate Data
Trivariate Data
Analysis of Variance Data
Histogranı Data
Means and Moments
Histogram Construction

ACCESSION NUMBER
001458
001459
001460
001461
001462
001463
001464
001465
001466
001467
001468
001469
001505
001508

TITLE
Theoretical Histogram
Univariate Data Transforms
Bivariate Data Transforms
T-Statistic Evaluation
Contingency Table Analysis Two-Way Classification
Analysis of Variance
Rank-Sum Test
Multiple Linear Regression
Normal Distribution
Binomial Distribution
Chi-Square Distribution
F-Distribution
Q Squared Plus One Series to Parallel Z and Paralleled Reactance Broadband Matching

$$
\begin{aligned}
& \text { The complete in to of available } \\
& \text { software as aron as Wring }
\end{aligned}
$$ NFワ78-1016.

ON ACCURACY

Your calculator or for that matter any calculator or digital computer is a finite number machine.

As a consequence calculators and computers are not absolutely accurate for all operations on all numbers; the displayed accuracy depending on the algorithms used and the number of decimal places carried.

Table 1 illustrates the problem. The numbers in the table were obtained on an HP-65 by performing the operation:

$$
(\sqrt{x})\left(x^{2}\right)-x=0 \text { error }
$$

Table 2 is a listing of accurate valves of the powers of 2 with which to compare the accuracy of your calculator. Often times the error is fairly obvious. For example on the HP-65.

$$
2^{25}=33554431.86
$$

In this example the absolute error is 0.14 . An interesting aspect of this example is that if we perform the inverse operation we will get 2.000000000 whether or not we add in the error quantity 0.14 .

For most work the error problem is inconsequential since the accuracy is usually several orders of magnitude better than the accuracy of the input data or the accuracy required for the output data.

Table 2 Powers of 2

20	1	22	$67.108,864$
2	2	227	134,217,728
2	4	228	268,435,456
2	8	229	536,870,912
2	16	2^{30}	1,073,741,824
2^{5}	32	2^{31}	2,147,483,648
2^{6}	64	2^{32}	4,294,967,296
2^{7}	128	233	8,589,934,592
28	256	2^{34}	1,717,986,9184
29	512	235	3,435,973,8368
210	1024		
211	2048		
212	4096		
213	8192		
214	16384		
215	32768		
216	65536		
217	131072		
218	262144		
219	524288		
220	1048576		
221	2097152		
222	4194304		
223	8388608		
224	16777216		
225	33554432		

ON CURVE FITTING WITH
 N-DEGREE POLYNOMIALS

OR
POLY WANTS A TRACKER

To extend Jim King's PET Directory Program to work with the longer C60 cassette it was necessary to find the empirical time relationship be-tween normal speed and fast-forward to points along the tape. It was then necessary to find a mathematical curve that tracked this well enough to be used by PET. Determining the empirical relationship and finding a mathematical fit led me to areas that may be of interest to other number crunchers. A not too succinct summary is that:
(1) Using the first n terms of an m term polynomial approximation can be grossly inferior to using all the terms of the smaller, n degree polynomial.
(2) An algebraic expression of the mechanical relationship between the times with normal and fast-forward speeds tracks the empirical relationship better than a general n degree polynomial of the same complexity.

The Emperical relationship between hormal time and Fast-Forward time.

In order to measure the time relationship I had to somehow mark points along the tape and then measure the number of seconds to each point in both normal run and fast-forward. I did this by noting when the perimeter of the tape being wound passed each of the calibration marks on the little window of the cassette. It was bad enough trying to eye-ball this with poor light, while watching the mirror on the bottom of the cassette to eliminate parallax, and while watching a stop watch, but that the tape didn't pack evenly so the tape perimeter wobbled back and forth along the scale. I ended by noting the time when the tape wobbled as far above each mark as below. (Reminds me of the limerick that starts, "There was a young lady from Mobile," and ends, "Or an off-center emery wheel.") The following table presents pairs of times to various points on the tape and Figure 1 shows the measured relationship between slue time:
T_{S}, and normal run time, T_{R}
The mathematical relationship between "RUN" and "FAST-FWD" times to the same point.

