
ISSUE NO. 5

AIM 65/40 . . .

THE NEXT GENERATION!
2 For Your Information 13 TTY Output Utility

3 Coming Soon . . . 14 Data Statement Generator
AIM 65/40 16 Cassette Load Utility

4 Data Files for AIM 65 19 Interrupt Driven Keyboard
BASIC 21 A Basic Hint

6 More BASIC Data Files 22 Letters to the Editor
9 A Move/Relocate Program 24 Easy RS232C

Rockwell International
. ..w h e re s c ie n c e g e ts dow n to b u s in e s s

Page 2 IV 11 IIACTIVh

EDITOR'S CORNER
I want to thank all you supporters who have been sending in articles,
comments, suggestions etc. It's nice to know that INTERACTIVE has
so many fans out there. We have a pretty good mix of articles in this
issue with maybe a bias towards data files. But, that's what you seem to
be interested in.

Keep in mind that this publication is a dynamic entity. You are the force
behind it. Whatever you collectively say GOES. If you wish to influence
the direction w e’re taking, then write an article about the subject you’d
like to see. I t’s as simple as that!

I would like to see more articles on how to interface the AIM 65 to dif
ferent devices such as A/D, D/A, counter chips, DVM chips, speech
synthesizers, graphic output, etc. etc. etc. . . .

How about it?

I have received some good stuff in the area of CAD (Computer Aided
Design). Not enough for a complete issue, though, so I ’ll start running
them in issue # 6 (or # 7).

We re getting ready to do another update on the AIM 65 User's Guide.
If you have found any errors or think we could explain something better,
let us know. Send all comments to the attention of THE DOCUMEN
TATION MANAGER, Rockwell Intl., POB 3669, RC55, Anaheim, CA
92803.

Two interesting articles appeared recently in EDN magazine. The Jan
uary 7, 1981 issue carried two articles which featured AIM 65. One of
them showed how a mechanical engineer could simulate a physical model
on a BASIC language equipped AIM 65. The other article gave complete
details (hardware and software) so an AIM 65 (or other 6502/6522 sys
tem) could control the intensity or speed of ac operated devices such as
lamps or motors through an interrupt driven zero crossing detector.

If you don’t have access to this magazine, we can send you reprints of
the articles. Just ask for EDN #1 if you want the ac power interface or
EDN # 2 for the digital simulation article. Send requests to the attention
of SALES SUPPORT SERVICES, Rockwell Intl., POB 3669, RC55,
Anaheim, CA 92803.

All subscription correspondence and articles should be sent to:

EDITOR, INTERACTIVE
ROCKWELL INTERNATIONAL

POB 3669, RC 55
ANAHEIM, CA 92803

CO PYR IG H T 1981 R O C K W ELL IN TERNATIONAL CORPORATION

Rockwell does not assume any liability arising out of the application or use of any
products, circuit, or software described herein, neither does it convey any license
under its patent rights nor the patent rights of others. Rockwell further reserves
the right to make changes in any products herein without notice

A version of the PASCAL programming language is now “ in the w orks"
for AIM 65. At this point, all the information I can give you is that it will
consist of a five ROM set and be a subset of Standard Pascal which was
defined in a book called “ Pascal User Manual and R eport" by Jensen
and Wirth. No, th ere ’s no data sheet as of yet so please don’t call or write
until we say that more information is available. This is not a product an
nouncement . . . just some advance information that is intended to give
a hint about where Rockwell is heading. More on Pascal later.

Eric C. Rehnke
Newsletter Editor

FOR YOUR INFORMATION
From the Editor:

Here are some books that may help you along on the road to mastering
microcomputers.

BASIC FOR HOME COMPUTERS by Albrecht, Finke, and Brown.
Published by John Wiley & Sons (605 Third A ve., New York, NY
10016).

PROGRAMMING AND INTERFACING THE 6502 by Marvin De
Jong. Published by Howard W. Sams & Co. (4300 W. 62nd St., In
dianapolis, Ind 46268).

THE FOLLOWING BOOKS ARE AVAILABLE FROM ROCKWELL
INTERNATIONAL AT SPECIAL PRICES:

6502 SOFTWARE DESIGN by Leo J. Scanlon. Published by Howard
W. Sams & Co. 6502 Assembly language tutorial and hardware inter
facing examples. $7.00 (U.S. & Canada) $9.00 (overseas)

MICROCOMPUTER SYSTEMS ENGINEERING by Camp, Smay, and
Triska. Published by Matrix Publishers (30 NW 23rd Place, Portland,
ORE 97210) General intro to microcomputing, 6502, 6800, and 8080
Assembly language programming, and some system design principles.
$17.00 for U.S. and Canada and $19.00 overseas.

AIM 65 LABORATORY MANUAL AND STUDY GUIDE by Leo J.
Scanlon. Published by John Wiley & Sons. Provides 17 programming
and I/O experiments for the AIM 65. $5.00 (U.S. & Canada) or S7.00
(overseas)

ORDERING INSTRUCTIONS for books available from Rockwell: Or
ders must be accompanied by payment. U.S. and Canadian orders
must be by check or money order and overseas payment must be drawn
on U.S. bank. California residents add 6% state tax. Send orders to
the attention of SALES SUPPORT SERVICES, Rockwell Inti, POB
3669, RC55, Anaheim, CA 92803.

CORRECTION TO THE AIM 65
USER’S GUIDE

There seems to be a problem with the program on pages 8-37 and 8-38
of the AIM 65 U ser’s Guide (Rev 3, December 1979). Insert the se
quence HERE JMP HERE between ;CONTINUE and the dotted line

(Continued on page 22)

im iFBACTIVE Page 3

COMING SOON . . .
AIM 65/40

Rockwell International will shortly be introducing the AIM 65/40. The
AIM 65/40 microcomputer is made up of an R6502 based single board
computer with on-board expansion to 65 kilobytes of memory, a full
graphic 280 X N dot matrix or 40-column alphanumeric printer, a 40-
character alphanumeric display, and a full ASCII keyboard with user as
signable function keys.

An advanced generation of Rockwell's popular AIM 65 microcomputer,
the AIM 65/40 will be available as a complete system or as individual
computer and intelligent peripheral modules.

The AIM 65/40 Series 1000 single board computer modules feature
system address expansion up to 128K bytes with on-board memory up
to 48 kilobytes of RAM and up to 32 kilobytes of ROM or EPROM.
Six level priority interrupt logic and six 16-bit multi-mode timers are
included for flexibility in production automation and laboratory control
applications. Extensive I/O capability provides an RS-232C asyn
chronous communications interface channel with programmable data
rates of up to 19,200 baud for terminals or modems, plus a 20 ma current
loop TTY interface, dual audio cassette interfaces, and two user-defin
able 8-bit parallel ports with handshake control two 16-bit timer/counters
and an 8-bit serial shift register.

Three additional 8-bit parallel ports are directly programmable as dic
tated by the user’s application to provide more TTL level I/O or inter
face to keyboards, displays, and printer modules. Manufacturer supplied
ROM resident software included with the AIM 65/40 Series 1000 com
puter provide I/O drivers for the intelligent peripherals and more. The
printer connector is compatible with the Centronics parallel interface that
is so popular with high speed dot matrix printers.

A buffered system bus accommodates off-board expansion via Rock
w ell’s RM 65 microcomputer modules which include intelligent periph
eral controllers for mini or standard floppy disks, CRT monitors and the
IEEE^l-88 instrumentation bus, plus additional communications inter
faces and a selection of RAM, ROM and PROM memory expansion
options up to 128K bytes of memory and memory-mapped I/O capacity.

The AIM 65/40 Model 0600 graphics printer module consists of an in
telligent microprocessor controller integrated with the printer mecha
nism. This module operates in two modes. Character mode operation

prints upper and lower case ASCII characters, mathematical symbols,
and semi-graphics character font formatted as 40-characters/line at 240
lines/minute. Full graphics mode outputs any data pattern desired as a
280XN dot matrix. With its own microprocessor controller, user chang-
able character generator ROM, thermal head drivers, motor control, and
parallel handshake ASCII interface, this freestanding peripheral mini
mizes demand on the AIM 65/40 central processor, permitting maximum
system performance.

The Model 0400 display module features a bright, crisp vacuum flou-
rescent 40-character alphanumeric display. This stand-alone module has
its own microprocessor controller for display of alphanumeric, special,
and limited graphics characters, parallel handshake ASCII interface, sup
port circuitry and operates from a single + 5 volt power supply. Special
control commands permit variable display timing, cursor control, auto
scroll, and character blinking.

The Model 0200 keyboard module provides a terminal style alpha
numeric and special character keyboard matrix with 64 keys, including
locking ALL CAPS, control, and eight user definable function keys.
Three keys labelled ATTN, RESET, and PAPER FEED have dedicated
lines to the interface connector.

The AIM 65/40 Series 5000 incorporates a ROM resident software sys
tem and integrates all four modules into a complete microcomputer sys
tem. The interactive monitor software controls the AIM 65/40 system
with single keystroke, self-prompting commands, supports software de
velopment with assembler, debug and control commands. A multi-file
text editor supports both line and screen editing functions. Optional lan
guages include a fully symbolic R6500 assembler and BASIC. FORTH,
PASCAL, and PL/65 software packages arc in development.

The AIM 65/40 is expected to be available sometime during the third
quarter of 1981.

For price and delivery information contact your local Rockwell sales
office. -G-

Page 4 INTERACTIVE

DATA FILES FOR
AIM-65 BASIC

Jerry K. Radke
U.S. Dept, of Agriculture

The storage and retrieval of data on a permanent (or semipermanent)
medium is often necessary. Unfortunately, Rockwell AIM-65 BASIC
does not provide data file capability for its cassette recorder interface.
Even worse, Microsoft does not provide a listing of the BASIC it wrote
for the AIM-65 so the user can easily modify it. However, the procedure
presented here will provide the user of the AIM-65 with a cassette data
file capability that is relatively painless though not very elegant,

I use two short BASIC subroutines to open files (one each for read and
write) and one to write an end-of-file. These statements start at 9000. I
usually reserve certain blocks of data statement numbers for certain sub
routines which can be saved and loaded individually, e.g. 4000's are re
served for my real-time clock and timing subroutines, 5000’s are my
sorting subroutines, 6000’s are for my formatted printing subroutines,
etc. This allows me to build programs using these standard subroutines
as modules.

In addition to the three subroutines, some BASIC statements are needed
in the main program to control the tape recorder(s) and to select the active
output device (AOD) and active input devicc (AID). The remote control
lines to the tape recorders should be functional. The minimum procedure
to write on tape is to call the subroutine at 9000 to open a file, set the
AOD to “ tap e" , print (via BASIC “ PR IN T" statements) to tape, re
turning AOD to “ display", and finally end-filing the tape by calling the
subroutine at 9100. This causes the 80 byte tape buffer to fill and dump
to tape in blocks while automatically turning the tape recorder on and
off. Reading tapes is performed by calling the subroutine at 9200 to open
the file, setting the AID tape, “ INPUTting” the data, and returning the
AID to the “ keyboard".

To make the data files compatible with text files that are written and read
by EDITOR, a few additional things should be done. The first five char
acters “ PRIN Ted" to the tape buffer should be the filename. (The first
position in the buffer was set to indicate block zero by statement 9010
thus the filename takes up characters 2 through 6). The 7th character
must not be a CR (SOD) or it will not be accepted by EDITOR as a text
file. EDITOR also wants to see two consecutive CR's at the end of the
file to indicate EOF. The EOF subroutine does this as well as filling the
rest of the block with “ nulls". However, the useris free to set up his 80
byte blocks to suit his own needs, e.g. a special character to indicate
EOF. Obviously, to read data from tapes, a proper INPUT format is nec
essary to match the way the data is stored. The filename will also need
to be INPUT from block 0.

