
OCTOBER 1981 ISSUE NO. 6

BREW UP A CONTROLLER
D7

D6

Do

D4

D3

D2

D1

DO

A11

A10

26 17

27 16

28 15

29 14

30 13

31 11

32 10

33 9

20

20 1 r \ 2 18

19 19

D7

D6

D5

D4

D3

D2

D1

DO

OE

CS

A10

U 2

26

27

28

29

30

31

32

33

38

37

D7

D6

D5

D4

D3

D2

D1

DO

CS1

CS2

. . . s e e p a g e 2 0

2 BASIC Trace

3 BASIC “Screen Editor”

10 Number Conversion
Program

13 Tidbits

13 Easier USR Function Use

15 CPU Clock Circuits

16 Text Buffer Data Recovery
Techniques

18 Super Simple Single Line
Disassembler

19 Letters to the Editor

20 Hear Your AIM 65

20 Low Cost Controller
Recipe

-T- Rockwell International
where science gets down to tnfsmess

EDITOR’S CORNER BASIC TRACE
FORTH AND PROM PROGRAMMER/
COED MANUALS READY

Jeff Williams
Rockwell International

All you Forth and PROM Programmer/COED board users who received

preliminary manuals with your purchase will be happy to know that the

regular manuals are in!!! To get one, simply send the front cover o f the

preliminary manual together with your name and address (o f course) and

w e ’ll rush one out to you. Send your request to SALES SUPPORT SER

VICES, Rockwell Int'l, POB 3669, RC55, Anaheim, CA 92803.

Anyhow, the Forth manual (document #265) and the Prom Programmer/

COED manual (document #269) are also available for purchase. Contact

your area sales office for price information.

HOME OFFICE

Electronic Devices Division
Rockwell International
3310 M ira lom a Avenue
P.O. Box 3669
Anaheim , CA 92803
(714) 632-3729
TWX: 910 591-1698

EUROPE
Electronic Devices Division
Rockwell International GmbH
Fraunhoferstrasse 11
D -8033 M unchen-M artinsried
G erm any
(009) 859-9575
Telex: 0521/2650

FAR EAST
Electronic Devices Division
Rockwell International O verseas Corp.
Itohpia H irakawa-cho Bldg.
7*6, 2-chom e. H irakawa-cho
Chiyoda-ku, Tokyo 102, Japan
(03) 265-0006
Telex: J22198

CORRECTIONS TO ISSUE #5

Page 13 — You may notice some problems if certain BASIC instructions

are executed with the T T Y drive located in page 2. Simply move the

program to reside at location S00DC when using them with BASIC. The

programs are completely relocatable with the only change required being

to the .W OR address at the beginning.

Page 24— The GND connection on the A IM 65 is pin 1 (not L).

CORRECTIONS TO ISSUE # 4

Page 2— The new flat rate charges for out-of-warranty repairs on the

A IM 65 is $59.80 (not $49.80).

Page 6— Line 2220 should read IFP=255THEN2210 (not

IFP = 225THEN2210).

A ll subscription correspondence and articles should be sent to:

EDITOR, INTERACTIVE
ROCKWELL INTERNATIONAL

POB 3669, RC 55
ANAHEIM, CA 92803

Ever wonder where you were in a BASIC program, or, how you got

there from here when you can’t get from here to there??? But, your pro

gram did it anyway???

When active, the following program prints out the line number o f every

BASIC statement just before it gets executed. Input/Output statements

are left justified with a carriage return prior to execution (just to be pretty)

and the line numbers are right justified in three columns.

To activate the routine, location 224 ($E0) must be poked with a non

zero value. O f course, to deactivate the trace, poke the same location

with a zero. This trace function may be activated and deactivated within

a BASIC program.

With a minor addition to the program, the contents o f two memory lo

cations may be monitored. Simply insert the following short “ patch”

between the instructions JSR SOUT and INC POS. (You 'll end up with

two lines containing the INC POS instruction)

LD A VALU E

LD A BYTE1

JSR NUM A

JSR B LANK

LD A BYTE2

JSR NUM A

INC POS

;ADDRESS OF THE FIRST BYTE

;OUTPUT A BLANK.

;ADDRESS OF THE SECOND BYTE

;ADD TO COLUM N COUNT

This technique can be expanded upon to monitor any BASIC parameter

such as a variable etc.

Thanks to Steve West and Frank Nunnely for the neat idea on how to

gain access to BASIC through the trap.

(Continued on page 22)

DRAMATIC PRICE CUTS!!!

In order to make Rockwell products an even bigger value, we have

dropped prices on most o f the RM65 board level products, the AIM

65/40, and all o f the A IM 65 accessory ROMS (BASIC , Forth, PL-65,

and the Assembler). Those ROM prices have been cut by more than

50%!!! Check with your local Rockwell dealer for details.

CO PYRIG HT 1981 R O CKW ELL IN TE R N A TIO N AL CO RPO RATIO N

Rockwell does not assume any liability arising out of the app lica tion or use of any

products, circuit, o r software described herein, neither does it convey any license
under its patent rights nor the patent rights of others. Rockwell fu rthe r reserves
the right to make changes in any products herein w ithout notice.

lirFRtCIIVl Page 3

AIM 65 BASIC “SCREEN
EDITOR” PROGRAM

by Joe Hance
Rockwell International

One o f the biggest shortcomings o f the A IM 65 BASIC interpreter is the

lack of any editing features, as it is, it is necessary to retype the entire

line in order to correct a mistake in a BASIC line. By using this “ Screen

Editor" program, however, a line can be corrected by simply typing over

any mistakes.

The editor is invoked by typing “ L IS T # X ’ \ where X is the line number

o f the line you wish to edit. The program “ intercepts" the “ L IS T # "

command in the page zero character fetch routine (thanks to Steve West

and Frank Nunneley in INTE R ACTIVE # 5) and sends the line to the

editor buffer. The line can now be operated on by the “ Screen Editor".

When editing is finished, the line is forced into B A S IC ’s line input rou

tine (thanks to Mark Reardon o f Rockwell for help with basic entry

points).

The commands available are:

1) F I— Move cursor right. This key moves the cursor to the right one

space.

2) F2— Move cursor left. This key moves the cursor position left one

space.

3) F3— Insen at cursor. This key inserts one blank space at the cursor

position. The rest o f the line scrolls to the right.

4) DEL— Delete at cursor. This key deletes one character at the cursor.

The rest o f the line scrolls to the left.

5) C NTL F3 — “ A " . The “ A " symbol is now accessed with a C NTL

F3 when in the editor (but not when in BASIC).

6) RETURN— Leave editor. Two returns will leave the editor and go

back to BASIC after editing a line. Three returns are needed if an

attempt is made to edit a nonexistent line.

All other keys, when typed, will replace the character under the cursor.

The cursor is always in position number 11 on the A IM display. So the

line actually moves by the cursor instead o f the cursor moving past the

line.

To assemble and load the program for a 4K A IM 65, type in the program

without the comments to fit in less than 4K. Assemble and direct object

to tape. Then initialize BASIC and limit memory size to 3695. Escape

to the monitor and use the “ L ” command to load the editor. Reenter

BASIC with the “ 6 ” command. Basic should now respond to the

L IS T #X command.

Example: 10 FOR 1 = 1 TO 100

20 PR IN T I;

30 NEXT K

W e want to edit line 30 and change the “ K ” to an “ I ” .

Type: LIST#30

and we see displayed:

30 N EXT K

A the cursor is here.

Type “ F2” to move the cursor left:

30 N EXT K

A the cursor is now here.

Now type “ I " to replace the “ K ” :

30 N EXT I

A the cursor automatically scrolls.

Now press the RETURN key twice to send the line back to BASIC.

Let’s check it. Type:

LIST 30

and we see: 30 N EX T I

INTERACTIVE GETS NEW PRINTER!