To derive the relationship the following assumptions were made:
(1) In "RUN" speed the tape moves past the read-head at a constant linear speed.

MEASURED RELATIONSHIP BETWEEN TIMES AT NORMAL SPEED AND FAST FORWARD

Cassette Scale	Time Rea 1	in Seconds slue
0	0	0
5	135	12
10	220	18
15	320	26
20	435	33
25	570	40
30	685	48
35	840	55
40	975	62
45	1155	70
50	1295	76
55	1465	85
60	1640	92
65	1840	98
67	1922	102

(2) At slue speed (FAST-FWD), the tape take-up spool is driven at a constant rotary speed.
(3) The tape has constant thickness, thus providing a one-to-one relation between the circumference (linear) speed of the tape and the rotary speed.

These assumptions led to the following equation of normal run time, $T R$, as a function of slue time, $T s$, to conmon points along the tape.

$$
\begin{equation*}
T_{R}=C_{1} T_{S}+C_{2} T_{S}^{2} \tag{1}
\end{equation*}
$$

Unfortunately PET wants to know slue time as a function of normal run time. Using the quadratic equation gives:

$$
\begin{equation*}
T_{S}=-K_{1}+\sqrt{K_{2}+K_{3}} T_{R} \tag{2}
\end{equation*}
$$

Using three pairs of points (including 0, 0) from figure 1 , the constants can be determined. The problem remains, which set of three points out of the 15 will provide the best tracking for the algebraic expression?

The Statistics II pack for the HP-9825 desk top computer has, (Jim King pointed out to me), a progran for finding the best least-square-error fit between an empirical curve and an N-degree polynomial. Equation (1) is a second degree polynomial so 1 used the 9825 to find its coefficients and then used the quadratic equation to find the constants in equation (2):

$$
\begin{equation*}
T_{S}=-69.59+\sqrt{4904.46+12.756 T_{R}} \tag{3}
\end{equation*}
$$

Figure 2 shows equation (3) and the measured points on the same graph. Evidently the assumptions of constant tape thickness, constant linear "RUII" speed, and constant "FST-FWD" angular speed were justified. Following this article is the derivation of slue speed time, T_{S}, as a function of run speed time, T_{R}.

A polynomial fit to the non-polynomial relationship.

The HP-9825 worked so nicely for the polynomial of the inverse relationship, and the program was so easy to use, that I thought it would be interestiny to see if a low degree polynomial would fit the direct relationship as neatly as the quadratic-root equation. The empirical curve was obviously non-linear, so there was no point in trying a first degree polynomial. The 9825 gave as the least square error fit the following second degree polynomial:

$$
T_{S}=2.279+.07239 T_{R}-1.0953 \cdot 10^{-5} T^{2}
$$

Figue 3 presents this equation along with the measured data. So, with the same number of constants and only one more operation the second degree polynomial is only slightly less of a fit as you can see comparing figures 2 and 3.

The grand fallacy

Even though I use the same number of terms in PET, might not I be better off fitting a third degree polynomial to the data? The HP-9825 gave the third degree potynomial as:

$$
T_{S}=0.8278+.08305 \mathrm{~T}-2.532 \cdot 10^{-5} \mathrm{~T}^{2}+4.96 \cdot 10^{-9} \mathrm{~T}^{3}
$$

Figue 4 presents the results of leaving out the last term of a third degree polynomial.

ℓ, is the length of the first turn of tape on a spool of radius r_{0}.
L is the total length of tape for N turns.
For ease of computation assume magnetic coating is on the outer surface of the tape.
d $4 \bar{s}$ the total thickness of the tape.
$\ell_{1}=2 \pi\left(r_{0}+d\right)=2 \pi r_{0}+2 \pi d$
$\ell_{2}=2 \pi\left(r_{0}+2 d\right)=2 \pi r_{0}+2 \pi(2 d)$
$\ell_{n}=2 \pi\left(r_{0}+n d\right)=2 \pi r_{0}+2 \pi(n d)$
$L=\sum_{n=1}^{N} \ell_{n}=\sum_{n=1}^{N}\left(2 \pi r_{0}+2 \pi n d\right)$
$=2 \pi r_{0} N+2 \pi d \sum_{n=1}^{N} n$
$=2 \pi r_{0} N+2 \pi d\left[\frac{N(N+1)}{2}\right]$