The program on page 5 gives an example that wc can follow. Statements
20 through 50 load array P$. Statement 60 inputs a title for the data (not
the filename). Statements 90 -120 sets up tape recorder 1 or 2 for output
and turns the tape controls off. (User should respond with a I or 2 to

statement 90). At statement 120, place tape recorder in “ record” mode
and answer query. Input “ filenam e” at 140. Statements 150-230 ac
tually do the writing to tape. Note that 170 prints the filename, a comma,
and the number of data lines (N). Commas are necessary if more than
one data element are to be read per line. Statement 240 turns the tape
recorders on to allow the user to reposition the tapes if necessary. The
tape read example is similar. Statements 560 - 630 input the data, 640-
690 prints the data, and 700 turns the tape controls back on. The user
can place the recorder in the “ play” mode after the prompt is dis
played for statement 580. Of course, the tape should be properly placed
in a gap just before the start of the desired file.

Statements should be kept to a minimum while the AOD or AID is set to
“ tape” . I f data is going to be written or read several different times in
the program, return AOD or AID to “ keyboard/display" after each
PRINT or INPUT loop or routine. In other words, only have the AOD or
AID set to “ tape" when absolutely necessary. I have not tried all com
binations possible, but do know that data can be easily written or cor
rected by the EDITOR and read as data by BASIC. I would be interested
in hearing about any “ discoveries" you make. If you have questions. I
can be reached at 612/589-3411 during normal working hours.

This procedure offers quite a bit of flexibility, and I have left it this way
even though a neater package could be written using WHEREIN and
WHEREOUT and putting almost everything in the subroutines. One
thing to remember with this routine is that the tape must be positioned so
that block zero will be the first block read. This can be changed if de
sired, however. Also, a search procedure could be used to locate block
zero of a given file.

MINIMUM STATEMENTS TO WRITE ON CASSETTE TAPE

GOSUB 9010
POKE 42003,84

POKE 42003.13

GOSUB 9110
END

USER PROGRAM

OPEN FILE WRITE
ACTIVE OUTPUT DEVICE SET TO

“ TA PE"

USER PRINT STATEMENTS TO
TAPE

ACTIVE OUTPUT DEVICE
RETURNED TO “ DISPLAY”

WRITE EOF ON TAPE

MINIMUM STATEMENTS TO READ FROM TAPE

GOSUB 9210

USER PROGRAM

OPEN FILE (READ)

■VIFH\OIIVF

POKE 42002,84 ACTIVE INPUT DEVICE SET TO

%
“TA PE ”

* USER INPUT STATEMENTS TO

*
READ FROM TAPE

POKE 42002,13 ACTIVE INPUT DEVICE RETURNED

*
TO “ KEYBOARD"

*
*

END

USER PROGRAM

TAPE SUBROUTINES

9000 REM: OPEN
FILE (WRITE)

9010 POKE 278,0 $0116 TOO (SET 1ST CHAR IN BUFF
FOR BLK 0)

9020 POKE 42039,1 SET OUTPUT TAPE POINTER
($A437) TO “ 1"

9030 POKE 360,0 BLOCK COUNT ($0168) TO ZERO
9040 POKE 41993.22 SET TAPE GAP

($A409) TO $16
9050 RETURN
9100 REM: WRITE-

EOF
9110 POKE 42003,84 SET OUTFLG TO “ T ”
9115 PRINT CHR$(13) OUTPUT O D ,O D ,Q A
9120 NL = 80-PEEK CHECK POINTER FOR BUFFER

(42039) SPACE
9130 FOR N C = 1 TO NL FILL BUFFER WITH NULLS
9140 PRINT CHR$(0);
9150 NEXT NC
9160 POKE 42003,13 SET OUTFLG TO “ D ”
9170 RETURN
9200 REM: OPEN

FILE (READ)
9210 POKE 277,0 SET BLOCK ($0115) TO ZERO
9220 POKE 42038,80 SET COUNTER ($A436) TO END

($50)
9230 RETURN

EXAMPLE PROGRAM

1 DIM P$(40)
10 REM: TAPE WRITE EXAMPLE
20 INPUT ‘ '# ENTRIES' ' :N
30 FOR 1 = 0 TO N —1
40 PRINT “ ENTRY # ” : I + 1; : IN PUT PS(1)
50 NEXT I
60 INPUT “TITLE” ;H$

Page 5

70 INPUT “ STORE ON TAPE Y /N ” ;A$
80 IF AS = “ N ” THEN STOP
90 INPUT **T = ” ; T:T = T - 1
100 POKE 42037, T:REM: SET TAPOUT
110 POKE 43008 ,204:REM: TURN TAPES OFF
120 INPUT “ TAPE READY Y/N A$
130 IF A $ = “ N ” THEN STOP
140 INPUT “ FILENAM E” ;AS
150 GOSUB 9010:REM: OPEN FILE
160 POKE 42003 ,84:REM: TAPE AOD
170 PRINT A$ N
180 PRINT HS
190 FOR 1 = 0 T O N -1
200 PRINT I + 1; ;P$(I)
210 NEXT I
220 POKE 42003 ,13:REM : DISPLAY AOD
230 GOSUB 9 1 10:REM: WRITE EOF
240 POKE 43008,252:REM: TURN TAPES ON
250 END

500 REM: TAPE READ EXAMPLE
510 DIM R(40), R$(40)
520 INPUT “ READ TAPE Y /N ” ; A$
530 IF AS = “ N ’' THEN STOP
540 INPUT “ T = ” : T:T = T -1
550 POKE 42036 ,T:REM: SET TAPIN
560 GOSUB 9210:REM: OPEN FILE
570 POKE 42002 ,84:REM: TAPE AID
580 INPUT AS,N
590 INPUT HS
600 FOR 1 = 0 T O N -1
610 INPUT R(I),R$(I)
620 NEXT I
630 POKE 42002,13
640 PRINT “ ”
650 PRINT! “ PRINT!HS
660 FOR 1 = 0 TO N - 1
670 PRINT! R(l); TAB(5);RS(1)
680 NEXT I
690 PRINT!
700 POKE 43008.252
710 END

Some useful locations:

Hex Decimal Label Remarks

$0115 277 BLK Block count for input (must be
zero to start)

$01 16 278 TABUFF 80 byte tape buffer starts here
$0168 360 BLKO Block count for output

(set to zero)
SA409 41993 GAP Block gap for tape recorder
SA411 42001 PRIFLG Printer “ O N " = 0,

"O F F " = 128 ($80)

Page 6 i t v i n m i v i

MORE BASIC DATA FILES
Steve West and Frank Nunneley
Johannesburg, South Africa

(EDITOR'S NOTE: Yes, I know that you’ve already seen a data file han
dling program. But, this program is a bit different and it shows a neat
way to add new commands to AIM 65 BASIC.)

The ability to process and store data on cassette greatly enhances the use
fulness of BASIC programs.

Any system of this type should be easy to use. The method described
here extends the instruction set of BASIC to include instructions to open
and close files and to input and output data. The new instructions are;

P R IN T #‘N A M E’1

PRIN T#A ,B$

P R IN T ##

IN P U T #‘N A M E’2

INPUT#A $,B$

Opens a cassette output file. The name of
the file is in single quotes and is followed
by the recorder number. (Default is T = l)

Outputs data to the currently open output
file. Format is identical to standard PRINT
statement.

Closes current output file.

Opens an input file by finding the file
“ N A M E". The file name is again fol
lowed by the recorder number (Default to
tape recorder 1)

Inputs data from currently open input file.

(Continued from previous page)

SA409 41993 GAP Block gap for tape recorder
SA411 42001 PRIFLG Printer “ O N ” = 0,

“ O FF” = 128 ($80)
SA434 42036 TAPIN Tape 1 or 2 controls for input

) default = 1
) if not changed

SA435 42037 TAPOUT Tape 1 or 2 controls for output
) (otherwise last)

SA436 42038 TAPTR Tape buffer pointer for input
SA437 42039 TAPTR2 Tape buffer pointer for output

(1) (2)
SA800 43008 DRB Data Reg B for monitor

6522— PB4 and PB5 turn
tape controls on and off.

Hex Decimal Remarks:

$CC 204 Both tapes
OFF

SDC 220 Tape 1 on,
2 off

SEC 236 Tape 2 on.
1 off

SFC 252 Both tapes
on

Useful Monitor Subroutines

Hi Lo
Hex Decimal Decimal Decimal Remarks

SE6BD 59069 230 189 Toggle Tape
1 control

SE6CB 59083 230 203 Toggle Tape
2 control

IN P U T ## Closes Input file.

Only one tape buffer is available while BASIC is in use, thus only one
I/O file can be open at a time.

To use BASEX, BASIC must be limited to 3883 bytes in response to
the question “ MEMORY SIZE?” when entering BASIC. Answer
“ W IDTH?” as before, then ESCape to monitor and Load BASEX from
cassette. Reenter BASIC using 6 and the extension program is ready to
work. This order is important as the divert routine on page zero must be
modified after BASIC is initialized.

The assembly listing follows. When entering this file in source it is rec
ommended that the editor be placed above $800; the assembler symbol
table can be placed between 200 and 800. This way the Editor w on’t be
corrupted when the program is tested. After entering BASIC after assem
bling the file it will be necessary to modify the instructions on page zero
using Mneumonic Entry. After the file is working and the initialization
procedure from tape is used this is not required.

< * > = C 8
<I>

00C8 4C JMP 0F2D
00CB EA NOP
00CC

<

When the file is working dump it (object) to cassette, the link to the ex
tension must be included here.

< D >
FROM = F2D T O =FFF
O U T = T F = B A S E X T=1
MORE?Y
FROM =C8 TO =CB
MORE?N

I iv n K 4 C IIV L

2000 ? * * TAPE DATA F I L E S OF 6 3 20 AC EB E X IT JSR F’LXY
2000 9 STEVE: WEST AUG "80 OF 6 6

OF" 6 7
68
38

F’LA
SEC

2000 F'HXY =*EB9E 0F68 60 RTS
2000 F'LXY =*EBAC OF 6 9 INPUT
2000 CRLF =*E9F0 OF" 6 9 48 PH A
2000 LL =*E 8 FE OF 6 A 20 9E EB JSR F'HXY
2000 OUTFLG =*A413 0F6D AO 01 LDY *1
2000 INFLG = $ A 412 0F6F B1 C6 LDA (P N T R)fY
2000 OUTDIS =*EF05 0F71 C9 23 CMP * ' #
2000 TOBYTE =$F18B 0F73 DO D4 BNE PR1
2000 DIL IN K =*A406 0F75 A9 54 LDA * ' 7'
2000 DUMPTA =*E56F OF" 7 7 8D 12 A4 STA INFLG
2000 TAPOUT =*A435 OF 7 A C8 I NY
2000 TAP IN b *A434 0F7B B 1 C6 LDA (P N T R) r Y
2000 DRB $ A 8 0 0 0F7D C9 27 CMP * ' ' '

2000 DU 11 ~$E50A 0F7F FO 07 BEQ LOADFL..
2000 NAME =*A42E 0F81 C9 23 CMP # ' #
2000 LOADTA = *E32F 0F83 FO 2F BEQ OFFTAP
2000 PNTR = *C6 0F85 4C 5F OF JMP ST 1
2000 *=*F2D 0F88 LOADFL
0Fr2D 0F88 20 C7 OF JSR RDNAME
OF 2D BASEXT 0F8B 8C 34 A4 STY TAP IN
OF 2D C9 97 CMP #$97 0F8E 20 2F E3 JSR LOADTA
0F2F FO OC BEQ PRINT 0F"91 4C 63 OF JMP E X IT
OF 3.1. C9 84 CMP #$84 0F94 OPENFL
OF" 3 3 FO 34 BEQ INPUT 0F94 20 C7 OF JSR RDNAME
OF 3 5 C9 3 A CMP #$3A 0F97 8C 35 A4 STY TAPOUT
0F37 BO 03 BCS NOTNUM 0F9A 20 6F E5 JSR DUMPTA
OF 3? 4C CC 00 JMP $CC 0F9D 4C 63 OF JMP E X IT
0F3C 60 NOTNUM RTS OFAO