I ’ve officially retired my DecWriter II printer from newsletter duty. A

new Epson MX-80 is now assuming the role o f generating program print

outs. The MX-80 has turned out to be quite a versatile printer and quite

deserving o f all the praise it has received. There are a number o f oper

ating modes including compressed (132 char/line) and emphasized (it

raises the paper slightly and makes another pass to fill in the dots) that

make it ideal for newsletter duty. It ’s moderately fast (80 cps), relatively

inexpensive (under $500) and seems to be very reliable. Anyhow, for

those o f you who would like to hook up the MX-80 to your A IM 65,

stay tuned. In the next issue, w e ’ll present the parallel interface driver

software.

Page 4 I l itK W T IV I

2000 n
2000 5

2000 ; BASIC "SCREEN" EDITOR

2000 ; FOR AIM-65 MICROCOMPUTER

2000 5
2000 ; WRITTEN BY JOE HANCE

2000 ?
2000 5
2000 *=*01OA

OlOA

OlOA 9B OE -WORD UOUT 5 SET UP USER OUTPUT VECTOR

OlOC *=*C8

OOCB 5
OOCB ; THIS IS THE "WEDGE" INTO

OOCB ; BASIC. IT INTERCEPTS

OOCB ; THE COMMANDS BEFORE

00C8 ; GOING TO BASIC

00C8 4
OOCB 4C 67 OE JMP WEDGE

OOCB EA NOP

OOCC *=*18

0018 BUFFR *=*+70

005E *=*0E67

OE67 PHXY =*EB9E

0E67 PLXY =*EBAC

0E67 CLR =*EB44

0E67 OUTPUT =*E97A

OE67 READ =*E93C

OE67 OUTFLG =*A413

OE67 C9 99 WEDGE CMP #*99 5 LOOK FOR "LIST" TOKEN

OE69 FO 08 BEQ LIST

OE6B C9 3A CMP #*3A

0E6D BO 03 BCS NOTNUM

0E6F 4C CC 00 JMP *CC 5 RETURN TO BASIC

0E72 60 NOTNUM RTS

0E73 48 LIST PHA

OE74 20 9E EB JSR PHXY

0E77 AO 01 LDY #1 5 SET UP INDEX

OE79 B1 C6 LDA <*C6),Y 5 GET NEXT CHR

0E7B C9 23 CMP #’# 5 IS IT A # ?

OE7D FO 06 BEQ AOK

0E7F 20 AC EB EXIT JSR PLXY 5 NO # GO BACK

OE82 68 PLA

0EB3 38 SEC « SET CARRY FOR BASIC

OE84 60 RTS

0E85 E6 C6 AOK INC *C6 5 PROCESS LIST#

OE87 DO 02 BNE AOK1

OE89 E6 C7 INC *C7

OE8B A9 55 AOK1 LDA #7U 5 SET OUTPUT TO USER

OEBD 8D 13 A4 STA OUTFLG

0E90 A9 00 LDA #0

I\IIHA<MUI

0E92 8D FD OF STA CRFLG ; CLEAR FLAG

0E95 8D FE OF STA PNTR ; CLEAR PNTR

0E98 4C 7F OE JMP EXIT ; OK, DONE HERE

OE9B

0E9B USER OUTPUT HANDLER

0E9B ALL OUTPUT FROM THE

0E9B LIST COMMAND WILL

0E9B COME HERE

0E9B

0E9B 90 13 UOUT BCC INIT

0E9D 68 PLA 5 GET THE CHR

OE9E 8E FF OF STX SAVX ; SAVE X

OEAl AE FE OF LDX PNTR ? LOAD POINTER

0EA4 95 16 STA BUFFR-2,X 5 PUT CHR INTO BUFFER

0EA6 EE FE OF INC PNTR

0EA9 AE FF OF LDX SAVX

OEAC C9 OA CMP #*0A 5 END OF LINE?

OEAE FO 01 BEQ CR

OEBO 60 INIT RTS

OEB1

OEB1 END OF LINE-CHANGE OUTFLG

OEB1 BACK TO NORMAL OUTPUT

OEB1

OEB1 AD FD OF CR LDA CRFLG 5 END OF LINE

0EB4 FO 08 BEQ FIRST

0EB6 A9 OD LDA #*0D

0EB8 8D 13 A4 STA OUTFLG

OEBB 4C C4 OE JMP EDIT » GO TO EDITOR

OEBE A9 01 FIRST LDA #1 5 FIRST LF IGNORE

OECO 8D FD OF STA CRFLG

0EC3 60 RTS

0EC4

0EC4 ***** EDITOR *****

0EC4

0EC4 ALL LINE EDITING IS DONE HERE

0EC4 THE VALID COMMANDS ARE:

0EC4 FI - CURSOR RIGHT

OEC4 F2 - CURSOR LEFT

0EC4 F3 - INSERT AT CURSOR

OEC4 DEL - DELETE AT CURSOR
0EC4

0EC4 NOTE: THE A CHARACTER IN BASIC

OEC4 CAN BE TYPED BY USING

0EC4 CNTL F3

0EC4

0EC4 A RETURN ENDS THE EDITOR

0EC4

0EC4 A9 00 EDIT LDA #0

OEC6 8D FC OF STA C0L1

Page 5

6 S i l l H A C m i

0EC9

OECB

OECE

OEDl

0ED3

0ED5

0ED7

OEDA

OEDA

OEDB

OEDC

OEDE

OEEO

0EE3

0EE5

0EE7

0EE9

OEEB

OEED

OEEF

OEFl

0EF3

0EF5

0EF7

0EF9

OEFB

OEFD

OEFD

OEFD

OEFD

OEFD

OEFD

OEFD

OEFE

OEFE

OFOl

0F03

OF 05

0F07

0F08

OFOA

OFOC

OFOD

OF 10

OF 12

OF 13

OF 14

OF 16

OF 17

OF 18

OFIA

OF IB

OF IB

AO 00 HERE LDY #0

AE FC OF LDX C0L1

20 44 EB JSR CLR 5 CLEAR DISPLAY

B5 18 LOOP LDA BUFFR,X 5 CHECK FOR END OF LINE

C9 OD CMP #*0D

FO 4A BEQ ENDLN

20 7A E9 JSR OUTPUT 5 OUTPUT LINE

; INCREMENT BOTH POINTERS

E8 INX

C8 I NY

CO 14 LP11 CPY #20 5 ONLY SEND 20

DO FI BNE LOOP

20 3C E9 KEY JSR READ 5 GET A KEY

C9 5D CMP #’3 S IS IT AN F2 ?

FO 61 BEQ LEFT 5 CURSOR LEFT

C9 5B CMP #’C 5 IS IT AN FI ?

FO 42 BEQ RIGHT 5 CURSOR RIGHT

C9 5E CMP #’x ? IS IT AN F3 ?

FO 35 BEQ INSERT 5 INSERT CHAR

C9 7F CMP #$7F 5 IS IT A DELETE ?

FO 34 BEQ DELETE

C9 OD CMP #$0D ? IS IT A CR ?

FO 33 BEQ FINIS 5 GO AWAY

C9 IE CMP #$1E 5 CNTL F3 ?