With a constant rotary speed, ω, the number of turns, N, to a given spot on the tape is:

$$
N=\omega T_{S}
$$

In the normal run speed the length of tape to the same spot is:

$$
L=k T_{R}
$$

Where k is the linear drive speed in inches / second. Assuming $N \gg 1$.

$$
\begin{aligned}
& L=2 \pi N r_{0}+2 \pi d \frac{N^{2}}{2} \\
& k T_{R}=2 \pi\left[\begin{array}{ll}
r_{0}\left(\omega T_{S}\right)+\frac{d}{2} & \left.\left(\omega T_{S}\right)^{2}\right]
\end{array}\right.
\end{aligned}
$$

PET Tape-Directory Program

Jim King, GTPD's Director of Engineering has written a program that provides a Fast-Forward slue to a named program on cassette. This can be used instead of the normal-speed tape search for the named program. On a C60 cassette the maximum time on a rewound tape to the header of a program is reduced from 30 minutes to 1.5 minutes.

Jim's program first presents a table-of-contents for the tape of up to 15 programs per tape side. The PET user types in the first unique characters of a title (the whole name need not be typed), simultaneously presses the RETURN key and the Fast-Forward lever on the tape unit, and then the tape unit STOP lever when told to do so by PET. This positions the tape from 10 to 20 normal-speed seconds before the header. The LOAD or RUN command is then used to load the program.

The progran operates by taking the normal run time in seconds associated with the named program, uses an equation to convert this to Fast-Forward time, and sets a clock that tells the user when the fast-forward time has elapsed. The progran uses the first three terms of a power series to approximate the relation between normal run time and fast-forward time to the same point on the tape. The approximation is valid for up to 15 minutes, the maximum run time on a C30 cassette. The directory Table of Contents can have up to 15 programs listed.

I've modified Jim's program by including instructions on how to add titles and how to use the directory, increased the listings from 15 to 24 , and changed the tirie relationship equation to one that can be used with up through C60 cassettes (if they all have the same thickness tape). With the directory and instructions both in the same program it takes an intolerable 90 seconds to load. So I made the first program on a tape the directory and the second, the instructions for using the directory. Those who no longer need instructions can have the directory on the screen in 40 seconds.

My instructions for adding a new program to the tape and directory say you must have the tape positioned, ready for loading, before you key your new program into the PET. I thought this necessary because I required loading the previous progran in order to position the tape properly. The LOAD instruction would of course wipe out any program in PET.

Allan Tupker pointed out a scheme whereby getting to the proper point does not require destroying the progran in the PET. First, the tape is rewound to some point before the present last-program. Then type VERIFY
"(last program name)". The VERIFY instruction gets you just past the last recorded program without destroying any program in the computer.

Anybody wanting a copy of Jim's faster-loading directory of up to 15 programs on a C30 cassette, or my programs for up to 24 programs on a C60 cassette, should send a Maxell (or equivalent quality) cassette to: Bob Gehring, MS 137-724.-13E

A PET LIBRARY-TAPE FOR THE OCCASIONAL USER

A major problem in running a PET program, that you wrote weeks ago, is that of having adequate prompts and instructions. Back when you wrote the program you obviously didn't need detailed instruction, and even if you did write instructions, by now they are probably fugitive notes that can't be found. And if you have a program written by someone else, that you never have run, the problem can be even worse. You can of course (or rather you or the program writer could have) used some of the limited program capability to include instructions as part of the program. I can get about 100 average sized programs on a C60 cassette so it would seem reasonable to use tape to store instructions and documentation instead of the so-dear capability of the main program.

DOC Sample

The documentation sample I use consists of five pages (CRT screens) of text. Each page consists of twenty-two (22) lines of thirty-nine (39) characters of text for about one hundred fifty (150) words per page. The next to the last line is blank, and the last line has the page number and instruction for flipping pages, such as:

$$
\text { "p. } 5 \text { Type } L, N, 1,2, \ldots .5 \text { " }
$$

Where typing L gives the last previous page, N the next page, and 1 page 1.