0FA1
98
18

UPPNTR TYA
CLC

OF 3D 48 PRINT PH A 0FA2 65 C6 ADC PNTR
0F3E 20 9 e: EB JSR F'HXY 0FA4 85 C6 STA PNTR
OF 41 AO 01 LDY *1 0FA6 90 02 BCC UP 1
0F43 B1 C6 L.DA (F'NTR)vY 0FA8 E6 C7 INC F‘NTR + 1
0F45 C9 23 CMP # ' # OFAA 60 UF’l RTS
OF 4 7 FO 06 BEQ STATAP OFAB CLOSE
0 F 4 ? PR1 OFAB 20 FO E9 JSR CRLF
OF 4 9 20 FE E8 JSR LL. OFAE 20 FO E9 JSR CRLF
0F4C AC 63 OF JMP E X IT 0FB1 20 OA E5 JSR DU 11
0F4F STATAP 0FB4 OFFTAP
0F4F A9 54 LDA # ' T 0FB4 A9 CF LDA * * C F
OF 51 8D 13 A4 STA OUTFLG 0FB6 2D 00 A8 AND DRB
OF 54 C8 I NY 0FB9 8D 00 A8 STA DRB
OF" 5 5 B1 C6 LDA (P N T R) t Y OFBC 20 FE E8 JSR LL
0F57 C9 27 CMP OFBF 20 AC EB JSR PL.XY
OF 5 9 FO 39 BEQ OPENFL. 0FC2 68 F’LA
OF SB C9 23 CMP * ' # 0FC3 A9 8E LDA * * 8 E
0F5D FO 4C BEQ CLOSE 0FC5 38 SEC
0F5F ST1 0FC6 60 RTS
0F5F 88 DEY 0FC7 RDNAME
OF 60 20 AO OF JSR UPPNTR 0FC7 C8 INY

Page 8

OFCB 20 AO OF JSR UPPNTR
OFCB AO 00 LDY #0
OF CD B1 C6 NEXT LDA (P N T R) r Y
OFCF C9 27 CMP #' "
0FD1 FO OE BEQ ENDNAM
0FD3 99 2E A4 STA NAMErY
0FD6 C8 I NY
OF D 7 CO 05 CPY #5
0FD9 DO F2 BNE NEXT
OFDB 20 AO OF JSR UPPNTR
OFDE 4C EE OF JMP RD1
0FE1 20 AO OF ENDNAM JSR UPPNTR
0FE4 A9 20 LDA ♦ '
0FE6 99 2E A4 EN1 STA NAME t Y
0FE9 C8 INY
OFEA CO 05 CPY #5
OF EC DO F8 BNE EN1
OFEE RD1
OFEE AO 01 LDY #1
OFFO B1 C6 LDA (P N T R) »Y
0FF2 C9 32 CMP
0FF4 FO AA BEQ UPPNTR
0FF6 C9 31 CMP * ' 1
0FF8 DO 03 BNE RD2
OFFA 20 AO OF JSR UPPNTR
OFFD 88 RD2 DEY
OFFE 60 RTS
OFFF *=$C8
00C8 DIVERT
OOCB 4C 2D OF JMP BASEXT
OOCB EA NOP

OOCC ♦ END

As a final note, the BASIC data files are EDITOR compatible so that
data to be processed can be produced by using the EDITOR.

AN EXAMPLE PROGRAM ILLUSTRATING THE USE OF
THE NEW COMMANDS

Notes: No tape number was specified when opening the files thus tape
recorder 1 is used (default)
At 600 is a subroutine to toggle the tapes to make rewind and fast
forward possible.

SOME COMMENTS ON THE EXAMPLE BASIC PROGRAM:

Line Number Action

45 turn tape #1 ON
55 wait for key when operator is ready
58 turn both tapes OFF

60 the output file is opened and called
“ NAM ES”

100 .LAST indicates that the last name
has been entered

140 end of output to TAPE routine
200 start of input from TAPE routine
220 looks for file with NAM E= “ NAM ES'
230 prints heading (1st string in file)
260 inputs name from TAPE
270 has last been read?
280 echos to printer
300 closes file
600 T P = 0 (both tapes OFF

TP=1 (#1 ON, # 2 OFF)
T P=2 (#1 OFF, # 2 ON)
T P=3 (both tapes ON)

P R I N T ! - EXAMPLE PROGRAM"
P R I N T ! * '
REM STORE NAMES! ON CASSETTE
T P = 1 J G 0 S UB6 0 0
P R I N T " TAPE TO RECORD"
G E T A * : i F A * = " THEN5 5
t p = 0 : g q s u b 6 0 0
P R I N T # ' N A M E S ' " N A M E L I S T "
FOR I = 1 T0 3 0
I NP UTA *
P RI N T # A $ J REM # SO TO TAPE

I F A $ = - . L A S T " T H E N 1 2 0
NEXT
REM CLOSE F I L E
P R I N T # #
END
REM READ NAMES FROM TAPE
P R I N T " T A P E TO PLAY*
I N P U T * ' NAMES ' H$
P R I N T ! T A B (5)
P R I N T ! " "
FOR I = 1 T 0 3 (>
I NP UT #A$
I F A $ = " ♦ L A S T " THEN3 0 0
P R I N T ! At>
NEXT
I N P U T # #
P R I N T " D O N E ! ! "
END
REM TAPE ON/ OF F
P 0 KE4 3 0 0 B r 2 0 7 ANDPEEK(4 3 0 0 8) OR1 6 * T P
RETURN -e-

1 0
30
40
45
50
55
58
60
70
80
90
1 0 0
110
1 2 0

130
140
200
2 1 0
220
230
240
250
260
270
280
290
300
310
320
590
600
6 1 0

INTERACTIVE Page 9

A MOVE/RELOCATE
ROUTINE

Anthony Chandler,
Montreal, Canada

SUMMARY

This routine will, at the user’s option, either MOVE a block of data or
RELOCATE a machine-language program from one area of memory into
any other area of RAM from $0200 up. It can perform both forward and
backward shifts, and resides entirely in Page Zero.

INTRODUCTION

Often the need arises to shift a block of data or a machine-language pro
gram from one set of locations in memory to another.

If a block of data, such as a “ look-up” table has to be shifted, then a
simple MOVE routine which sequentially reads each byte of data in the
SOURCE area and writes it into the DESTINATION area is sufficient.
Examples of MOVE routines are given on pages 6-26 and 6-27 of the
R6500 Programming Manual.

However, if a machine-language program has to be shifted, then a simple
MOVE routine may not be satisfactory. Those instructions in the pro
gram which use the absolute addressing mode (such as JMP 0345 or LDA
0567) have operands in the form of an address. If the operand points to
an address within the span of the program being re-located, then the in
struction must be modified so that its operand points to the correspond
ing address in the destination area. On the other hand, if the instruction
refers to an address outside the span of the program, then it must be
moved without alteration.

In order to shift programs, a more complex routine which calculates the
necessary address changes is required.

In AIM 65, the memory area available for programs extends from ad
dress $0200 up to the limit of installed RAM ($1000 if 4K of memory is
installed). Any MOVE/RELOCATE routine which occupies part of this
area will naturally be restrictive, since the area it took up could not be
used. A special effort has been made to enable the following routine to
be located entirely in Page zero, which is not normally used for program
instructions, so as to leave the entire working area from $0200 up free.

DESCRIPTION

Fig. 1 is a disassembly of the MOVE/RELOCATE routine. The pro
gram itself occupies addresses $0000-$OODD. Addresses $00EB-$00FF
are “borrow ed” from the Text Editor “ Find” command for temporary
storage, pointers and prompt messages. Loading of the “ RELOC” rou
tine will not disturb any operations of the Text Editor except the
“ Find” command and only then if an attempt is made to find a character
string longer than 12 characters. The Text buffer addresses, stored in
$00DF-$00E9 are preserved.

EXECUTION— RELOCATE

The program starts at $0000 and can be run using the * =0000 command
or by setting up a linkage to $0000 via one of the Function keys. The
following example illustrates the entries necessary to re-locate a pro
gram presently residing at addresses $0456 to $0567 to a destination
starting at address $0234. In this example, the address of the last in
struction is $0567— the last byte of the program might be at $0569, if
the program terminated with a 3 byte instruction.

PROGRAM PROMPTS

S = START ADDRESS
F = FINISH ADDRESS
D = DESTINATION ADDRESS
MR = MOVE/RELOCATE

* =0000
G /
S =

S =0456F =
S = 0456F = 0567D =
(Display wraps around)
0456F = 0567 D = 0234MR =

Enter 0456 (NOTE— NO ERRORS
PERMITTED. IF
INCORRECT DIGIT
THEN RE-START
PROGRAM)

Enter 0567
Enter 0234

Enter “ R ” (for re-locate)
(any other key except “ M “ will
do)

The routine will run, displaying a disassembly of the source program as
the re-location takes place.

On completion, control returns to the Monitor. The next free available
address following the re-located program ($0348 in the above example)
will be found by examining memory locations 00F5-00F6 (LSB first—
4803)

EXECUTION— MOVE

If the source addresses, $0456 to $0567 contain data (or text) then a sim
ilar procedure is followed.

In this case, however, the Source Finish address entered in response to
the prompt “ F = " should be one address less than that of the last byte of
data (for example, 0566 instead of 0567).

After entering the addresses, the response to the move/relocate prompt
“ M R = ” should be “ M ” for move.

The Destination Finish address to be found at $00F5-00F6 will be the
address of the last byte of data moved (for example $0345). The next free
address is $0346.

Page 10

If the MOVE routine is used to shift the contents of the Editor’s Text
Buffer, then the Source Start address should be that shown (Low order
byte first) at SOOE3-OOE4. The Source Finish address should be one less
than the text end address shown at S00E1/E2. On completion of the
M OVE operation, it will be necessary to reset the Text Buffer addresses
as follows:

00E1 Text end address— same as 00F5
00E2 00F6

PR O G R A M LISTIN G AND COM M ENTS

The following temporary stores and pointers are used:

00E3
00E4

00E5
00E6

Text start address-
Start

-same as Destination

Text buffer end address— this can be any
address higher than that in 00E1-00E2
depending on the amount of free space
required.

During execution of the MOVE option, no messages are displayed and
return to the Monitor is very rapid.

O V ERLA PPIN G

The routine permits backward overlapping— for programs, the DESTI
NATION START address must be at least three addresses lower than the
SOURCE START. For a data MOVE, there is no restriction.

Forward overlapping is not possible, but a program or data block can be

SOURCE START (S)

CURRENT SOURCE ADDRESS

SOURCE FINISH (F)

OPERAND ADDRESS (from instruction
being read)

DESTINATION START (D)

CURRENT DESTINATION ADDRESS

SOOEB
00EC

00ED
00EE

00EF
OOFO

00F1
00 F2

00F3
00 F4

00F5
00F6

(LO)
(HI)

Prompt messages are stored (in ASCII) as follows:

temporarily re-located or moved to a high or low memory area and then
shifted back to overlay its original source area.