DO 02 BNE F3

A9 5E LDA #$5E ■1 CHANGE CNTL F3 TO ,,AU

REPLACE CHARACTER

UNDER CURSOR WITH THE ONE

IN ACCUMULATOR

AND SCROLL

48 F3 PHA

; CHECK FOR END OF LINE

20 D6 OF JSR ADDIO

B5 18 LDA BUFFR,X

C9 OD CMP #*0D

DO OC BNE NOCR

E8 INX
EO 45 GPX #69 ; CHECK FOR LINE TOO BIG

DO 04 BNE STORE

68 PLA

4C C9 OE JMP HERE

95 18 STORE STA BUFFR,X

CA DEX

68 NOCR PLA

95 18 STA BUFFR,X

8A TXA

38 SEC

E9 OA SBC #10

AA TAX

; SCROLL

EE FC OF OKI INC C0L1

OFIE 4C 40 OF OK JMP NEGTST

OF21 4C SB OF ENDLN JMP ENDL1

OF24

0F24 ; JUMP TABLE FOR OUT

0F24 ; OF RANGE RELATIVE BRANCHES

OF24 •1
0F24 4C 78 OF INSERT JMP INSR1

0F27 4C A8 OF DELETE JMP DEL2

0F2A 4C El OF FINIS JMP FINIS1

0F2D jl
OF2D ; SCROLL CURSOR RIGHT

0F2D 5
0F2D EE FC OF RIGHT INC C0L1

0F30 20 D3 OF JSR ADD9

OF33 B5 18 LDA BUFFR,X

OF 35 48 PHA

0F36 8A TXA

0F37 38 SEC

OF38 E9 09 SBC #9

OF3A AA TAX

OF3B 68 PLA

0F3C C9 OD CMP #*0D

OF3E FO 08 BEQ LEFT

0F40 ; TEST FOR COLUMN ONE NEGATIVE

0F40 2C FC OF NEGTST BIT COL1

OF43 30 12 BMI OK2

0F45 4C C9 OE JMP HERE

0F48 9
0F48 ; SCROLL CURSOR LEFT

0F48 5
0F48 CE FC OF LEFT DEC COL1

0F4B lO D1 BPL OK

OF4D A9 F5 LDA #*F5

0F4F CD FC OF CMP COL1

0F52 DO 03 BNE OK 2

OF54 EE FC OF INC C0L1

OF57 20 44 EB OK2 JSR CLR

0F5A AO OO LDY #0

0F5C AE FC OF LDX COLl

0F5F ; OUTPUT BLANKS ON LINE

0F5F A9 20 LP10 LDA #*20

0F61 20 7A E9 JSR OUTPUT

OF£>4 C8 I NY

OF65 E8 INX

OF 66 30 F7 BMI LP10

OF68 4C D1 OE JMP LOOP

OF6B ; END □F LINE

OF6B ; OUTPUT BLANKS

OF6B A9 20 ENDL1 LDA #*20

0F6D 20 7A E9 LP1 JSR OUTPUT

0F70 C8 I NY

0F71 CO 14 CPY #20 ; ONLY

0F73 DO F8 BNE LP1

Page 8 m tH A C IIV i

0F75 4C EO OE JMP KEY

0F78 9

0F78 ; INSERT A SPACE U
OF 78 j!

0F78 AO 00 INSR1 LDY #0

0F7A B9 18 00 LF'7 LDA BUFFR,Y

0F7D C9 OD CMP #*0D

0F7F FO 08 BEQ MOVE

0F81 C8 I NY

0F82 CO 44 CPY *68

0F84 DO F4 BNE LP7

0F86 4C C9 OE JMP HERE

0F89 ; MOVE REST OF LIN

0F89 20 D3 OF MOVE JSR ADD9

0F8C 8A TXA

0F8D 8D FB OF STA CURSOR

0F90 B9 18 00 LP9 LDA BUFFR,Y

0F93 C8 I NY

0F94 99 18 00 STA BUFFR,Y

0F97 88 DEY

0F98 88 DEY

0F99 CC FB OF CPY CURSOR
0F9C DO F2 BNE LP9

0F9E A9 20 LDA #*20

OF AO CB I NY

0FA1 99 18 00 STA BUFFR,Y

0FA4 88 DEY

0FA5 4C 40 OF JMP NEGTST

0FA8 «l
0FA8 ; DELETE CHARACTER

0FA8 9
0FA8 20 D6 OF DEL2 JSR ADD 10

OFAB ; CHECK FOR CR

OFAB ; DON' T DELETE A C

OFAB B5 18 LDA BUFFR,X

OF AD C9 OD CMP #*0D

OFAF DO 03 BNE DEL3

OFB1 4C 40 OF JMP NEGTST

0FB4 ; MOVE REST OF LINI

0FB4 AE FC OF DEL3 LDX COL1

OFB7 8A DELI TXA

0FB8 18 CLC

0FB9 69 OB ADC #11

OFBB AA TAX

OFBC B5 18 LDA BUFFR,X

OF BE CA DEX

OFBF 95 18 STA BUFFR,X

0FC1 48 PHA

0FC2 8A TXA

0FC3 38 SEC

0FC4 E9 OA SBC #10

OFC6 AA TAX

0FC7 E8 INX

DON’ 1

THAN

ALLOW MORE

70 CHARS

I1 I IH 4QIIVT Page 9

0FC8 68 PLA

0FC9 C9 OD CMP #*0D

OFCB FO 03 BEQ STOP

OFCD 4C B7 OF JMP DELI

OFDO 4C 40 OF STOP JMP NEGTST

0FD3 5
0FD3 ; ADDS 9,10,OR 11 TO COLUMN

0FD3 ; TO LOCATE PROPER CURSOR

OFD3

0FD3 A9 09 ADD9 LDA #9

0FD5 2C .BYTE *2C

0FD6 A9 OA ADD 10 LDA #10

0FD8 2C .BYTE *2C

0FD9 A9 OB ADD11 LDA #11

OFDB 18 CLC

OFDC 6D FC OF ADC C0L1

OFDF AA TAX

OFEO 60 RTS

0FE1

0FE1 SEND EDITED LINE

0FE1 BACK TO THE BASIC

0FE1 INPUT BUFFER

0FE1

0FE1 MOVE LINE INTO

0FE1 BASIC INPUT BUFFER

0FE1 A2 00 FINIS1 LDX #0

0FE3 B5 18 LPA LDA BUFFR,X

0FE5 C9 OD CMP #*0D

0FE7 FO 05 BEQ QUIT

0FE9 95 16 STA *16,X

OFEB E8 INX

OFEC DO F5 BNE LPA

OFEE ' STORE A NULL AT THE END

OFEE A9 00 QUIT LDA #0

OFFO 95 16 STA *16,X

0FF2 ! FIX THE STACK TO RETURN

0FF2 68 PLA

0FF3 68 PLA

0FF4 i X AND Y HAVE BUFFER ADDRESS

0FF4 A2 15 LDX #*15

0FF6 AO 00 LDY #*0

0FF8 1 BASIC LINE INPUT ROUTINE

0FF8 4C 87 B2 JMP *B287

OFFB ! RAM STORAGE LOCATIONS

OFFB CURSOR *=*+1

OFFC C0L1 *=*+1

OFFD CRFLG *=*+1

OFFE PNTR *=*+1

OFFF SAVX *=*+1

1000 .END

Page 10 i i i t R m t E

NUMBER CONVERSION
PROGRAM

2000

OECE

OECE

*=»0ECE

START

Jens Grysbjerg
UNESCO, Box 3311
Dakar, SENEGAL

When working in BASIC, it ’s useful to have a number conversion pro

gram which goes from HEX to D EC IM AL and vice versa. Here are two

routines which do just that.

The First program accepts a decimal number o f up to five digits and

converts it to a hex number from $0000 to $FFFF. An error message is

displayed i f the number exceeds this range. Start this program running

at $0ECE and enter the decimal number you wish to convert. I f it ’s less

than Five digits long press the RETURN key to terminate it. The hex

equivalent will be displayed. The DEL key may be used to correct any

typing eirors on input. I f you’d like to do another number conversion,

press the RETU RN key, otherwise press ESC to go back to the monitor.

The printer may be enabled to print the results i f you wish.

The second program converts hex numbers ($0000 to SFFFF) to decimal

and starts running at $0F62. Otherwise, it works just like the previous

routine but with the number o f digits you can input limited to four.

The programs use 3 zero-page locations ($F0, $F1 and $F2) which are

normally used for the Editor ‘F ’ command. These locations are outside

the zero-page area used by BASIC so when you need to convert numbers,

you can exit and reenter BASIC without damaging your program. Be

sure to limit the memory size to 3789 ($0ECD) when BASIC is First

entered.

OECE

OECE A9 00

OEDO 85 F2

0ED2 85 FI

0ED4

0ED4 20 3E E8

0ED7 20 3E E8

OEDA 20 3E E8

OEDD

OEDD 20 5F E9

OEEO

OEEO C9 OD

0EE2 FO 15

0EE4

0EE4 C9 30

0EE6 90 04

0EE8 C9 3A

OEEA 90 06

0EEC

OEEC 20 5C E9

OEEF 4C EO OE

0EF2

0EF2

0EF4

AO 07

CC 15 A4

;CLEAR HI AND LD

LDA 10

STA HI

STA L0

;OUTPUT 3 BLANKS

JSR BLANK

JSR BLANK

JSR BLANK

;BET A CHR, ECHO D/P

NXTCHR JSR RDRUB

;RETURN?