The Files on Tape

My one-tape library tape has the following sequence of files:
INDEX 24: A table of contents listing plus the timer program for a "Fast Forward" slue to a named program from the table.

INDEX 24 INSTRUCTIONS: These are the instructions for adding new programs to, and using the index.

DOC SAMPLE: This consists of five blank pages that can be copied, text added, and placed in front of each new program that is added to the tape. If the documentation has the same name as its program, the high-speed slue takes you directly to the documentation first. Then a LOAD instruction will load the program. If there are times when you want to go directly to the program first, you could carry separate names in the index.

DOC, FIRST PROGRAM
FIRST PROGRAM
DOC, SECOND PROGRAM

Tutorial Tape on PET BASIC

BASIC BASIC

We have procured from Commodore a copy of tutorial presentation of the BASIC language. This tape is designed to be used on a PET. The tape presents information to the user and then poses questions and problems to be solved. This is an ideal tool for the uninitiated micro-computer user.

The tape can be borrowed from Bob Gehring, 137-724. The following are titles to sections of the tape:

1. Introduction, Line numbers
2. Variables, Input, List, run
3. Print, End
4. Numbers, Strings, Expressions, Hierarchy, Let, Homework (H.W.)
5. H.W., IF/Then, GOTO, H.W.
6. H.W., Read/Data, Arrays
7. Looping, For/Next, H.W.
8. H.W., GOSUB, On GOTO, On GOSUB
9. Saving Programs, Sample Programs

10-15. Six Sample Programs

Frank Helsell Looking for PET Pals
Frank Helse11, 137-152 wonders if there are other PET owners interested in audio and music applications for the PET?

PET Periodical Publications

PET users may be interested in the following periodicals. Some of these may no longer be published.

PET Newsletter
Lawrence Hall of Science
University of California
Berkley, California
I have not seen this, but it is recommended by our friends in Dallas.
The PET Cassette
929 North Port Drive
Room 6
Madison, Wisc. 53704
Wanda Fox, Dallas, has received several issues late last year.
PET User Notes
P.O. Box 371

Montgomery, Penn. 18936
This is available through the Current Awareness Bulletin.
The PET Paper
Box 43
Audubon, PA. 19407
I have the first five issues of this, with the last one dated July 1978. I don't know if they are still publishing. The first issue I have is 14 pages, and the last issue 26 pages. The following is the table of contents for the last issue:

Standard Symbols
User Group Info
PET Prose
Advertising and Subscription Rates
PET Parade
Simple Memory Test for your PET
The Legend of the Marvelous, Magical, Mystical, Miraculous Micromachine. Use a Baudot Teletype With Your PET by Jerome Salko
PEEKing \& POKEing at PET
The Status Word (ST)
New PET Accessories
Flea Market Software Exchange
Software Shelf Software Sales
RENUM \& UNLIST: A Listing
PET I/O (reprinted from SPHINX by Richard Tobey)
Reader Questionnaire
If anyone wants to borrow my copies, drop a note to: Bob Gehring, 137-124

Software Hardware Products Directory
New England Electronics Co., Inc.
248 Bridge St.
Springfield, MA 01103
(413) 739-9626

DOCUMENTATION
WB\#1 "Getting Started with Your PET"
WB\#2 "PET String and Array Handling"
WB\#3 "PET Graphics"
WB\#4 "PET Cassette and Input/Output"
WB\#5 "PET Miscellaneous"
The Music Box: Hardware and software enabling user to compose, play, and hear music on the PET. \$49.95

Other programs: War games package \#1, LEM lunar lander, Blackjack, Deflection, Hunt the WUMPUS, PET Othello, NEECO Game Pack, Masterbrain, Grades, Slot Machine, Statistics, Queen, Depreciation, Biorhythm, Bullfight,...Poker, Two Player Chess, Accounting PAK \#1, Business Graphics,... Schedule Planner \#2

In support of the dual drive disk system; Diskmon, Diskmon Assembler Listing, Pet Assembler Programming Guide, FORTRAN, PLM.