M = 00F7
OOFB

/ 53
/ 44

3D 46
3D 4D

3D
52

S = F =
D = M R

SELF-REPR O D U CTIO N OOFF / 3D * * * = (* = unchanged)

Incidentally, the program will successfully re-locate itself and so, if the
terminating instruction were replaced with instructions calculating a new 0000 A2 LDX # 0 0 INITIALIZE. X INDEXES
destination, it could become self-perpetuating until its progeny filled MESSAGE BYTES
available RAM. 0002 AO LDY # 0 0 Y INDEXES PROGRAM

STORIN G ON C A SSETTE TAPE
0004 20 JSR 00D2

BYTES EACH INSTRUCTION
DISPLAY PROMPT MESSAGE

When dumping the routine for storage on to cassette tape, the addresses ASKING FOR ADDRESS
to dump are FROM = 0000 T O = OODD 0007 20 JSR 0090 GET 4 -DIGIT ADDRESS AND

MORE? Y STORE IT
FRO M = 00F7 T O = OOFF 000A EO CPX #0C SEE IF 12 DIGITS (ALL

THREE ADDRESSES)
This procedure avoids recording on tape the Editor's Text start and finish OOOC DO BNE 0004 IF NOT-BACK FOR NEXT
addresses from S00E1 to S00E6. This means that, when “ RELOC” is ADDRESS
loaded from tape at some future time, it will not affect any Text Editor OOOE 20 JSR 00D2 DISPLAY FINAL PROMPT
which is set up. (“ M R = ”)

IV H H 4CIIV1 Page 11

0011 20 JSR E973 REDOUT— SEE IF USER
WANTS MOVE OR
RELOCATE

0051
0053
0055

A5
65
AA

LDA
ADC
TAX

F2
F4

TEMPORARILY STORE HI-
0014 C9 CMP #4D IF HE SAYS “ M ” THEN— BYT SUM IN X
0016 FO BEQ 007E GO TO MOVE ROUTINE FOR

STRAIGHT COPY
0056 38 SEC NOW SUBTRACT SOURCE

START ADDRESS FROM SUM
0018 A5 LDA ED OTHERWISE, GET CURRENT 0057 68 PLA GET LO-BYT SUM
001A 8D STA A425 SOURCE ADDRESS FROM ED/ 0058 E5 SBC EB
001D A5 LDA EE EE AND PUT IT IN SAVPC AT

A425/A426
005A
005B

48
8A

PHA
TXA

STORE IT ON STACK
GET HI-BYT SUM FROM X

001F 8D STA A426 005C E5 SBC EC
0022 20 JSR F46C DISASM— INTERPRET 005E A0 LDY #02

INSTRUCTION & DISPLAY IT 0060 91 STA (F5),Y PUT ADJUSTED OPERAND
0025 A5 LDA EA LENGTH— ACCUMULATOR

HAS LENGTH MINUS ONE
0062 88 DEY INTO CURRENT

DESTINATION PLUS 3
0027 C9 CMP #02 IS IT A 3-BYTE 0063 68 PLA

INSTRUCTION? 00 (A 91 STA (F5),Y AND PLUS 2
0029 DO BNE 006E NO— SO GO MAKE 0066 88 DEY

STRAIGHT COPY 0067 B1 LDA (ED),Y NOW GET OP-CODE FROM
002 B AO LDY #01 YES— IS A 3-BYTE SO MAY CURRENT SOURCE

HAVE TO ALTER 0069 91 STA (F5),Y PUT IT IN CURRENT
002 D B1 LDA (ED),Y GET FIRST BYT OF OPERAND DESTINATION
002F 85 STA FI 006B 4C JMP 0071 GO TO UPDATE AND END
0031 C8 INY CHECK
0032 B1 LDA (ED),Y SECOND BYT OF OPERAND 006E 20 JSR 00C6 MAKE STRAIGHT COPY OF
0034 85 STA F2 OPERAND INTO F1/F2 COMPLETE INSTRUCTION
0036 38 SEC SUBTRACT SOURCE START 0071 20 JSR 00AD INCREMENT CURRENT
0037 A 5 LDA FI ADDRESS FROM OPERAND SOURCE AND DESTINATION
0039 E5 SBC EB TO SEE IF OPERAND POINTS

TO ADDRESS BELOW
ADDRESSES BY LENGTH OF
INSTRUCTION PLUS ONE

SOURCE START 0074 20 JSR EA13 CLEAR THE DISPLAY
003 B A5 LDA F2 (CRLOW)
003 D E5 SBC EC 0077 20 JSR 00 A3 SEE IF PAST END— CARRY
003 F 90 BCC 006E IF SO— CARRY CLEAR AND CLEAR IF SO

NO CHANGE REQUIRED 007 A B0 BCS 0018 NOT AT END SO GO BACK
0041 A5 LDA EF SUBTRACT OPERAND FROM FOR NEXT INSTRUCTION
0043 E5 SBC FI SOURCE FINISH ADDRESS 007C 90 BCC 008 D BRANCH ALWAYS (AT END)
0045 A5 LDA FO TO SEE IF OPERAND POINTS

TO ADDRESS ABOVE 007E THE FOLLOWING ROUTINE IS JUMPED TO IF USER
SOURCE FINISH REQUIRES A MOVE OPERATION RATHER THAN

0047 E5 SBC F2 RELOCATE . IT TRANSFERS A STRAIGHT COPY, BYTE
0049 90 BCC 006E IF SO— CARRY CLEAR AND BY BYTE FROM SOURCE INTO DESTINATION
004B 18 CLC NO CHANGE REQUIRED.
004C A5 LDA FI OPERAND REQUIRES

CHANGING SO PREPARE TO
007E
0080

A9
85

LDA
STA

#01
EA

SET LENGTH TO ONE

ADD. ADD OPERAND TO 0082 20 JSR 00C6 TRANSFER THE DATA
DESTINATION START 0085 20 JSR 00AF INCREMENT CURRENT
ADDRESS SOURCE AND DESTINATION

004E 65 ADC F3 ADDRESSES BY ONE
0050 48 PHA TEMPORARILY STORE LO-

BYT SUM ON STACK
0088 20 JSR 00 A3 SEE IF PAST END— CARRY

CLEAR IF SO

m i K A C I I V I

008B BO BCS 007E NOT AT END SO BACK FOR 00AD E6 INC EA ADD ONE TO LENGTH
NEXT BYT OF DATA 00AF 18 CLC

008 D 4C JMP FEE9 PATC10— CLEAR DISPLAY 00B0 A5 LDA EA
— HOME TO 00B2 65 ADC ED

MONITOR 00B4 85 STA ED
— REVELATION 6.14 00B6 90 BCC OOBA

00B8 E6 INC EE
00BA 18 CLC

0090 THIS SUB-ROUTINE GETS A 4-DIGIT ADDRESS AND 00BB A 5 LDA EA
STORES IT, LO-BYT FIRST, IN TWO ADJACENT PAIRS OOBD 65 ADC F5
OF THE STORE STARTING AT S00EB. 00BF 85 STA F5
WHEN CALLED FOR THE FIRST TIME, X = 0 00C1 90 BCC 00C5

00C3 E6 INC F6
0090 20 JSR E3FD RBYTE— GET TWO DIGITS 00C5 60 RTS

(HI ORDER)
0093 95 STA EC,X STORE THEIR HEX VALUE 00C6 THIS SUB-ROUTINE IS CALLED WHEN NO
0095 95 STA EE,X SAME AGAIN MODIFICATION OF THE OPERAND IS REQUIRED. IT
0097 20 JSR E3FD RBYTE— GET NEXT TWO COPIES A COMPLETE INSTRUCTION FROM THE

DIGITS (LO ORDER) ADDRESS POINTED TO BY CURRENT SOURCE, INTO
009A 95 STA EB,X STORE THE ADDRESS POINTED TO BY CURRENT
009C 95 STA ED.X AGAIN DESTINATION
009E E8 INX INCREMENT X READY FOR

NEXT ADDRESS 00C6 A4 LDY EA GET LENGTH OF
009F E8 INX INSTRUCTION
00A0 E8 INX 00C8 B1 LDA (ED),Y GET BYT FROM SOURCE
00A1 E8 INX 00CA 91 STA (F5),Y PUT IT IN DESTINATION
00 A2 60 RTS oocc 88 DEY

00CD CO CPY # F F ANY MORE ?
00A3 THIS SUB-ROUTINE CHECKS TO SEE IF THE CURRENT 00CF DO BNE 00C8 YES— GO BACK FOR NEXT

SOURCE ADDRESS HAS EXCEEDED THE SOURCE BYTE
FINISH ADDRESS— IF SO, THE MOVE OR RELOCATE 00D1 60 RTS
IS COMPLETE.

00D2 THIS SUB-ROUTINE DISPLAYS THE FOUR PROMPT
00 A3 38 SEC MESSAGES WHICH ARE STORED IN ASCII AT $OOF7 E
00A4 A5 LDA EF SEQ. WHEN CALLED FOR THE FIRST TIME, Y = 0
00A6 E5 SBC ED AND IS USED TO INDEX ALONG THE MESSAGE
00 A 8 A5 LDA FO TABLE.
00 A A E5 SBC EE
00AC 60 RTS IF NOT PAST END, CARRY EACH MESSAGE ENDS WITH AN EQUALS SIGN, =

REMAINS SET (ASCII # 3 D), AND THIS IS USED TO DETERMINE THE
END OF EACH PROMPT MESSAGE

00AD THIS SUB-ROUTINE INCREMENTS THE CURRENT
SOURCE AND CURRENT DESTINATION STORES BY AN 00D2 B9 LDA 00F7,Y GET THE CHARACTER
AMOUNT EQUAL TO THE LENGTH OF THE LAST- 00D5 20 JSR E97A OUTPUT— DISPLAY THE
INTERPRETED INSTRUCTION PLUS ONE, SO AS TO CHARACTER
POINT TO THE NEXT INSTRUCTION TO BE READ 00D8 C8 INY READY FOR NEXT

CHARACTER
IF DATA IS BEING MOVED, THE LENGTH (IN S00EA) 00D9 C9 CMP #3D IS IT “ = ”
IS SET TO #01 AND THIS SUB IS ENTERED AT $00AF 00 DB DO BNE 00D2 NO— SO GET ANOTHER
SO THAT SOURCE AND DESTINATION ADDRESSES CHARACTER
ARE INCREMENTED BY ONE EACH TIME 00DD 60 RTS -Q

f i N l i K A O m r

TTY OUTPUT UTILITY
PROGRAMS

Mark Reardon
Rockwell International

Many peripheral devices (printers, CRT Monitors) can use inputs in the
form of a 20 ma current loop or RS-232. The AIM 65 has a built-in 20
ma current loop that can be utilized, or the loop can be modified to being
an RS-232 (DOC. No. 230: RS-232C Interface for AIM 65).

One large problem still remains. For the AIM 65 Firmware to use the
TTY port, the Keyboard/TTY switch must be in the TTY position. Un
fortunately, the AIM 65 then uses the TTY port for all of the inputs that
usually come from its Keyboard. Most printers have no way of commu
nicating back to the AIM 65. In order for the keyboard to retain control,
one of the following programs can be used. Each uses the TTY subrou
tine in the AIM 65 Monitor (OUTTTY=$EEA8). They also require the
user to enter the correct values for the baud rate in locations SA417 and
$A418. The first program (ECHO) utilizes the DILINK ($A406) vector
to intercept all data on the way to the display/printer and then redirects it
to both the TTY and display/printer. I f this program or any other program
that modifies DILINK is assembled on the AIM 65 the object code has to
be directed to an external device.

If the object code is directed to memory, the AIM 65 will lock up. To
free it, the power has to be turned off. Reset will not correct the problem.
The second program (UOUT) is a user output program. It allows the user
to select the TTY port by responding to the O U T= prompt with a U.

In this way any command that uses the Outall subroutine will direct its
output to the TTY port. AIM 65 Basic uses Outall for all of its printing
commands. Unfortunately, AIM 65 Basic also sets the Outflag to equal
P. To use the user output program the instruction: “ POKE 42003,85 ,”
needs to be inserted.

Page 13

In actual use there have been two major sources of failure with these pro
grams. The easiest to cure is if the baud rate isn ’t entered properly. To
determine the appropriate values do the calculations as shown below. The
second source of trouble has been that different manufacturers have de
signed their peripheral requiring different inputs than are provided. In
these situations these two programs had to be modified to satisfy the pe
ripheral’s needs.