TEST CUP HOD

BEQ FIVE

(DECIMAL CIFFER?

CMP I<30

BCC INVALI

CUP H 3 A

BCC VALID

;INVALID, BACKSPACE

INVALI JSR RB2

JMP TEST

;5 DIGITS ?

VALID LDV 17

CPY CURP02

2000 ;THIS ROUTINE CON

2000 CERTS DECIMAL NUM 0EF7 B0 E4 BCS NXTCHR

2000 BERS UP TO 65535

2000 ;TO HEXADECIMAL 0EF9 ;OUTPUT SP

2000 INT =I00F0 0EF9 20 3E E8 FIVE JSR BLANK

2000 L0 =$OOF1

2000 HI =$00F2 0EFC jADJUST TO MSD

2000 ERROR =<E391 0EFC A2 03 LDX 13

2000 CURP02 =$A415

2000 RDRUB =*E95F OEFE ;GET A DIGIT

2000 RB2 =<E95C OEFE BD 38 A4 NEXT LDA DIBUFF,X

2000 BLANK =»E83E

2000 EQUAL =»E7D8 OFOl ;ALL DIGITS DONE?

2000 OUTPUT =*E97A OFOl C9 20 CUP 1’

2000 NUMA =IEA4i 0F03 F0 08 BEQ DONE

2000 READ =$E93C

2000 CRL0W =*EA13 0F05 ;C0NVERT TO DECIMAL

2000 DIBUFF =$A438 0F05 20 33 OF JSR C0NV

i y u h a c i u i Page 11

0F08 ;NUMBER > 65535? 0F45 ;ADD OLD VALUE

0F08 BO 23 BCS OVERFL 0F45 68 PLA

0F46 65 FI ADC LO

OFOA ;SET UP NEXT DIGIT OF48 85 FI STA LO
OFOA E8 INX 0F4A 68 PLA

OFOB 90 FI BCC NEXT 0F4B 65 F2 ADC HI

0F4D 85 F2 STA HI

OFOD ;OUTPUT = SP $

OFOD 20 D8 E7 DONE JSR EQUAL 0F4F ;MULTIPLY BY 2

0F10 20 3E E8 JSR BLANK 0F4F 06 FI ASL LO
0F13 A9 24 LDA *’*’ 0F51 26 F2 ROL HI
0F15 20 7A E9 JSR OUTPUT

0F53 {OVERFLOW?
0F18 ;RESULT TO D/P 0F53 BO OC BCS END
0F18 A5 F2 LDA HI

OFIA FO 03 BEQ SUPRES 0F55 *, ADD NEM VALUE
0F1C 20 46 EA JSR NUMA 0F55 A5 FO LDA INT
0F1F A5 FI SUPRES LDA LO 0F57 65 FI ADC LO
0F21 20 46 EA JSR NUMA 0F59 85 FI STA LO

0F5B A5 F2 LDA HI
0F24 ;HA IT FOR ANY KEY 0F5D 69 00 ADC «0
0F24 20 3C E9 WAIT JSR READ 0F5F 85 F2 STA HI

0F27 ;CR AND LF TO D/P 0F61 60 END RTS
0F27 20 13 EA JSR CRLOH 0F62 .END

0F2A 4C CE OE JMP START

0F2D iNUMBER > iFFFF,

0F2D ;PR I NT ’ERROR’

0F2D 20 91 E3 OVERFL JSR ERROR

OF 30 4C 24 OF JMP WAIT 2000 ;THIS ROUTINE CON
0F33 2000 CERTS HEXADECIMAL
OF 3 3 ;HITH THANKS TO 2000 iNUMBERS UP TO FFFF

2000 ;TO DECIMAL
0F33 ;LEO SCANLON 2000 FLAG =i00F0

2000 LO =i00Fl
0F33 ;ASCII,SO CLEAR MSD 2000 HI =i00F2
0F33 29 OF CONV AND HOF 2000 NOUT =iEA51
0F35 85 FO STA INT 2000 BLANK =$E83E

2000 OUTPUT =iE97A
0F37 ;SAVE OLD VAL ON STK 2000 DIBUFF =iA43B
0F37 AS F2 LDA HI 2000 RDRUB =»E95F
0F39 48 PHA 2000 CURP02 =iA415
0F3A AS FI LDA LO 2000 EQUAL =iE7D8
0F3C 48 PHA 2000 READ =*E93C

2000 RB2 =iE95C
OF 3D ;MULTIPLY BY 4 2000 CRLOM =»EA13
0F3D 06 FI ASL LO 2000 PACK =iEA84
0F3F 26 F2 ROL HI 2000 HEX =»EA7D
0F41 06 FI ASL LO 2000 *=»0F62
0F43 26 F2 ROL HI 0F62

INTERACTIVE;

0F62 START 0FA3 ;NXT ASCII DBYTE

0FA3 CA DEX

0F62 iOUTPUT 3 SP AND 1 * 0FA4 CA DEX

0F62 20 3E E8 JSR BLANK 0FA5 C8 INY

0F65 20 3E EB JSR BLANK

0F68 20 3E E8 JSR BLANK 0FA6 ;ALL CHR PACKED?

0F6B A9 24 LDA §’*’ 0FA6 EO 04 CPX 14

0F6D 20 7A E9 JSR OUTPUT 0FA8 BO EA BCS PAKNXT

0F70 ;CLEAR DIBUFF+3 OFAA ;’SP = SP’ TO D/P

0F70 A9 00 LDA 10 OFAA 20 3E E8 JSR BLANK

0F72 8D 3B A4 STA D1BUFF+3 OFAD 20 D8 E7 JSR EQUAL

OFBO 20 3E E8 JSR BLANK

0F75 ;GET A CHR, ECHO D/P

0F75 20 5F E9 NXTCHR JSR RDRUB 0FB3 ;CLEAR FLA8

0FB3 AO 00 LDY 10

0F78 ;RETURN? 0FB5 B4 FO STY FLA8

0F78 C9 OD TEST CUP H O D

0F7A FO 12 BEQ FOUR 0FB7 ;COUNT = 0

0FB7 A2 00 NXTDI6 LDX 10

0F7C ;HEXADECIMAL CHR? 0FB9 38 SEC

0F7C 20 84 EA JSR PACK

0F7F 90 06 BCC VALID OFBA ;SUBTRACT LOH

OFBA A5 FI SUBT LDA LO

0F81 ;NOT HEX, SO BACKSP OFBC F9 F7 OF SBC TABL,Y

0F81 20 5C E9 JSR RB2 OFBF 85 FI STA LO

0F84 4C 78 OF JMP TEST

0FC1 (SUBTRACT HIGH

0F87 ;4 DIGITS? 0FC1 C8 INY

0F87 AO 07 VALID LDY 17 0FC2 A5 F2 LDA HI

0F89 CC 15 A4 CPY CURP02 0FC4 F9 F7 OF SBC TABL,Y

0F8C BO E7 BCS NXTCHR 0FC7 ;BACK TO LOH

0FC7 88 DEY

0F8E ;ADJUST X TO CURP02 0FC8 (NEGATIVE?

0F8E AE 15 A4 FOUR LDX CURP02 0FC8 90 05 BCC ADDBCK

0F91 CA DEX

OFCA iSTORE HI i CONTINUE

0F92 ;Y = BYTE NO. OFCA 85 F2 STA HI

0F92 AO 00 LDY 10 OFCC E8 INX

OFCD BO EB BCS SUBT

0F94 ;HI-NIBBLE ASCII/HEX

0F94 BD 37 A4 PAKNXT LDA DIBUFF-1, X OFCF ;T00 FAR, SO ADDBACK

0F97 20 7D EA JSR HEX OFCF A5 FI ADDBCK LDA LO

0FD1 79 F7 OF ADC TABL,Y

0F9A ;L0 NIBBLE ASCII/HEX 0FD4 85 FI STA LO

0F9A BD 38 A4 LDA DIBUFF,X

0F9D 20 84 EA JSR PACK 0FD6 (DIGIT ZERO?