The following publications will be of interest to PET computer users.

Commodore PET Users Club Newsletter

Commodore Business Machines, Inc. has formed the Commodore U.S. PET USER's CLUB. The charter of the User's Club is to provide a method of sharing up to date information, applications and programs relating to the PET computer between the many PET owners, users and manufacturers. We have received Volume I, Issue 1 of the Commodore Pet Users Club Newsletter. This newsletter contains product news, details on current software, time saving tips on programming, peripherals and attachments, and a User's Directory to other sources of PET information. The cost of a one year's membership in the Users Club is $\$ 15.00$. Membership applications are available from Wanda Fox, Mail Code 407-120, casnet 437-2330, in Dallas.

WORKBOOK 6 - TIS SERIES NOW AVAILABLE

We have acquired workbook 6 in the TIS workbook series. This workbook titled "PET CONTROL AND LOGIC STATEMENTS" is available for review in each local library or Information Center. The workbook can be purchased for $\$ 3.95$ plus tax from the following address:

Total Information Services
P.O. Box 921

Los Alamos, New Mexico 87544

Literature for PET

A series of information manuals are available for the PET micro-computer. The set consist of six manuals covering the following subjects:

MEDIT (Micro editor for PET)
Getting Started with Your PET - Workbook 1
String and Array Handling - Workbook 2
Graphics - Workbook 3
Cassette - Workbook 4
Miscellaneous - Workbook 5
The cost of this set is $\$ 34.20$ including tax and shipping. They can be be ordered from the following address:

Total Information Services
P.O. Box 921

Los Alamos, New Mexico 87544
A set of these manuals are available in each local library of information Center for review before ordering.

PET PROGRAMS DOCUMENTATION
ON FILE AT
BUILDING 137 TERMINAL ROOM

Index \#	Title
000126	Gaussian Random Number Generator
000157	Atmospheric PSK/FSK
000181	A Pet Optimizer
000328	Prime Factors of Integers
000329	Area of a Polygon
000330	Parts of a Triangle
000331	Analysis of Two Vectors
000332	Operations of Two Vectors
000333	Angle Conversion: Radians to Degrees
000334	Angle Conversion: Degrees to Radians
000335	Coordinate Conversion
000336	Coordinate Plot
000337	Plot of Polar Equation
000338	Plot of Functions
000339	Linear Interpolation
000340	Curvilinear Interpolation
000341	Integration: Simpson's Rule
000342	Integration: Trapezoidal Rule
000343	Integration: Gaussian Quadrature
000344	Derivative
000345	Roots of Quadratic Equations
000346	Real Roots of Polynomials: Newton
000347	Roots of Polynomials: Half-interval Search
000348	Trig Polynomial
000349	Simultaneous Equations
000350	Linear Programming
000351	Matrix Addition, Subtraction, Scalar Multiplication

Index \#	Title
000352	Matrix Multiplication
000353	Matrix Inversion
000354	Permutations and Combinations
000355	Mann-Whitney U Test
000356	Mean, Variance, Standard Deviation
000357	Geometric Mean and Deviation
000358	Binomial Distribution
000359	Poisson Distribution
000360	Normal Distribution
000361	Chi-square Distribution
000362	Chi-square Test
000363	Student's t-distribution
000364	Student's t-distribution Test
000365	F-distribution
000366	Linear Correlation Coefficient
000367	Linear Regression
000368	Multiple Linear Regression
000369	Nth Order Regression
000370	Geometric Regression
000371	Exponential Regression
000372	System Reliability
000379	Program: Pierre
000402	Computerized Loop Antenna Design - in Basic
000405	CONV: Description, Users, Instructions, Limitations
000406	FILTER: Description, Users, Instructions, Limitations
000407	FIT: " " "
000408	INTEGRATION 1: " "

INDEX \# Title
000409 INTEGRATION 2: Description, Users, Instructions, Limitations
000410 INTENSITY: "
000411 LOLA: " "