ECHO PROGRAM
0000 OU'TTTY=$EEA8
0000 CR=$0D
0000 LF=$0A
0000 NULL=$FF
0000 DILINK = $A406
0000 *=DILINK
A406 00 02 .WOR ECHO SET VECTOR TO THIS ROUTINE
A408 * = $200
0200 C9 0D ECHO CMP #CR :CR?
0202 DO 0A BNE NOTCR :No, JUST OUTPUT IT
0204 20 A8 EE JSR OUTCTY :YES, ADD LF AND NULL
0207 A9 0A LDA # LF
0209 20 A8 EE JSR OUTTTY
0200 A9 FF LDA #NULL
020E 4C A8 EE NOTCR JMP OUTTTY :OUTPUT AND RTS
0211 END

UOUT PROGRAM
0000 OUTTTY = $EEA8
0000 CR=$0D
0000 LF=$0A
0000 NULL=$FF
0000 UOUT=$10A
0000 *=UOUT
010A 00 02 WOR START : VECTOR TO PROGRAM
010C *=$200
0200 90 12 START BCC RETRN :NO SETUP
0202 68 PLA :A ON STACK
0203 C9 0D CMP #CR :1F CR ALSO SEND
0205 DO 0A BNE NOTCR :A LF AND NULL
0207 20 A8 EE JSR OUTTTY .OUTTTY ALSO SENDS
020A A9 0A LDA #LF :TO DISPLAY/PRINTER
0200 20 A8 EE JSR OUTTTY
020F A9 FF LDA #NULL
0211 4C A8 11 NOTCR JMP OUTTTY
0214 60 RETRN RTS
0215 .END

METHOD TO CALCULATE
BAUD HATES FOR THE AIM 65

When used with terminals running at 1200 baud and up, the Rockwell
AIM 65 needs to have the Baud Rate entered manually. To calculate the
values to enter perform the procedure outlined below:

Note: All variables are integers and have us/bit as their units.
1. 106/(Baud Rate) = X
2. X-67 us/b = Y
3. Y/256 = Z remainder W
4. $A417 = Z in Hex
5. SA418 = W in Hex

Examples: Baud Rate 4800
1. 106/4800 Baud = 208
2. 2 0 8 -6 7 us/b = 141
3. 141/256 = 0 Remainder 141
4. $A417 = 0 10 = 0016
5. SA418 = 14110 = 8D ,6

Baud Rate 150
1. 106/l 50 Baud = 6667
2 . 6667 - 67 us/b = 6600
3. 6660/256 = 25 Remainder 200
4. SA147 = 2 5 10 = 191B
5. $A418 = 200,„ = C 8,6

Page 14 lS fE H 4 G f|V E

DATA STATEMENT
GENERATOR

G. Brinkmann
W. Germany

Remember the last time you had to convert a machine language program
to data statements so your Basic program could poke it into RAM some
where? I ’ll bet you really enjoyed having to convert each hex byte into
decimal and then typing it in. No? Well, then maybe you’ll find this pro
gram will come in handy next time around.

What it does is convert hex data to decimal and generate BASIC data
statements with the decimal data. The statements that it generates are
sent out to the audio cassette interface which is used as temporary stor
age. The input is in the form of hex numbers which could come from the
conversion program itself, as is in the example or, from memory with a
minor change to the conversion program.

Note that this approach needs only one tape without remote control and
only “ on board” assembly language routines. The following example
converts the first 26 HEX-values of R. Reccia's program (INTERAC
TIVE 1) into BASIC-DATA-Statements and writes them to tape.

It works as following:

— the HEX-values of the assembler language program are put into the
BASIC-Program by DATA-statements. They must be ended by an
“E N D ” DATA (or any other special mark, see lines 90 , 260).

— In line 190 you are asked for the line-number of the first DATA-state-
ment to be generated, depending on your BASIC-program.

— Line 210 performs a call to WHEREO and opens the outfile. I f it is a
tape, with a gap of 80 (POKE 41993,128).

— The main loop starts at line 230, the STRING S$ is filled with the
statement-number and the constant “ D ATA” .

— In line 260 we read the HEX-input-data until “ EN D ” . The data is
added to SS after converting to decimal in a subroutine. Each DATA-
line takes 10 items.

— The PRINT-statements (line 350) write the STRING S$ to any open
output, adds 1 to the statement-number and goes to the start of the
main loop (line 230). Note that until now the first statement-line has
a linenumber of d+1 (where d was your input).

— If-the END-mark has been read, the last DATA-statement will be
printed, followed by the statement-line “ d ” with a counter of all
DATA-items.

— The file will be closed in line 410 through a jum p to B52B, a BASIC-
routine which prints a CTRL/Z, closes the file and waits for the new
input.

— The HEX to DECIMAL conversion takes place in statement 450-560
and uses the STRING H$ in 170. Leading zeroes in the HEX-numbers
are not needed.

— If an error occurs, the faulty item will be printed to the printer and the
file is closed. Therefore, you should make a trial run before going to
tape (by hitting RETURN after O U T=) and any error will go to the
printer (which has not to be on).

When everything worked ok until now, you have a file with DATA-state
ments on tape. To read it into your actual program, just use a statement
as

100READ N:FOR I = 0 TO N -1 :R £ A D X:POKE xxxx+I,X:NEXT

Remember, the first DATA-statement contains a counter of the following
DATA-items. So you don’t have to bother about it, the first READ will
get it for you. This is extremely useful during the test phase, where
changes occur quite frequently.

The next step is to load the statements into your BASIC program with the
LOAD command. Be sure that you have chosen the right line-number,
the LOAD command will over-write duplicate line-numbers. However,
while testing, it might save you deleting the old lines.

If you are working with the ASSEMBLER and the BASIC at the same
time, you could change the READ in line 260 to PEEK'S. This saves you
the initial typing in of DATA-statements and the conversion will be done
by BASIC. However, you should either use a counter or a unique mark
as 0 ,0 ,0 to find an end to the data.

O f course, the data need not to be in memory at all. You can generate
DATA-statements by reading from keyboard or by using your BASIC-
program to compute them from other data. I use this program regularly
while computing moving averages and other statistics and then replacing
the old values by the new ones for the next run.

7 0
8 0
9 0

D AT A A 9 y I.' ? v 8 1.i •! 2 i- A 8 v 2 0 y 1.11 y !■ 2 v A 9 y 2 .:!• y 2 0 v 4 A y
D A T A A 2 fc)i* 6 ? y OF y 2 0 , 4 A y F 2 y F 8 y C 9 v 2 1 v DO y
D A T A END

F 2
F 5

:i o o REM H E X TO D E C I M A L
•i. :i. o R F f i G E N E R A T E S D A T A - L . I N F S ON T A P E - F 1 L F
:: : , '0 R E h G , HR.! NKMANN
1.30 REM AI.IF M G R A E U E R I C H 1.9A
1. 4 0 REM 'J- 5 4 .14 O A I . . L E N D A R
:i. s o REM W E S T G ER M A N Y
.1. 6 0 REM I N I T
1.70 ! I $ = " 01 2 3 4 5 6 7 8 9 A B C D E F ? "
1.00 REM F I R S T L I N E F O R COUNT OF D A T A I T E M S
1.90 I N P 0 T " NI v 0 F F I R S I D A T A -!... I N E ■ 5 D 1 J11 -- D 1 i :l
2 0 0 REM O P EN T A P E - F I L E W I T H LONG G AP
2:i o P 0 K E 4 V .1. .1.3 $ P O K E 5 y 2 3 2 i P 0 K E 4 1 9 9 3 y 1 2 8
220 X M . I S R C O)
230 S i l . ^ S T R $ (i : n i " D A T A "
2 AO REM .10 X T E r i S P E R L I N E
2 50 F O R N " 1 TO 1 0
260 REA) : i A i | i t : i F A S - - 11 END ■ T H E N 3 9 0
2 -:'0 REM S U B R O U T I N E H E X -•> D E C I M A L
2 8 0 G O S U B 4 7 0
2 9 0 R E h ON E R R O R C L O S E F I L E
3 0 0 I F A 1 . $ 0 " E R “ T H E N 3:10
3 0 b P 0 K E 4 2 0 0 3 y 1 3 <■ PRT N T ! " E R R 0 R I N L I N E " i l.J J G 0 T 0 4 3 0
3:1 o I F N > 1 T H E N s $ = s $ r y “
3 2 0 REM S T R I N G C O N C A T E N A T I O N
3 3 0 s $----s # + a i * : n e x t
3 6 0 REM O U TPU T TO ANY O P E N F I L E ? I N C L I N E NUM BER
3 7 0 P R I N T S $ i D = n + U G O T O 2 3 0
3 0 0 R E H P R I N T L A S T L I N E AND T H E N F I R S T
3 9 0 P R I N T S *
4 0 0 S $ = S T 1 ■' $ (D 1) f " D A T A " + S T R $ < (D - D 1. ~ 1) * 1 0 + N - 1)
41 .0 P R I N T S t
4 2 0 REM C L O S E O U T P U T F I L E
4 3 0 P 0 K E 4 * 4 3 i P 0 K E 5 v 1.81 i X = U S R (0 >
4 4 0 REM J U M P TO B A S I C I N P U T
4 SO END
4 6 0 REM S U B R O U T I N E H E X - > D E C I M A L
4 7 0 I E L E N < A *>■■=! T H E N A ^ ~ “ 0 " + A $
4 8 0 F O R 1 = 1 TO 1.7
4 9 0 I F h I D $ (A $ v 1 v 1) -■ M I D $ < H $ 1 1 y 1) T H E N A -• 1 6 # (1 - 1 > J G 0 T 0 5 2 0
5 0 0 REM A F T E R L A S T N E X T --> E R R O R
51 .0 N E X T : G O T O 5 8 0
5 2 0 F O R 1=1 TO 17
5 3 0 I F M ID $ (A $ •/ 2 y 1) M I D $ < H $ y I y 1) T H E N A A + 1 -1. M 3 0 T 0 5 6 0
5 4 0 N E X T ? G O T O 5 8 0
5 5 0 REM I T ' S A GOOD ONE
5 6 0 A 1 $ S T R $ (A) i R E T U R N
5 7 0 REM P R I N T E R R O R MSG
5 0 0 A 1 ' !> " E R “ ? R E T U R N -e-

Page 16

the ‘RETURN ’ key. Answer the ‘T 0 = ’ prompt with 0500 to show where
the program is going to be loaded. (Programs can only be offset by even
page amounts. For example, if a program originally resided at $0236,
it could only be offset to $0436, $0636, $0A36 etc. not $0400, $0777,
or $0100. Get it? This is because the offset calculation is done only on
the page number (upper byte) and not the byte number (lower byte).)

The rest of the cassette load prompts are the same as the normal ones
in the standard cassette load routine.

This program will also let you load a program even though there are
loading errors. This, at least, gives you a chance to recover a program
that would otherwise be impossible to recover. The normal cassette load
routines will stop when an error occurs.

2000 NAME =*A42E
2000 CKSUM -$A41E
2000 TAFAR =$A436
2000 A DDR =$A41C
2000 S I =*A41A
2000 TEMP =■$0117
2000 y
2000 TA ISET =*EDEA
2000 GETTAP =*EE29
2000 PL.XY =$EBAC
2000 F'HXY =*EB9E
2000 NAMQ ~$E8CF
2000 OUTALL. =*E9BC
2000 SADDR =*EB7B
2000 COMIN =*E1A1
2000 FROM ~ $ E 7 A 3
2000 TO = $E7A7
2000 ADDRSI - $ F 910
2000 CRLOU =*EA13
2000 BLANK =*E83E
2000 CHEKA =$E54E
2000 NXTADD =*E2CD
2000 NUMA =$EA46
2000 CLRCK =$EB4D

2000

CJ•w■
Hitit

*

0 IOC
010C 4C 61 00 JMP START

01. OF # = $00
0000 00 ERRO .BYT $00
0001 45 52 MSG ♦ BYT ' ERRORS IN '
0 00 B 4C 4F MSG :i. ♦ BYT ' L O A D IN ' r * C 7
0011 C7
0012 44 4F 4E MSG2 ♦ BYT ' DON ' y $CE:"
0015 CE

CASSETTE LOAD UTILITY
. . . For AIM 65

Mark Reardon
Rockwell International

This multi-purpose utility program allows you to load programs with
offset and recover programs that have load errors.