0FD6 8A TXA

OFAO 99 FI 00 STA LO,Y 0FD7 DO 04 BNE NOZERO

0FD9 24 FO BIT FLAG

OFDB 10 06 BPL SUPRS

m r i t A c m r

TIDBITS
Users o f A IM 65 systems who would like to expand their keyboards will

find a dip cable that has piggyback sockets on both ends o f interest. This

allows another 16 pin dip to be plugged in on top o f the cables dip plug

at either end o f the cable.

It ’s available from:

ARIES ELECTRONICS

BOX 130

FRENCHTOW N, N.J. 08825

Order part #16-XXX-208, where X X X is the length in inches, i.e.

12 " = 0 1 2 .

Cost 12" (5 11.72 ea., 24" (a 14.00 ea., 36" (a 14.00 ea.— other lengths

available

R. Riley

Box 4310

Hint, M I 48504 -0-

OFDD ;SET FLAG

OFDD 38 NOZERO SEC

OFDE 66 FO ROR FLAG

OFEO ;OUTPUT DIGIT

OFEO 20 51 EA JSR NOUT

0FE3 ;NEH EXP OF 10

0FE3 C8 SUPRS INY

0FE4 C8 INY

0FE5 ;DONE 4 DIGITS?

0FE5 CO 08 CPY tB

0FE7 90 CE BCC NXTDIG

0FE9 ;YES, OUTPUT REHAIND

0FE9 A5 FI LDA LO

OFEB 20 51 EA JSR NOUT

OFEE ;WAIT FOR ANY KEY

OFEE 20 3C E9 JSR READ

0FF1 ;CLEAR & GOTO START

0FF1 20 13 EA JSR CRLOH

0FF4 4C 62 OF JMP START

0FF7 10 27 TABL .NOR 10000

0FF9 EB 03 .HOR 1000

OFFB 64 00 .NOR 100

OFFD OA 00 .HOR 10

OFFF »=*

OFFF .END

Page 13

EASIER USR
FUNCTION USE

George Meldrum
Rockwell International

When using Basic, it is often necessary to “ drop” into machine language

for certain operations. With A IM 65 BASIC, this is accomplished with

the USR function. The starting address o f the machine language routine

needs to be “ poked” into memory locations $0004 and $0005 and the

routine called with a statement something like I= U S R (Y) where ‘I ’ is a

variable which can be returned to BASIC from the machine code and ‘Y ’

is a variable which can be passed to the machine language routine from

BASIC. W e ’ll discuss how to use these variables in a moment.

Normally, if multiple machine language subroutines are to be used, each

one o f their addresses must be converted to decimal and “ poked” into

the appropriate locations before they can be used. This can easily lead to

errors and takes up some room in the program.

What I have written is a sort o f a subroutine “ distributor” . That is, all

subroutine calls get routed through a special machine language routine

that determines exactly which o f the subroutines gets called. It uses a

variable passed from Basic (like the ‘Y ’ variable) to figure this out.

Now, about those variables. When we execute the statement I= U S R (Y),

the ‘Y ’ variable gets stuffed into a special Floating Point Accumulator in

memory. Since a typical machine language program cannot readily use

this number in its floating point format, it must usually be converted to

an integer. Fortunately, BASIC contains such a subroutine to do that. It's

located at $BEFE and converts this floating point format number to a

two-byte signed integer in locations S00AC (M SB) and $00AD (LSB).

Simply perform a JSR $BEFE instruction to accomplish this. O f course,

this variable ‘Y ’ must be an integer within the range o f +32,767 to

—32,768 or an FC error will occur.

A two-byte signed integer can also be returned to BASIC through the

variable ‘ I ’ (see above) by placing the MSB o f the integer in the 6502
Accumulator and the LSB in the Y register and using the instruction JSR

$C0D1 to convert that number to a floating point format and placing it in

the Floating Point Accumulator. Upon returning to BASIC via an RTS

instruction, that value will be found in the ‘ I ’ variable.

As we said before, it ’s the variable that gets passed FROM BASIC that

determines which o f the machine language subroutines will get called.

The subroutine distributor takes this variable and indexes its way into a

list o f subroutine addresses (see M A TR IX in the listing). The order that

the subroutine addresses are placed in this list determines what value the

variable will have to be to call it. For example, i f you wish to call SUB0

(in the listing) the variable would have to equal zero. To call SUB1, the

variable would have to equal 1, and so on.

Page 14 l l l l l RACTIYr

2 0 0 0 ; *

2 0 0 0 ; * * * *

2000 ;** PROGRAM TO IMPLEMENT THE **

2000 ;** USR FUNCTION OF BASIC **

2000 ;** BY GEORGE MELDRUM **

2000 ;** JUNE 29, 1981 **

2 0 0 0 ; * * * *

2000 ;********************************

2000 ; ZERO PAGE EQUATES

2000 VECTOR =*D7 ;JUMP VECTOR FOR SUBROUTINES

2000 LSB =*AD ;LOW BYTE FROM FPHEX ROUTINE

2000 FPHEX =*BEFE ;CHANGE FLOATING POINT TO HEX

2000 *=*F00 ;STARTING ADDRESS

OFOO

OFOO 20 FE BE JSR FPHEX ;CONVERT ARGUMENT TO HEX

0F03 A5 AD LDA LSB ;GET ARGUMENT

OF 05 OA ASL A ;MAKE IT TWICE AS LARGE

0F06 AA TAX ;PUT IT IN INDEX REGISTER

0F07 BD 15 OF LDA MATRIX,X ;GET LOW BYTE OF ADDRESS

OFOA 85 D7 STA VECTOR ;PUT IT IN JUMP VECTOR
OFOC E8 INX

OFOD BD 15 OF LDA MATRIX,X ;GET HIGH BYTE

OF 10 85 D8 STA VECTOR*1 ;PUT IT INTO JUMP VECTOR

OF 12 6C D7 00 JMP (VECTOR) ;JUMP TO SUBROUTINE

OF 15 IB OF MATRIX .WORD SUBO ;STARTING ADDRESSES OF
OF 17 IF OF .WORD SUB1 ;THE SUBROUTINES
OF 19 23 OF .WORD SUB2

OF IB ;EXAMPLES OF SUBROUTINES

OF IB 20 A3 E7 SUBO JSR *E7A3
OFIE 60 RTS

OF IF 20 A7 E7 SUB1 JSR *E7A7

0F22 60 RTS

0F23 20 FO E9 SUB2 JSR *E9F0

OF26 60 RTS

0F27 .END

I l I T E B ^ O T i V E i Page 15

CPU CLOCK CIRCUITS
Rockwell is now recommending an alternative clock circuit to the ones

that were presented on page 2-16 o f the 6502 Hardware Manual. E vi

dently, the RC Network and the Parallel Mode Crystal Controlled Os

cillator just haven’t proved reliable enough in operation. (Something to

do with the internal design o f the 6502). This problem affects 6502's

from A L L three manufacturers.

Here is the recommended clock oscillator circuit and some additions to

it which will allow the use o f low-cost crystals and/or be able to operate

with slow memory or peripheral devices.

Figure 1 BASIC CRYSTAL OSCILLATOR CIRCUIT

A l or 2 MHz crystal can be used in the circuit in figure l to directly

drive the single phase clock input o f an R6500 family CPU. In this case,

you'll need to connect the output to the phase 4> (IN) pin on the CPU

(pin #37 on the R6502).

Perhaps you'd like to use a low-cost crystal or, maybe you need a two-

phase clock for driving an R6512, for example. You can do both with

just one T T L package shown in figure 2.

Clock.
Input

Figure 2 DIVIDER/TWO PHASE CIRCUIT

MPR CLR
" D Q

X = Clock/4
Y = Clock/2

X

; y■o

h
PP CLR
D Q $1 (4> o)

4> 2

To use this circuit, you need a crystal either two or four times faster than

the desired system clock rate. The position o f the jumper (‘X ’ or ‘Y ’)

determines whether the circuit will divide the incoming clock frequency

by two or four. For a really cost effective clock design, you can use a

3.5795 color tv crystal and divide it down by four to get system clock

freq. o f around 900 KHz. (close enough to 1 MHz for most applications.)