000412 MACRO:
000413 MAX. MIN.
000414 NAVAID:
OPTICAL:
11
11

11

11

11
11

11
"
"
"
"
"
"
"
"
"
"
"
000429 COEFF: "
000430 CONFIDENCE 1: "
000431 CONFIDENCE 2: "
000432 CORRELATIONS: "
000433 CURVE: "
000434 DIFFERENCES: "
000436 EXP-DISTRI: "
000437 LEAST SQUARES: "
000438 PAIRED: "
000441 POLYNOMIAL FIT: "

000442	REGRESSION:	Description, Users, Instructions, Limitations			
000443	STAT 1:	$"$	$"$	$"$	$"$
000444	STAT 2:	$"$	$"$	$"$	$"$
000445	T-DISTRIBUTION:	$"$	$"$	$"$	$"$
000447	VARIANCE 1:	$"$	$"$	$"$	$"$
000448	VARIANCE 2:	$"$	$"$	$"$	$"$
000449	$X Y:$	$"$	$"$	$"$	$"$

000732 Pet Poisson Distribution
000921 Determination of Trunk Requirements Alternate Route Networks
0-0984 Circuit
001131 Some Erlang B and Erlang C Formulae for Traffice Analysis on Pet Computer

001132 Basic Program to Compute Link Efficiency for High-Level Data Link Control for Pet Computer

001142 Approximation of Piecewise Curves by Expansion Into Series of Chebychev Polynomials

001188 Design of Primary High Usage, Intermediate High Usage, and Final Trunk Bundles Using Basic Programs Written for Pet

001227 Microwave Network Analysis for PET
001244 Broadband Matching for PET
Basic Software Library -- Vol. II Engineering and Statistics
Scientific Research Inst. 1976
P.0. Box 490099
Key Biscayne, FL 33149
Index to Other Volumes:
Vol. 1
Part 1, Business and Personal Bookkeeping
Part 2, Games and Pictures
Vol. 2
Part 3, Math and Engineering
Part 4, Plotting and Statistics ProgramsAppendix A, Basic statement definitions
Vol. 3
Part 5, Advanced Business Programs
Vol. 4
General purpose programs
Vol. 5
Experimenter's Programs
Appendix B, Statement Conversion Algorithms
Vol. 6
A Complete Business System
Getting Started With Your PET (about 100 pp.)
I. Introduction
II. PET BASIC calculator mdoe
III. Inputting a program
IV. Getting information out of your program.
V. Getting information into your program
VI. Data representation
VII. Using the cassette for program storage

Bob Gehring, 137-124 has mag tape copies of the following programs. Send him a tape cassette (Maxell best) for a copy of any of these. His documentation copies cannot be recopied, so write to Wanda Fox, 407-120 for documentation copies.

Database Accession Number
157 *
181 *
379 *
732 *
1131

1132
1142

1188

1227
1244
1283
1306 *

Program Title
"ATMOS PSK/FSK"
"A PET OPTIMIZER"
"PIERRE"
"PET POISON DIST"
"FINLOSS"
"INFLOSS"
"FINDELAY"
"INFDELAY"
"HDLC"
"GENERAL VLACH"
"EVEN VLACH"
"ODD VLACH"
"PRIMARY HU"
"EQUIVALENT RANDO"
"INTERMEDIATE HU"
"FINAL ROUTES"
"M.W.NTWRK.ANALYS"
"LEVMAT102078"
PET BROADBAND MATCHING
"BASE CONVERSION"
"ASSEMT"
"EXEC"
"MODIFYED EDIT"
"6502 DISASSEMB"
"ASSEM2, EDIT"
"EDIT"

Database Accession Number
1488 *
1490 *
1492 *
1493 *
1494 *
1494 *
1496 *
1497 *
1498 *
1499 *
1500 *
1501 *
1502 *
1503 *

Program Title
"CAUER"
"TRANSIENT \#1"
"SYNTHESIZER"
"FACTORS"
"PADS"
"FLC"
"FILTERS"
"PI NET"
"COIL"
"ANT PAT"
"ANT CZ"
"POLY"
"POLY II"
"TV ANT"
*TAPE 2 BASIC BASIC - Side A - Contents through Lesson \#4-4
Side B - Lesson \#5-1 through Sample Programs
*Bob Gehring has a copy of the documentation for these programs