For example, suppose you wish to reload a program to reside at $0500
that was originally dumped from $0200. First, start the program by
pressing the ‘FI ’ key. The ‘FROM = ’ prompt should appear first. Enter
0200 to specify where the program used to reside in memory and press

0 0 1 9
0 0 1 C
00 I F
0021
0 0 2 3
0 0 2 5
0 0 2 7
0 0 2 9
002 B
0 0 2 E
003 1
0 0 3 2
0 0 3 4
0 0 3 6
0 0 3 9

00 3 A
003D
0 0 4 0
0 0 4 2
0 0 4 4
0 0 4 7
0 0 4 9
0 0 4 C
0 0 4 D
0 0 5 0
0 0 5 3
0 0 5 5
0 0 5 7

0 0 5 A
0 0 5 C
0 0 5 E
0 0 6 0

0 0 6 1
0 0 6 4
0 0 6 7
0 0 6 A
006D
0 0 6 El
0 0 7 1
0 0 7 4
0 0 7 7
0 0 7 A
007D
0 0 8 0
0 0 8 2
0 0 8 5
0 0 8 8
008 A
0 0 8 D
0 0 9 0

Page 17

20 9 E EB TA P E J S R PHXY
20 EA ED READ J S R T A I SEL T
20 '.■>9 E E SYNC J S R G E T T A P
C9 23 CMP # ' #
FO 06 BEQ FOUND
C9 16 CMP # $ 1 6
DO F 2 BNE READ
FO F 3 BEQ SYNC
A 2 00 FOUND L..DX #0
20 29 EE- MORE J S R G E T T A P
9D 16 01 STA T E M P - 1 y X
E 8 INX
EO 52 CPX # $ 5 2
DO F 5 BNE MORE
20 AC EB J S R PL.XY
60 R TS

20 9E EB COUNT J S R PHXY
AE 36 A4 LDX TAPAR
EO 4 F CPX # 7 9
DO 05 BNE T I B I
20 .1.6 00 J S R TAPE
A 2 00 LDX # 0 0
BD 17 01 T I B I LDA TEMPyX
E8 INX
8 E 36 A4 STX TAPAR
20 AC EB J S R P L X Y
EO 00 CPX # 0 0
FO 09 BEQ R E T
4C 4 E

inLu JMP CHEKA

A 5 00 ERROR LDA ERRO
DO 02 BNE R ET
E6 00 INC ERRO
60 RET RTS

20 A3 E 7 STA RT J S R FROM
20 3E E 8 J S R BLANK
20 10 F 9 J S R ADDRSI
20 A 7 E 7 J S R TO
38 S E C
AD 1 D A4 LDA ADDR+1
ED I B A4 SBC S l + 1
8D I B A4 STA S l + 1
20 13 EA J S R CRLOW
20 CF E 8 J S R NAMO
20 16 00 BLOCK J S R TA P E
A 2 05 LDX #5
8E 3 6 A 4 STX TAPAR
AD 16 01 LDA TEM P-1
DO F3 BNE BLO CK
BD 16 01 AGAIN L..DA T E M P - 1 y X
DD 2D A 4 CMP NAME-1»X
DO EB BNE BLO CK

y S E T UP TA P E
5 G ET A CHAR
5 BLOCK S TA RT

? S Y N ?

5 S T O R E IN B U F F E R
5 GET A CHAR

y B U F F F U L L
y NO

y B U F F P O I N T E R
y B U F F EMPTY
y NO
5 READ A BLOCK
9 R E S E T P O I N T E R
yGET CHAR
y IN C B U F F P O I N T E R
y SAV E P O I N T E R

5 X 0 0 THEN ADD CKSUM

v ADD TO CKSUM

y 0==N0 ERRORS

y M A K E O O

f O R I G ADDR
J L E A V E A S P A C E
y ADDR TO S I
y NEW ADDR

f O F F S E T VALUE
y C L E A R D I S P L A Y
y F I L E NAME

y BLK NO
y N0 T BLK 0

yCMP NAMES
y D I F F E R E N T

Page 18 I^ T III4 C IIV >

0 0 9 2 CA D E X
0 0 9 3 DO F 5 B N E A G A I N
0 0 9 5 A 2 OA L D X # M S G 1 - M S G
0 0 9 7 2 0 F 2 0 0 J S R OUT ? D I S P L A Y L O A D I N G

0 0 9 A 2 0 3 A 0 0 G E T C H J S R C OUNT P G E T A C H A R
0 0 9D C 9 3 B CMP # " * ? R E C O R D S T A R T
0 0 9 F DO F 9 B N E G E T C H

O O A l 2 0 4D E B J S R CL. .RCK ? C L E A R CKSU M

0 0 A 4 E 8 I N X
0 0 A 5 2 0 3 A 0 0 J S R CO UN T * R E C O R D L E N G T H
0 0 A 8 A A T A X
0 0 A 9 FO 3 9 B E Q S T O P P 0 = D 0 N E
OOAB 2 0 3 A 0 0 J S R COU NT
0 0 A E 1 8 C L C
0 0 A F 6D I B A4 ADC S l + 1 PADD O F F S E T
0 0 B 2 8D I D A 4 S T A A D D R + l
0 0 B 5 2 0 3 A 0 0 J S R COU NT
0 0 B 8 8D 1C A 4 S T A A DDR
OO BB 2 0 3 A 0 0 L O A D 2? J S R CO UN T 5 G E T D A T A AND S T O R E
0 0 B E AO 0 0 L D Y # 0
0 0 CO 2 0 7 8 E B J S R S A D D R P S T O R E AND CMP
0 0 C 3 ? T 0 E L I M I N A T E MEMORY F A I L E R R O R S
0 0 C 3 fR EM O V E : ' B E Q O K ' AND " J S R E R R O R ' '
0 0 C 3 FO 03 B E Q OK P D I D MEM A C C E P T ?
0 0 C 5 20 5 A 00 J S R E R R O R
OOCB C8 OK I N Y y Y =: 1
0 0 C 9 20 CD EL' 2 J S R N X T A D D PADD Y TO A DDR
OOCC CA D E X PC O UN T B Y T E S
OOCD DO E C B N E L O A D 2
OOCF 20 3 A 00 J S R COU NT
0 0 D 2 CD I F A 4 CMP C K S U M + 1
0 0 D 5 DO 0 8 B N E E R R
00D7 20 3 A 00 J S R COU NT
0 0 DA CD 1 E A 4 CMP CK SU M
OODD FO B B B E Q G E T C H P C K S U M S OK
0 0 D F 2 0 5 A 0 0 E R R J S R E R R O R
0 0 E 2 DO B 6 B N E G E T C H

0 0 E 4 2 0 1 3 E A S T O P J S R CRL..OW
0 0 E 7 A 2 0 0 L D X # 0 0
0 0 E 9 A 5 0 0 L D A E R R O PC I F NO E R R O R S
O O E B 8 6 0 0 S T X E R R O
0 0 ED FO 0 1 B E Q NOE
0 0 E F 2 C ♦ B Y T $ 2 C v C O D E F O R B I T A B S
OOFO A 2 11 NOE L D X # M S G 2 - M B G P F I N A L MSG AND R T S
0 0 F 2 B 5 0 1 OUT L D A MSG >X
OOF 4 4 8 PH A
0 0 F 5 20 BC E9 J S R OUT ALL-
OOFS E 8 I N X
OOF 9 6 8 P L A
OOF A 10 F" 6 B P L OUT ? M S B - 1
OOFC 60 R T S
00 FD ♦ END

I N I I K A C m t Page 19

INTERRUPT-DRIVEN
KEYBOARD

FOR THE AIM 65
Dr. Will Cronyn
Borrego Springs, CA

A common requirement in interactive computer systems is the entry of
ASCII characters through the keyboard at random or erratic intervals
when a program is executing. The program may be computational, pro
cess control, monitoring or some combination of these or other functions.
The AIM 65 monitor routines require an explicit call to the keyboard and
all (i.e. READ, RBYTE, etc.) except RCHEK demand a response before
execution continues. The results would be disastrous if your AIM 65
controlled desert irrigation system had to wait 4 weeks before resuming
execution for you to return from your summer vacation in Alaska to
answer the question: Do-you want the citrus put on a 3-days-a-week
watering schedule? You could lace your program with calls to RCHEK
but such calls, which consume 959 microseconds each (if there is no
keyboard entry), can consume a large fraction of the execution time of
the computer in spite of the fact that they are utilized for only a tiny
fraction of the time.

One solution to the problem was described by De Jong in issue 3 of
Interactive. He suggested the fundamental solution to the problem: gen
erate interrupts for which the interrupt service routine looks for a key
board entry. To allow continuation of program execution in the absence
of a keyboard entry, De Jong modified AIM Monitor routines. The result
is an interrupt routine which requires $A3 (163) bytes of code in 87 lines.
In addition to the fairly lengthy code, it does not appear that his routines
are fully debounced, i.e. debounced on both keystroke initiation and
termination.

My solution is to use two interrupt service routines: one to jump from
an executing main program to JSR READ, and the other to jum p from
READ (in the most likely event that no keyboard entry is available) back
into the main program. Not only does this approach work but also it uses
unmodified monitor routines and is instructive in its utilization of a dy
namically programmed interrupt vector. The interrupt service routines
require $40 (64) bytes of code in 29 lines.

DETAILED PROGRAM DESCRIPTION
There are three parts to the code which appears in the listing: (1) system
configuration and initialization. $200-22B; (2) a “ main"' program which
provides an immediate, positive verification that the interrupt-driven
keyboard is functioning properly, $22C-24C; and (3) the interrupt rou
tines themselves in a location which would be appropriate for most 4K
AIM applications, SFCO-FFF. The interrupt routine sequences and con
figurations can best be understood by referring to the IRQ signal display.
The T1 timer counter ($A004,5) is loaded with $FFFF, which produces
an interrupt 65 milliseconds execution of the main program begins. The

timer latch ($A006,7) is loaded with $4000. Thus, in the T1 free-run
mode (UACR loaded with $40), when T1 times out after 65 milliseconds,
which results in a jump to MNSVC, the contents of the T1 latch is trans
ferred to the counter, thereby setting up another interrupt 16 milliseconds
later. The interrupt vector is reconfigured to RDSVC and the T1 latch
is loaded with $FFFF. Thus after 16 milliseconds in MNSVC the inter
rupt results in a jump to RDSVC, which returns program execution to
the “ m ain” program for another 65 milliseconds. Parameters for the next
cycle are established by reconfiguring the interrupt vector to MNSVC
and loading the T1 latch with $4000.

It may appear that 16 milliseconds is a long time to decide whether or
not READ will actually be presented with a keyboard entry. However,
because of timing requirements in READ which are based on the need
to debounce key stroke and key release (a total of about 11 milliseconds)
this time cannot be significantly reduced. In tests 1 performed, errors
were evident at an allowance of $2800 microseconds, while none were
seen at $2C00. I tested the program at keystroke rates up to about 540/
minute (my maximum single-key stroking rate) with no sign of errors.

Note that the stack pointer is saved in SAVSP when MNSVC is entered.
This procedure is required because normally, i.e. when there is no key
board entry for READ, exit from READ is achieved through use of the
interrupt rather than through an RTS within READ itself. Thus the stack
is not properly restored and since there are 3 layers of subroutines within
READ it would be unnecessarily difficult and risky to keep track of the
depth of the stack when READ is exitted via interrupt.

The “ m ain” program was a key element in testing and debugging the
interrupt-driven keyboard. Through the display of “ ? ” at the rate of
about 3/second, with a carriage return/line feed after 10 “ ? ” , it provides
an immediate indication that both the ‘ ‘main ’ ’ program and the keyboard
program are functioning. Of course a character entered through the key
board would normally be placed in a buffer accessible to other parts of
the program instead of simply being displayed via OUTPUT. The source
code, even in its fully annotated form, is short enough that it. the As
sembler symbol table, and the object code can all be co-resident in the
AIM during development or modification.