Or, if you plan on using an R6551 AC IA in your design, you can avoid

having to use two crystals by using the 1.8432 MHz baud rate crystal

in the system clock and divide it by two to provide about a 920 KHz

clock for your CPU. The signal from the last inverter gate in the clock

circuit will go directly to your AC IA chip. By the way, this same divider

circuit is used on the A IM 65 to divide a 4 M Hz clock down to 1 MHz.

The outputs from the second section o f the 7474 flip-flop can be used

as a two phase clock circuit. W e ’ve verified this by installing an R6512

in our A IM 65. Two very m inor mods were required but it works great.

(Since any mods to your A IM 65 will invalidate your warranty, I don’t

recommend that you try this. But, if you H AVE to know what we did

to get an R6512 running in an A IM 65, here it is: install a jumper from

pin 8 o f Z10 to pin 3 o f Z9 and another jumper from pin 36 o f Z9 to pin

37 o f Z9).

There are circumstances, such as when you have a slow block o f memory

or a slow peripheral device, when you would like to have your system

run at full speed at all times except when you are accessing that slow

section o f memory or peripheral device. W ell, the circuit in figure 3 will

help you do just that.

The CS input gets connected to the low true chip select that enables the

slow memory or peripheral. Whenever that signal is low (indicating that

the peripheral or memory is being selected) the clock input signal gets

divided in half to slow the CPU down. When the CS line is high, every

thing works normally (the clock signal goes through the circuit unaltered).

-Ph "

Page 16 i Si t e h a c t s i / e i

TEXT BUFFER DATA
RECOVERY TECHNIQUES

by Dr. Lawrence A. Ezard
2149 Kentwood Dr.
Lancaster, PA 17601

This section suggests ways to “ recover” the information in the Text

Buffer i f you have inadvertently re-initialized the Editor with an E com

mand before permanently storing the old Test Buffer contents onto a

cassette tape.

The effect o f an inadvertent E command depends entirely on how far you

have progressed since typing E. Consider the following situations:

1. I f you merely typed E, and have not yet responded to the FRO M =

prompt, the original Text Buffer contents are still intact, and you can

escape to the Monitor by pressing ESC. The contents o f OODF to

00E6 are also intact.

2. I f you typed in an address in response to the FRO M = prompt, and

have pressed RETURN, but then pressed ESC the Editor will have

stored the specified starting address in two parameters in memory—

B O TLN (addresses SOOEI and $00E2) and TE XT (addressed $00E3

and S00E4). However, the end-of-text character, $00 will not yet be

stored in the starting address location.

3. I f you typed an address and RETURN in response to both the

F R O M = and T O = prompt and then press ESC, the Editor will have

stored the specified starting address in TE XT (addresses 00E3 and

00E4) and the specified ending address in END (addresses 00E5 and

00E6). The value contained at NO W LN (addresses OODF and OOEO)

and the value contained at BOTLN (addresses 00E1 and 00E2) will

be the specified starting address. The end-of-text character, $00, will

be stored in the specified starting address location.

As you can see, an inadvertent E command may do as little damage as

affecting no Text Buffer locations (1 above) or only one Text Buffer

location and some parameters in memory or it may affect some— or

most, or all— o f the information in the Text Buffer (4 above). Clearly,

your recovery procedure depends on how much damage was done, but

here are the corrective steps you need to take to reconstruct the original

Text Buffer:

1. I f you responded to the FROM = with ESC all addresses associated

with NO W LN , BO TLN , TE X T and END should be unchanged and

the text buffer memory should be unchanged. Use the M command

to assure that this is true.

2. I f you responded to the FR O M = prompt with the address then re

alized that a mistake had occurred and you pressed ESC:

A. The addresses associated with TE XT and BO TLN must be re

stored using the M and / command.

B. Address information at N O W LN and END as well as the text

buffer memory should be checked to be sure that it is unchanged

and satisfactory using the M command.

3. I f you responded to the FRO M = and T O = prompt with address in

formation and then pressed ESC:

A. The addresses associated with N O W LN , BO TLN , TEXT, and

END must be restored using the M and / commands.

B. Since the address specified in the response to the FR O M = prompt

contains the end-of-text character, 00, this data must be restored

to its original ASCII code value using the M and / command.

4. I f you responded to the FRO M = and T O = prompt with address in

formation and also entered some text the restoration procedure is as

follows:

A . Use the M command to display the current address associated with

BOTLN (contents o f address 00EI and 00E2). Display the con

tents o f this address and use the / command to change the contents

o f this location from hexadecimal 00 to hexadecimal 40 corre

sponding to ASCII code character)®. For example, i f the current

data at 00E1 is 0B (low order byte address) and the current data

at 00E2 is 02 (high order byte address) then the M command

would be used to display the contents o f address 020B. The value

o f this address is the end-of-text character 00 which should be

changed to an easily recognized, valid ASCII code (such as 40

for the symbol @) which occurs nowhere else in text memory

space. This means that it will be possible to easily find this char

acter later using the F command and change it to its correct ASCII

code using the C command.

B. Using the M and space commands search memory from the cor

rect original starting address using the M and SPACE commands

until the entry 0D followed by the end-of-text character 00 is

found. The address associated with the 00 is the end o f text for

the original text buffer. This address should be stored in BOTLN

(addresses 00E1 and 00E2).

C. The addresses associated with N O W LN , TE XT and END must

be restored. Use the M and / commands to restore TEXT and

END to their original values. Set the value o f N O W LN equal to

the original value o f TEXT. This sets N O W LN to the beginning

o f the text.

I\ l l K\CII\I Page 17

D. Finally, the undesired lines o f text can be deleted using the K

command. The original desired lines o f text can be entered into

the text buffer using the I or R command.

After all the recovery procedures above have been completed the actual

recovery should be verified. Use the T command to re-enter the text

editor and display the top line. The D command can then be used to

move down a few lines to assure proper operation. The B command

should be used to verify that the last line is fetched and printed. The U

command could be used to print a few lines above the last line o f text

to assure proper operation. I f desired the L command can be used to list

all the lines o f text.

TEXT BUFFER DATA RECOVERY USING
CASSETTE TAPE

A cassette tape recording should always be made o f the information in

the text buffer memory. Then if vital information is inadvertently de

stroyed the cassette tape can be used to restore the information using the

E command.

OTHER TEXT BUFFER DATA RECOVERY
TECHNIQUES
An analysis o f the operation o f the text editor reveals that proper oper

ation o f the text editor commands requires two sets o f conditions.

1. The addresses associated with N O W LN , BO TLN , TEXT, and END

must be correct.

2. The only occurrence o f 00 in the entire text buffer memory must be

at the address specifed by BOTLN. Furthermore, the 00 data must

follow the ASCII code OD for carriage return. I f there are any 00

entries prior to the actual end o f the text it will not be possible for

commands such as D, F, and C to go beyond the first occurrence o f

the 00.

ADDRESS PARAMETER
PARAMETER

NAME

OODF

OOED

Line pointer address low byte

Line pointer address high byte

NO W LN

00E1 -Actual text ending address low byte BOTLN

00E2 Actual text ending address high byt^

This is the address of the end-of-text

character 00.

00E3 Text Buffer starting address low byte TE XT

00EA Text Buffer starting address high

byte

00E5 Text Buffer ending address low byte END

00E6 Text Buffer ending address high byte

With the above information a recovery technique can be formulated.

1. Use the M and / command to set TE XT to the first address in the text

buffer memory. Address 00E3 should be set to the low order byte

starting address. Address 00E4 should be set to the high order byte

starting address.

2. Use the M and / command to set N O W LN to the first address in the

text buffer memory. Address OODF should be set to the low order

byte starting address. Address 00E0 should be set to the high order

byte starting address.

3. Use the M and / commands to set END to the last available address

in the text buffer memory. Address 00E5 should be set to the low

order byte ending address. Address 00E6 should be set to the high

order byte ending address.

4. The most difficult task now left is to restore the proper address as

sociated with BOTLN. Address 00E1 must contain the low order byte

address o f BOTLN and address 00E2 must contain the high order

byte address of BOTLN.

A . I f the address associated with BOTLN was recorded before in

formation in the text buffer memory was destroyed this original
address should be entered for BO TLN using the M and / com

mands. I f the BOTLN address is not known it must be found by

the method outlined below.

B. In either o f the cases the presence o f any 00 entry prior to the

correct BO TLN address must be found and restored to its original

value. This can be done in the following manner:

(1) Re-enter the text editor with the T command.

(2) Use the F command to search for a character that you are sure

does not exist in the memory space (an example is!)

(3) Since the character is not found the END message will be

displayed or the display will be blank. Now exit the text editor

with the Q command.

(4) The M command followed by the address OODF is now en

tered to find the value o f the current active line specified by

the line pointer, NO W LN . The contents o f address OODF is

the low order byte address o f N O W LN . The contents o f ad

dress 00E0 is the high order byte address o f NO W LN .

(5) The NO W LN address is the address o f the first byte o f data

on the line above the line containing the data 00.

(6) Use the M command to access the data on the line specified

by NO W LN by typing M followed by the N O W LN address.

Page 18 I l I E B M r e E

(7) Use the SPACE command to search successive memory lo

cations for the occurrence o f 00.

(8) I f this occurrence is undesirable use the / command to change

the 00 to an easily recognized character that is used nowhere

else in memory. The hexadecimal value 40 corresponding to

the ASCII character @ is probably a good choice.

(9) Repeat steps B (1) through B (8) until all undesirable 00 entries

are deleted from the text memory.

C. The desirable end-of-text character 00 entry can be recognized

because it will satisfy two requirements.

(1) The desirable 00 must follow the carriage-retum ASCII code

0D.

(2) When the address o f the desirable end-of-text character 00

is placed in BOTLN correct operation o f the text editor com

mands will be restored. This can be checked with commands

such as T , B, U, D, and F.

D. There is just one final step required to restore the text editor data.

In step B (8) above any undesirable 00 entries were changed to

40 corresponding to the ASCII code character @ . A ll these @

characters must be restored to their original correct ASCII code.

This is most easily done using the text editor.

(1) Re-enter the text editor using the T command.

(2) Use the F command to find each @ character.

(3) When this line is found use the C command to change the @

character to its original correct value. The operator must be

able to recognize the correct value to insert by reading the

line.

MULTIPLE TEXT BUFFERS
It is possible to have several Text Buffers reside in memory at the same

time. The operating rules are quite simple.

1. Each Text Buffer memory block to be set up must be initialized by

using the E command.

2. Before initializing the next Text Buffer the address parameters as

sociated with N O W LN , BO TLN , TE XT and END in memory loca

tions OODF to 00E6 must be recorded for future use.

3. To access a particular Text Buffer the operator must load the partic

ular Text Buffer address parameters associated with N O W LN ,

BO TLN , TEXT, and END in their respective memory locations.

SUPER-SIMPLE
SINGLE-LINE

DISASSEMBLER
You want to hear the simplest method o f disassembling a single instruc

tion line to the display?

Tum the printer o ff and enter the ‘K ’ command as usual followed by the

starting address. When you get the '/ ' prompt press the (period) key

BUT D O N T RELEASE IT YET. The first instruction should now be

dissassembled on the display. Now, hold down any other key (the comma

key is convenient) and then release the period key. At this point the sec

ond instruction will be displayed. Hold down the period (V) key again

and release the comma (' , ’) key. Another line will be displayed. I f you

want to skip ahead a number o f instructions, release both keys and watch

the display. When you wish to stop it, simply hold down a key.

Get it? I ’ll leave it up to you to figure out exactly why it works.

But we should all thank Kurt Peter (Kolner Str. 6, 6053 OBERTS-

TRAUSEN 2, West Germany) for the tip. What a great new feature he

discovered. Thanks Kurt! -©-

4. The actual re-entry to the Text Buffer is then achieved from the A IM

65 monitor using the T command.

TEXT LINE LENGTH LIMITATIONS
When using the text editor in the read mode there is a maximum limit

o f 60 characters allowed on a single line. I f an attempt is made to enter

more than 60 characters from the keyboard the result is that the characters

are not entered and there is no response. The RETURN key should be

pressed to terminate this line.

The change command, C, can be used to add characters, delete char

acters, or change characters on a line. I f using the C command results
in more than 60 characters being placed on a line it is possible that the

text editor will not respond to key commands from the keyboard and that

the response, i f any, will be unpredictable. To regain control the operator

can use the reset switch to re-enter the A IM 65 monitor. The text editor

can now be re-entered with the T command. The F and K commands

can be used to find and delete text lines which exceed 60 characters. The

desired text information can then be added using the I command.

Before the C command is used to add characters to a line it is recom

mended that the operator examine the line length to be sure that the new

line length will not exceed 60 characters when the change has been

completed. -©-

IVTER4 CTIVF

LETTERS TO THE EDITOR
Dear Editor,

In the back o f the A IM 65 BASIC USER M A N U A L (Appendix F), you

present a program which converts a hex number to a decimal one. The

only problem with it is that the range o f hex numbers is limited to from

$0000 to $7FFF. I modified the Basic portion slightly to handle hex

numbers up to $FFFF. Here’s the new program:

1 PRINT "HEX/DEC C O NVERTER”

2 PR INT “ TYPE-IN 4 FIGURE HEX N U M BE R ”

5 POKE 4,161: POKE 5,15

10 DIM H (4)

15 INPU T H$

20 FOR 1=1 TO 4

25 H (I)= A S C (M ID$ (H ,I , I))

30 POKE 4048 + 1,H (I)

35 N EXT

40 X = USR (I)

45 IF X < 0 THEN X =6 55 3 6 -A B S (X)

50 PR INT X

55 GOTO 15

Hope you find it useful.

Sincerely,

M .I. Forsyth-Grant

Catworth Court, Rhydspence,

Whitney, Hereford
ENG LAND HR3 6EY

Dear Editor,

I have read with interest Mark Reardon’s article “ T T Y Output Utility

Programs” in Issue 5 o f “ Interactive” . I have had the same problem

when I wanted to switch between keyboard and T T Y under software

control in order to enter data from the keyboard and use the t t y t0 print

the processed and formatted data.

After using a poor approach with a USR routine that was very slow I

found a much simpler way which permits you to switch from T T Y to

keyboard control and back completely under software control.

This method manipulates the status o f bit 3, port B (PB3) o f the Z 32

V IA . Normally this bit is programmed as an input and its state is de

termined by the position o f S3, the TTY-K B D switch. By executing the

instruction:

Page 19

POKE 43010,63 in BASIC, or

LD A#$3F

STA$A802 in assembler language this bit is re-progammed as an output.

After this has been done the state o f the bit can be set high = Keyboard

by executing:

POKE 43008,252 in BASIC, or

LD A#$FC

STA$A800 in assembler language.

It is set lo w = T T Y by executing:

POKE 43008,244 in BASIC, or

LD A #$F A

STA $A800 in assembler language.

The switch should be set in position “ K B D ” . The method also works

when it is set to “ T T Y ” but the software and the hardware try to pull

the level at the pin in different directions and the V IA might get some

what hot. The Baud rate setting also has to be initialized, either by en

tering the baud rate manually or, i f the T T Y has a keyboard by doing

the normal T T Y startup once.

Erich A . Pfeiffer, Ph.D., P.E.

265 Viejo Street

Laguna Beach, CA 92651

Dear Mr. Rehnke:

I find that the MCT-2 for the safety isolation circuit on page 4 o f Inter

active No. 4 is difficult to obtain.

But the 4N33 in the Application Note 230, RS-232C Interface For A IM

65 is easy to obtain.

Now, in Interactive No. 5, Easy RS 232C, I see you are using the

MCT-2 instead o f something like a 4N33.

When people write constructive articles I wish they would give a number

o f devices that would work equally as well. You may want to list some

o f these in your next issue.