2 0 0 0 ? t h :i: s p r o g r a m e n a b l i ::
2 0 0 0 5 T H E A I M - 6 5 TO HA vt:
2 0 0 0 y AN. I N T l - R R U P r - D R I VEtv
2 0 0 0 ? KI: r H 0 ARD y 1 - t . . ENT RY
2 0 0 0 i W I T H O U T E X PI... 1 C 'I T
2 0 0 0 ■■ Ir.. N 1 K Y C A L.. 1... S J 1 •' A R 1 ':::
'? OHO 5 TO T H I S C O D E S 1 - I N -
2 0 0 0 v T ' E R R U P T C 0 N F T H U R A -
2 0 0 0 ■ T TON i 2- DUMMY M A I N
2 0 0 0 v P RO G R A M W H I C H DT s -
2 0 0 0 ? P L A Y S / S E C v 1 0
2 0 0 0 * " ? " / L I N E ? 3 ~ - I N T E R

2 0 0 0 y r u p t s e r v i c e :: r o u ...

2 0 0 0 y ' T I N E S . W R I T T E N BY •><•

Page 20

2 0 0 0 i O R . W I L L C R O N YN
2 0 0 0 ? S Y M B I O T I C O A T A COMM
2 0 0 0 ? p i O i B 0 X 6 2 6
2 0 0 0 ? B O R R E G O S P R I N G S » CA
2 0 0 0 v 7 :l.4• 76?-■ 5 4 9 8 9 2 0 0 4
2 0 0 0 ? 9 B E C l 9 8 0 ,

2 0 0 0 5 M O N I T O R R O U T I N E S ,
2 0 0 0 5 A L L E X C E P T " R E A O "
2 0 0 0 P A R E F O R OIJMMY M A I N
2 0 0 0 ? P R O G R A M ,
2 0 0 0 NI.JMA • !|! E A 4 6
2 0 0 0 C R L F $ E 9 1-“ 0
2 0 0 0 O U T P U T $ E 9 7 A
2 0 0 0 R E A D $ E 9 3 (.:
2 0 0 0 QM ~~ $ E 7 D 4

2 0 0 0 5 I R Q V E C T / T T C O N F I G .
2 0 0 0 I EDO 4 $ A 4 0 0
2 0 0 0 U A C R $ A 0 0 B
2 0 0 0 LIT I E =:: $ A 0 0 4
2 0 0 0 1 I T I L L :::: $ A 0 0 6
2 0 0 0 U I E R =T»AOOE
2 0 0 0 •• P A G E 0 V A R I A B L E S
2 0 0 0 * ■■■■■■ $ 0 0
0 0 0 0 C N T R *=-)fc+:l.
0 0 0 1 !• M A I N O N L Y ,

000 :1 ? I N T E R R U P T C O N F I G
0 0 0:1. * - $ 0 2 0 0
0 2 0 0
0 2 0 0 A ? C 1 L O A 1 K M N S V C
0 2 0 2 8 0 0 0 A'-! S T A I R 0 V 4
0 2 0 5 f) o OF 1 .0 A #.': MNBUC
() i"i " ■ 8 0 01 A 4 S T A I R Q 0 4 ■+•1
0 2 0 A i l l F R E E - R U N MODE?
0 2 0 A A 9 4 0 LO A * $ 4 0
0 2 0 C 8D OH AO S T A U a CR
0 2 0 1 ;• 0 1 S A B I . . F ALL 0 1 A
0 2 0 F y I N T R F T S E X C E P T T 1
0 2 OF' A 9 7 F I..OA # $ 7 F
021 1 . on OF AO S T A U I E R
0 2 1 4 A ? CO L D A # $ C 0
0 2 1 6 8 0 OF AO S T A U I E R
0 2 1 ? ? I N T R P T “ M A I N " A F T E R
0 2 1 9 ? * 5 M S E C $ F F F F U S E C
0 2 1 9 A 9 F F L D A * $ F F
0 2 I P 8 0 0 4 AO S T A U T I L
0211::. 8 D 0 5 ft 0 S T A U T 1 L + 1
0 2 2 1 v I N T R P T R E A O A F T E R
0 2 2 1 ? :l 6 MS EC=::$ 4 0 0 0 IJ S E C .
0 2 2 1 A 9 0 0 1...DA # 0
0 2 2 3 8 0 0 6 AO S T A U T 1 L L

l l T t H ^ T I V E

0 2 2 6 A 9 4 0 L O A # $ 4 0
0 2 2 8 8 0 0 7 AO S T A U T . l L L . i l
0 2 2 B 5 8 C L I

0 2 2 C v S T A R T " M A I N " PR O G RM
0 2 2 C A 2 OA B E G I N L D X # 1 0
0 2 2 E v DON'T H A V E I N I R L I F T S
0 2 2 E S O U R I N G P R I N 7 OF ■ ? “
0 2 2 E 7 8 I D L E S E I
0 2 2 F 2 0 0 4 E 7 J S R QM
0 2 3 2 5 8 C L 1
0 2 3 3 2 0 31- 0 2 J S R D E L A Y
0 2 3 6 CA D E X
0 2 3 7 ? A R E WE UP TO 1 0 ?
0 2 3 7 0 0 F 5 B N E I D L E
0 2 3 9 2 0 FO E 9 J S R C R L F
0 2 3 C 4 C 2 (• 0 2 J M P B E G I N
0 2 3 F v F O R D E L A Y H A V E 2
0 2 3 F ? L O O P S -OUT S I D E = $ 8 0 »
0 2 3 F ? 1 N D E X - C N T R -
0 2 3 F i I N S I DE==*FF i- I N D E X - Y
0 2 3 F AO F F D E L A Y L D Y # $ F F
0 2 4 1 A 9 8 0 L D A # $ 8 0
0 2 4 3 8 5 0 0 S T A C N T R
0 2 4 5 8 8 L O O F T D E Y
0 2 4 6 0 0 FO B N E L O O F T
0 2 4 8 C 6 0 0 d e l : C N T R
0 2 4 A 0 0 F 9 B N E L 0 0 P 1
0 2 4 C 6 0 R T S

0 2 4 0 >I N T R P T S R V C R I N G *
0 2 4 0 y MNS0 C L E A P S FROM
0 2 4 D ? “ M A I N " TO R E A D ? R D S O C
0 2 4 0 ? L E A P S FROM R E A D TO
0 2 4 0 ? " M A I N " . B E C A U S E OF
0 2 4 0 v I N T R P T - D R I V E N E X I T
0 2 4 0 y F ROM R E A D y MUST S A V E
0 2 4 0 i S r C K P N T R If? S A U S P .
0 2 4 0 ? N E X T I N T R P T A F T E R

0 2 4 0 vMNS VC I S R D S V C 8 VV
0 2 4 0 $ ■■■■ $ 0 F' C 0
OF CO S A V S P * 1 .1.
OF C l 4 8 MNSVC PI-IA
0 F C 2 8 A I X A
0 F C 3 4 8 PH A
0 F C 4 BA i s x
o r e s si;;: CO OF S T X S A V S P
0 F CO f S E l I N T R P T V E C T O R
O F C B v F O R N E X T I N T R P T
0 F C 8 ? C Y C L E (N O T C U R R E N T)
O F C B A ? E 4 L D A # < E D S V C
or t : a 8 0 0 0 A 4 S T A I, R 0 V 4
OF CO A 9 OF L D A #.: R D S V C

i i m i S S T T K E Page 21

A BASIC HINT
Howard A. Chinn
S. Yarmouth, MA

Issue No. 1 of INTERACTIVE called attention to the use of the AIM 65
text editor for editing BASIC programs. Mention was not made, how
ever, o f the use of the text editor to write BASIC programs that contain
both direct (calculator mode) and indirect (programming mode) com
mands. This feature (which is not available on a TRS-80 until you up
grade to a disc system) provides an opportunity for many interesting
applications.

Listing No. 1 is that of a short demonstration program prepared in the
text editor and printed using the Editor’s “ L ” command. This program
was recorded on tape using the Editor's “ L ” command. Next, BASIC is
entered and the program loaded using BASIC’S ‘ ‘LOAD ’ ’ and with the
printer turned “ O FF” (for this particular demonstration). Listing No. 2
was generated automatically while the program was being loaded!

Listing No. 2 shows that a title and explanation is printed without the
distracting “ R EM ” s. Program lines 10 to 40 are then placed in RAM.
Next, the POKE command turned the printer “ O N ” . The list command
did its thing just as if you had typed in the command using the keyboard.
And, finally, the “ RUN ” command ran the program automatically and
since the printer was still “ O N ” the result is shown on the printout. The
program, of course, resides in RAM. It could have been made to disap
pear had the original listing contained “ N EW ” at its end.

In a nutshell, when using the AIM 65 text editor any entry without a line
number becomes a direct command and those with line numbers are in
direct commands that are placed in RAM in the usual fashion.

The possibilities o f this feature of the AIM 65 are limited only by your
imagination.

Now, can someone tell me how to write a BASIC program in the text
editor including the essential “ CTRL Z ” and a command to automati
cally turn off the cassette recorder after a dump to tape?

(The “Z ” at the end of Listing #1 is a control Z).

LISTING NO. 1

= (L)
/
O U T=
?! “BASIC PGM VIA EDITO R"

?! “ AUTOMATICALLY LISTS
AND RUNS PROGRAM ”
?!“ ALSO TURNS PRINTER ON
AUTOM ATICALLY”
?!“ FOR LIST AND R U N ”
10 FOR N =1 TO 5
20?N “X 15= ” N*15
30 NEXT N
40 END
POKE 42001, 128
LIST
RUN
Z

LISTING NO. 2

BASIC PGM VIA EDITOR

AUTOMATICALLY LISTS AND
RUNS PROGRAM

ALSO TURNS PRINTER ON
AUTOMATICALLY

FOR LIST AND RUN
LIST

10 FOR N =1 TO 5
20 PRINTN“ X 1 5 = ” N*15
30 NEXT N
40 END

RUN
1 X 15= 15
2 X 15= 30
3 X 15= 45
4 X 15= 60
5 X 1 5 = 7 5

OF C F 8 0 0:1 A 4 S T A I ROM•••<•*• :i O F F 9 A 9 OF L D A # > MNSVC;
OF 0 2 y I... F N G T I-I - N F X T I N T R P T O F F B 8 0 0 :l. A A S T A I R U V 4 H .
OF M2 C Y C L E = = $ F F F F I . JSFC O F F F v A "I" T E R M OF T H I S
OF 0 2 A 9 F F L O A # $ F F O F E E r l N T R P T C Y C L E N E X T
0 F 0 4 8 0 0 6 AO S T A UT1L.L . 0 F F F •ilJI.1 1. H A V E 1 6 M S E C
OF 0 7 A ? F F L O A * $ F F O F E E A (-' 0 0 L O A # 0
OF 0 9 8 0 0 7 AO S T A U T l L L - i l 0 F F 0 8 0 0 6 AO S T A I J 1 I L L
OF DC 5 8 C L i O F F 3 A 9 4 0 I...0A * $ 4 0
OF UD 2 0 3 C F 9 ■JSR R F A 0 O F F 5 8 0 0 7 AO S T A IJ 1 I LI. i :i
0 F F 0 ? 0 0 NT A L L O W I N i Rp' i O F F 8 yNOW R E S T O R E A v X . S P
O F F 0 ? 0 I . I R I N C O U T P U T O F F 8 A E CO OF L D X S A V S P
0 F F 0 7 8 s f :i: 0 F F 0 9 A T X S
O F F 1 2 0 7 A F 9 J S R O U T P U T OF E C 6 8 P L A
O F F 4 ?i» E X I T F f t h MNSVC OFF' 0 A A t a x

O F F 4 y S F 7 'I N T R P T F O R L E A P 0 F F E 6 8 P L A
O F F 4 5 FROM " M A I N 11 0 F F E 4 0 E l 1.
O F F 4 A 9 C 1 R O B V C L O A * < M N 8 V C 1 0 0 0 . E N D -e-
O F F 6 8 0 0 0 A 4 S T A I R Q V 4

Page 22 m u m e n v>

(Continued from page 2)

above the IRQ Interrupt Processing section of the program. Also change
the instruction BNE INTRET in the IRQ Interrupt Processing section to
read BEQ INTRET.