Cordially,

R. D. Overby

805 North 11th Avenue’

Fargo, North Dakota 58102

Page 20 i r w r ^ i m T T f l

HEAR YOUR AIM 65
Robert P. Barrett
Messiah College
Grantham PA 17027

A small addition to the A IM that has helped much in saving/loading

cassettes is a crystal earphone. It is soldered to the ground and the A U

DIO IN line from the recorder. Both lines are on top o f the board & the

AU D IO IN can be located as it goes from C- l l to a hole thru the circuit

board and finally on to pin L o f edge connector J1.

A crystal earphone has a high impedance and does not draw significant

power. Most cassette player/recorders send the signal being recorded

back out the monitor jack so that the earphone “ listens in ” during both

the loading and saving (dumping) operations.

Hearing what is being recorded or played provides the following help:

1.) It is easier to search a cassette for the start o f a program.

2.) There is an audible reminder o f the tap gap setting and i f it is still

at the default value.

3.) One can sometimes hear tape drop out and other recording problems.

4 .) The operator is afforded the general pleasure o f hearing a tape going

into the A IM and seeing the tape blocks being counted.

The proper crystal earphone is available for $1.99 from Heathkit (part

no. 401-36)

(E D ITO R ’S N O TE: M r. B arret was k ind enough to send m e the proper
crystal earphone so I could try it out. Works great!!!) -©-

AIM 65 COURSE
TO BE OFFERED

The Foundation for Computer Education Inc has announced plans for

holding a number o f microcomputer seminars around the country. These

three day seminars are based on the A IM 65 and are intended to introduce

the student to microcomputer hardware, software and interfacing. The

fee for the course is S850.00 and includes the A IM 65 as well as some

additional documentation and class notes. For more information on the

schedule and the cities involved contact the company at Box 668, Ogden,

Iowa 50212. Their phone number is 515-275^4524 or 712-843-2000.

-©-

LOW COST
CONTROLLER RECIPE

There are certain applications where it makes sense to build your own

dedicated controller system. I f you feel the need, here is a design that

could start your grey matter working.

It uses an R6502 processor and an R6532 RIOT (R A M , I/O and Timer)

chip, along with a low-cost 2716 EPROM, a color T V crystal and a few

other parts.

There are even a few spare inverter gates that can be used for I/O in

terfacing functions. The clock and divider circuit is from one o f our ap

plication notes (Low-Cost Crystal Oscillator for Clock Input. Document

#208) The 7474 is used to divide the 3.579 Mhz clock by four, which

produces a system clock frequency o f about 900 Khz. A very simple

Power-On-Reset circuit, consisting o f D I , C3, R4 and two inverter gates

is used. (This circuit has worked quite well in other systems.)

Here is a system memory map:

$FFF

$800

$2 IF

$200

$07F

$000

And a pans list:

PART PART NUMBER POWER CONNECTIONS

+ 5 GROUND # o f pins

U1 R6502 8 1,21 40

U2 2716 24 12 24

U3 R6532 20 I 40

U4 74LS04 14 7 14

U5 7407 14 7 14

U6 7474 14 7 14

2K

EPROM

R6532 RAM

(128 bytes)

for Z page & stack

CONTROLLER SCHEMATIC

^ > o -

U 5 ^ X > -

U 5 ^ X >

SPARE GATES

Page 22 l^il TRACTIVE

(Continued from page 2) 2000
2000
2000

00E7

00E9

00EB

OOED

OOED

OOED

OOED

00C8

OOCB

OOCC

OOCC

0F9C

0F9F

OF AO

OF AO

OF AO

OF AO

OF AO

0FA2

0FA4

0FA4

0FA4

0FA4

0FA4

0FA6

0FA7

0FA9

0FA9

0FA9

E7 03

63 00
09 00

4C 9C OF

EA

20 9E EB

48

A5 EO

FO 40

A6 82

E8

FO 3B

TRACE PROGRAM

EQUATES

2000 ■
9

2000 SOUT =*CB08

2000 OUT =*E9BC

2000 NUMA =*EA46

2000 CRLOW =*EA13

2000 BLANK =*E83E

2000 PHXY =*EB9E

2000 PLXY =*EBAC

2000 5
2000 ; ZERO PAGE

2000 5
2000 TXT =*00C6

2000 OTXT =*0085

2000 CURLIN =*0081

2000 *=*00E

OOEO

OOEO FLG * = *+1

00E1 LTXT *=*-1-2

00E3 P O S * = *-H

00E4 SAVX * = * + 1
00E5 OF 27 BUF .WORD

BASIC TRAP

BASC

TRACE

*=*00C8

JMP TRACE

NOP

= *

*=*0F9C

JSR PHXY

PHA

IF *F0=0 TRACE OFF

IF *F0#0 TRACE ON

LDA FLG

BEQ SAMLIN

DIRECT CMMD?

YES== >SAMLIN

LDX CURLIN+1

INX

BEQ SAMLIN

COMPARE OLD

TO LAST

INTERACTIVE Page 23

0FA9

0FA9 A5 81 LDA CURLIN

OFAB C5 El CMP LTXT

OFAD DO 06 BNE NEWLIN

OFAF A5 82 LDA CURLIN+1

OFB1 C5 E2 CMP LTXT+1

0FB3 FO 2F BEQ SAMLIN

0FB5

0FB5

0FB5

0FB5 A5 81

;UPDATE LAST TEXT

NEWLIN LDA CURLIN

0FB7 85 El STA LTXT

0FB9 A5 82 LDA CURLIN+1

OFBB 85 STA LTXT+1

OFBD

OFBD

OFBD

OFBD

OFBD

OFBD A2 06

»
;P/0 CURLIN

; RIGHT JUSTIFY

;EACH COLUMN

»
LDX *6

OFBF 20 FO OF P01 JSR RJ

0FC2 A6 E4 LDX SAVX

0FC4 CA DEX

0FC5 CA DEX

0FC6 10 F7 BPL P01

0FC8 20 08 CB JSR SOUT

OFCB E6 E3 INC POS

OFCD

OFCD

OFCD

OFCD

OFCD 68

jFORMAT FOR A PRINT

;OR INPUT TOKEN
•

PLA

OFCE 48 PHA

OFCF C9 97 CMP #*97

OFD1 FO OA BEQ PRNT

0FD3 C9 84 CMP #*84

0FD5 FO 06 BEQ PRNT

OFD7

0FD7

OFD7

0FD7

OFD7 A5 E3

■

;3 LINES /CR

\ CK HEAD POSITION
!

LDA POS

0FD9 C9 03 CMP #*3

OFDB 90 07 BCC SAMLIN

OFDD A9 00 PRNT LDA #0

OFDF 85 E3 STA POS

OFE1 20 13 EA JSR CRLOW

0FE4 68 SAMLIN PLA

0FE5 20 AC EB JSR PLXY

0FE8 C9 3A CMP #*3A

OFEA 90 01 BCC SAMI

OFEC 60 RTS

OFED 4C CC 00 SAMI JMP BASC

(Continued on next page)

OFFO

OFFO

OFFO

;RIGHT

5

JUSTIFY RTN

OFFO A5 81 RJ LDA CURLIN

0FF2 86 E4 STX SAVX

0FF4 D5 E5 CMP BUF,X

0FF6 A5 82 LDA CURLIN+1

0FF8 F5 E6 SBC BUF+1,X

OFFA BO 03 BCS RJ1

OFFC 4C 3E E8 JMP BLANK

OFFF

1000

60 RJ1 RTS

.END

-(-4-

COMING UP!

Have received several good articles on the use o f A IM 65 in Computer

Aided Design (C AD) applications. Look for a handy Fourier Series pro

gram in the next issue. Forth seems to be getting quite popular according

to the feedback I ’m getting. I ’m going all out to get a number o f Forth

“ goodies” for issue #7 . Some good information on this new and ex

citing computer language in the next issue. Is your system idle during

the lunch hour. What a shame, especially when you could be playing a

mini-adventure game (assuming you have BASIC w/4K o f R AM). Watch

for it in the next issue!

NEWSLETTER EDITOR
ROCKWELL INTERNATIONAL
P.O. Box 3669, RC55
Anaheim, CA 92803 U.S.A.

Bulk Rate
U.S. POSTAGE

RATE
Santa Ana Calif.
PERMIT NO. 15