The disassembly listing will also have to be changed. Add a JMP 0388
instruction between the CLI and LDA # 4 0 instructions. The BNE 0392
will then be changed to BEQ 0395 because that part of the program is
shifted upwards in memory.

UNHELPFUL USR HELPER
For some unknown reason, the following program lines were omitted
from the BASIC USR HELPER article on page 18 of issue # 3 .

The following lines are required:

0 DB = 13*11 + 11:F=15:FA = 15*16+ 10:GO TO 3
1 POKE4,DB:POKE5.F:RETURN:SET UP FOR SETARD
2 POKE4,FA:POKE5,F:RETURN:SET UP FOR CALLIT
3 REM PROGRAM MAY START HERE

Note that the definition on line 0 will speed up operation by eliminating
the required conversions to decimal every time lines 1 or 2 arc called.

NEWSLETTER REVIEW
From the Editor:
The Sept/Oct issue of the Target, a newsletter dedicated entirely to the
AIM 65 was, perhaps, the best issue of that newsletter that I ’ve seen. In
it were two articles that should tickle the fancy of most any serious AIM
65 user. The first article showed how to hook up the new General Instru
ment Programmable Sound Generator (AY3-8910) to the Aim 65 and
presented a software driver to make the thing generate telephone touch
tones from phone numbers which are stored in memory.

I have played with this chip quite a bit and am really impressed with all
its capability. The AY3-8910 interfaces very easily with the user R6522.

The other neat article that was in the issue presented complete plans
(hardware and software) for an EPROM programmer that can program
virtually all of the most popular EPROMS— 2708, both styles of the
2716 and 2532. The software is self prompting and the hardware design
is complete down to the AC power supply.

The Sept/Oct issue (1980) of Target is easily worth the S6.00 yearly sub
scription rate (it's published bimonthly). Outside of the U.S. and Canada
the price is S I2.00. Contact Donald Clem, R R #2 , Spencerville, OH
45887.

BEHAVIORAL SCIENCES
AIM-65 USERS GROUP

Workers in the behavioral and biological sciences who are currently us
ing, or are interested in using the AIM 65 are invited to participate in
a user's group now forming. Areas of interest include hardware and soft
ware for experimental control, data acquisition, statistical analyses, and
other applications. If interested, please write, outlining areas of interest,
current and planned projects, etc., to Dr. J. W. Moore, Jr., Box 539
MTSU, Murfreesboro, TN 37132.

LETTERS TO THE EDITOR
Dear Eric:

In a previous letter I complained about the lack of readability of many of
the programs in issues #1 and # 2 of INTERACTIVE. This letter is to
thank you and commend you for the fine job you have done in issue # 3
in rendering the programs more readable. The only one which is faint at
all but still is quite readable is the simultaneous equations from George
Sellers.

Here is a question you might be able to answer in the journal. Does any
one have a machine language program which will make a software con
version from ASCII to Baudot and output serial Baudot on the AIM 65 s
20 miliampere current loop? A relay could then be used to transfer the
Baudot to the 60 miliampere current loop of a Model 15 five level tele
type. A perhaps related question— can the 20 miliampere TTY loop out
put of the AIM 65 be used to output to a printer and still use the AIM 65
keyboard? If so. where would the KBD/TTY switch be placed?

Another question— Since the AIM 65 monitor has routines in it which
convert shifted characters so that the output is entirely capitals (no lower
case) how can the AIM 65 board be used to feed a printer the necessary
codes for lower ease? I thought perhaps Dr. D eJong’s program for the
Interrupt Driven Keyboard on page 12 would answer this, but his routine
contains at location 0C 7F ‘‘if alpha characters do not sh ift" just as does
the monitor. Could one just leave out the routine between 0C 7F and
0C85 and get lower case characters output?

Keep plugging along and keep up the good work. Happy to see that
INTERACTIVE is getting larger all the time. Thanks.

Sincerely,
John U. Keating, M.D.
8415 Washington Blvd.
Indianapolis, IN 46240

Dear John,

I don't know o f any program available to convert the TTY port to Baudot.
D oesn't sound too difficult, however. See the program on page 13 o f this
issue fo r the procedure fo r using the TTY port without regard to the TTY/
KBD sw itch. I would assume that lower case output could be achieved
by modifying an input program (such as DeJong's) and writing a new
output program.

Eric

Dear Editor,

I must apologize. I am rather negligent in sending in programming
"goodies" to share and this contribution does not make up for it. How
ever, I noticed in Issue 2, there was an 18 line step disassembler. This
should make it even easier; excluding the F3 jum p, it is only 3 lines
long. If printout is desired, it requires all o f 4 lines.

0112 JMP 00D0 (this is arbitrary)

00D0 INC A419

I ftTBIt ACTIVE Page 23

00D3
00 D6

JSR
RTS

E7ID

To run, toggle the printer off. Next, disassemble the first instruction of
the program under examination using the K command and a RETURN
following the / prompt. This sets up the various flags and registers. To
disassemble subsequent instructions, just press the F3 key.

The printing version goes as follows:

0112 JMP 00 DO

00D0 INC A4I9
00D3 JSR E71D
00D6 JSR F04A
00D9 RTS

(again, this is arbitrary)

Toggle the printer off, and disassemble the first instruction as above. Hit
the PRINT key to print the first instruction. Each press of F3 will di
sassemble and print the next line.

Michael L. Brachman
3513 Lake Ave. #307

Wilmette, IL 60091

Dear Editor:

I think I ’ve hit on a good way to build data files on tape from AIM
BASIC. This is an alternative to the method described by Ralph Reccia
in Issue No. 1.

To write a file on tape, insert the following line in the BASIC code before
the first PRINT statement you wish to send to tape:

POKE4.113:POKE5,232:X=USR(X)

This line calls the monitor subroutine WHEREO, which issues the fa
miliar prompts O U T =, F = , T = . Answer these prompts with T, your
desired file name, and 1 or 2. This initializes a tape file with the given
name. From here on. all BASIC PRINT statements will direct output to
the tape buffer, and when the buffer is filled it will be dumped to tape.

Don't forget to close the tape file before leaving the BASIC program.
This is necessary to ensure recording the last dab of output. To close,
insert the following line after the last PRINT which you want directed
to tape:

POKE4.10:POKE5,229:X = USR (X)

This calls the monitor subroutine D U l l , which closes the file and re
directs output to the display/printer. As a final touch, optional but nice,
stop the tape recorder by inserting the line:

POKE43008,207 AND PEEK(43008).

(I've assumed that you have the tape recorder remote control connected.)

To read a tape file, insert the following code before the INPUT statements:

POKE4,72 :POKE5.232 :X = USR(X)

This calls WHEREI, which issues input prompts, searches for the desired
file, and loads the first block into the buffer. Additional blocks are loaded
as they are needed. To restore normal operation, insert the line:

PC)KE42002,13

A potential problem on input from tape and be sidestepped by ending
the file with a distinctive end-of-file flag, say 9999, when it is written.
Thus, the end of file can be detected on input by testing each datum as
it is read. There is room for some ingenuity here.

Adroit use of POKE42(X)2,84 and POKE42002,I3 permit reading alter
nately from the tape and from the keyboard. The tape file need not be
re-initialized each time. POKE42003,84 and POKE42(X)3,I3 serve a
similar function for output.

Incidentally, I've found that the tape recorder remote controls as pro
vided on the AIM65 interject intolerable noise into the recordings. This
is because the power ground is in common with the signal ground and
it can be remedied by electrically isolating the power circuit. I use opto-
isolators and transistors, but the relay method shown on the back page
of Issue No. 1 is probably better.

The TEXT EDITOR can also be useful in dealing with these files. For
example, I've prepared a data file of our natural gas usage for the past
five years. For this, it was convenient to set up a text file in which each
line was one m onth’s gas use. After appending an end-of-file flag, this
file was dumped on tape under the file name GAS by means of the
editor’s L command. The advantage here is that the file can be proofed
prior to recording with the help of the T , B , U , D , K , I , and F commands.

How about sending BASIC output to a serial printer? I ’ve found that
when the KB/TTY switch is in the TTY position, output is routed to the
serial port. Unfortunately, this also disables the keyboard. One way out
is to insert the line

WAIT 43008,08.08

which stops program execution until the KB/TTY switch is thrown to
TTY. To restore normal operation, insert

WAIT 43008,08

which again halts execution until the switch is returned to KB. Don't
forget to set the baud rate parameters.

I have found the AIM65 to be very educational, as was the case with the
KIM-1 before it. I use both. 1 appreciate the support Rockwell is giving
AIM65 through this newsletter, as well as through peripherals and tech
notes.

Earl O. Knutson
51 Ralph Place

Morristown, N .J. 07960 -G-

EASY RS232C AIM
(J1) RS232

R. M. Dumse
Rockwell Int’l

To meet the RS232C requirements it is necessary to convert the TTL
levels of the 6500 Series I/O devices on the AIM to RS232C levels. TTL
levels are defined as values below 0.8V fora logical zero and above 2.4V
for a logical one, with 0V and 5V being the outside limits. The middle
region is undefined, meaning a TTL device operating with an input be
tween 0.8V and 2.4V could interpret it to be either a zero or a one. Its
output is therefore indeterminate. To have TTL circuits work correctly
we must make sure that these levels are correct. RS232 levels are differ
ent. A logical one is defined to be any voltage between —3 V and — 15V,
a logical zero between + 3V and + 15V in the “ C ” version. The region
between —3V and + 3 V is indeterminate. Note that this is inverted to the
way we normally think of logic, a one being negative going and a zero
being positive.

To communicate across an RS232 interface, the AIM must be able to
send and receive all RS232 signals at these levels. Although not well doc
umented, the AIM is already equipped with a receiver that will translate
RS232 signals to TTL levels. This receiver accepts an input from pin Y
on the Applications (Jl) Connector, Pari of the circuitry used is shared
with the 20ma current loop receiver. The 20ma current loop transmitter
can easily be converted to RS232 levels off the board with the circuitry
detailed below.

Not yet mentioned is the fact that RS232 devices communicate serially.
The format is generally selectable with at least one mode that is identical
to the Teletype format used by the AIM with one start bit and two stop
bits. We can therefore use the software in the A IM ’s Monitor to com
municate when the convertor is added.

SERIAL Y >
IN

20 ma(+) S >

20ma II >
(Ret)

J 5 A >

< 1 GND

GND

THE DC TO DC CONVERTER COULD BE REPLACED
BY A -5 V SUPPLY. WITH THE SWITCH UP— AIM
LOOKS LIKE MODEM. SWITCH DOWN— AIM LOOKS
LIKE TERMINAL < 2 0 DTR

If the device to be connected has a “handshaking” version of the RS232,
it is necessary to generate handshaking signals that allow continuous
communication. The circuit shown below uses a scheme of simply
“ wrapping around” any handshaking signals to meet this end. That is,
when it is set to be a modem, a Request To Send (RTS) is wrapped
around to the Clear To Send (CTS) line. (Note: To further confuse the
issue these signals are negative logic. A zero, meaning level between
+ 3V and + 15 V, is considered the true condition ie: a Request To Send
is a positive voltage when true.)

The circuit shown will work well at speeds in excess of 9600 baud if the
AIM 65 used has a 3.3K ohm resistor in R24. This resistoris labelled on
the board and can be found behind the printer. Older AIM 6 5 ’s have a
IK ohm resistor in that position which will not work. Replacing that re
sistor with the higher value will correct the problem, but will void the
AIM 's warranty. Refer to section 9. 2. 3. of the AIM 65 U SER’S
GUIDE for direction on initializing and operating the serial interface.

NEWSLETTER EDITOR
ROCKWELL INTERNATIONAL
P.O. Box 3669, RC55
Anaheim, CA 92803 U.S.A.

Bulk Rate
U.S. POSTAGE

RATE
Santa Ana Calif.
PERMIT NO. 15

