
ISSUE NO. 2

Rockwell International
...where science gets down to business

Page 2

EDITOR’S CORNER FOR YOUR INFORMATION

Your response to the questions on the subscription envelope has been
gratifying. By far, most of you are interested in articles about
interfacing AIM 65 to the outside world, (especially floppy disks)
and finding out who makes what for the system. I’m going to do my
bst to give you what you want in the way of subject matter, and hope
fully you’ll keep me informed if your needs should change.

ESSENCE OF AIM (65)

A computer is a computer is a computer. That’s obvious. But the fact
remains that some computers can do certain things better than others.
Look at people. The same person that would make a great jockey
would probably make a lousy long distance runner (and vice versa).

Here are some phone numbers that should prove useful to you:

AIM 65 (714) 632-0975 Use this number
APPLICATIONS when you have technical questions

concerning the AIM 65 system or
are having difficulty getting the
AIM 65 to function properly.

DEVICE APPLICATIONS (714) 632-3860 Use this number
when you have technical questions
concerning individual 6500 family
devices whether or not they are on
the AIM 65.

To hear some people talk, you’d think the AIM 65 is great at every
thing. Well, you and I, being realists, KNOW that that’s not true.
The AIM 65, like any other computer, has its good points and its not-
so-good points. While some of the no-so-good points can be
improved upon (see the article in this issue on adding a sound channel
to the AIM), I would most like to see articles that expand upon and
accentuate AIM 65’s strong points.

Here are some applications in which AIM 65 excels:
♦low-cost, self-contained educational system.
* laboratory instrumentation monitoring and experiment control
computer.

*minimum-cost software/hardware development system.
♦remote communications terminal (by adding a MODEM)
♦control panel and “ smarts” for OEM machine or assembly-line
controller

♦intelligent, general-purpose calculator
♦low-and medium-volume OEM products, with PROM-selected
multiple ‘ ‘ personalities ’ ’

♦Any product requiring a minimal hard-copy capability
I’ll bet that you can think of several more......

THIS ISSUE

You’ll notice that we have plenty of AIM 65 graphics in this issue.
This capability adds a whole new dimension to the usefulness of the
machine and is quite exciting. Thanks for this ability must go first to
the AIM 65 designers who used a software approach for interfacing
the printer and next to the folks at Micro Technology Unlimited and
Micro Mag who actually did the graphics software and made it avail
able to the rest of the world (separately, I might add).

EDITOR

SERVICE INFORMATION 800-351-6018 Call this number
when your AIM 65 is broken and
needs to be repaired.

(714) 632-3729 Call this number
when you need literature for a cer
tain Rockwell product or a particular
application note.

800-854-8099 (in California, call ̂
800-422-4230) Use this number
when you are wondering where you
can purchase an AIM 65 or
Rockwell accessory item.

AIM 65 (714)632-3729 Ask to speak to the
DOCUMENTATION Documentation Manager if you have

a question about the documentation
or a problem with it.

To keep receiving this newsletter, subscribe now! The cost is $5 for 6
issues ($8 overseas). Just fill in the attached subscription application,
add your check or money order (NO CASH OR PURCH ASE
ORDERS WILL BE ACCEPTED) and mail it in using the envelope.
(Payment must be in U.S. funds drawn on a U.S. bank).

All correspondence and articles should be sent to:

NEWSLETTER EDITOR
ROCKWELL INTERNATIONAL

POB 3669, RC 55
ANAHEIM, CA 92803

COPYRIGHT 1980 ROCKWELL INTERNATIONAL CORPORATION

Rockwell does not assume any liability arising out of the application or use of any
products, circuit, or software described herein, neither does it convey any license
under its patent rights nor the patent rights of others. Rockwell further reserves the
right to make changes in any products herein without notice.

LITERATURE

AIM 65
SALES INFORMATION

Page 3

f COVER STORY

AIM 65 GRAPHICS SOFTWARE

Would you believe that the graphics on the front cover (except for the
lettering) were generated with an AIM 65? Well, it’s true. Of course a
little help was needed in the way of software since, by its lonesome, AIM
65 isn’t so artistic. That help comes in the form of some creative soft
ware instruction from the folks at Micro Technology Unlimited (POB
12106, Raleigh, NC 27605 (919) 833-1458).

MTU supports AIM 65 in several ways. They manufacture hardware ex
pansion accessories (see the list in the AIM 65 suppliers section of this
issue), AND several software packages. These software packages greatly
enhance the capability of the AIM 65 in several ways.

The first package is called the TEXT/GRAPHICS PRINTOUT PRO
GRAM FOR THE AIM 65 (K-1009-1C) and includes two programs. One
of them dumps the contents of the text editing buffer out to the printer
sideways. That’s right, SIDEWAYS. With line lengths of to 80 charac
ters and 10 lines per strip, AIM’s printouts become much easier to read.
(I just couldn’t believe my eyes the first time I saw this work. It’s really
incredible!) I wish MTU would release the source code on this program
so people could tie this into the assembler and BASIC. Now that would

REALLY make AIM 65 shine!

The second part of this printout program is the one responsible for the
neat designs on the cover of this issue. It’s purpose is to give AIM 65
users a hard copy record (in one of two modes) of whatever is displayed
on the MTU Visible Memory (320x200 bit-mapped graphics board).
(This is an 8K dynamic RAM board that doubles as a video-graphics dis
play when connected to a video monitor.) The “ quick print’’ mode lets
you print out the entire 320x200 dot image on one strip of paper while
the “quality print” mode prints out the image as two strips of 320x 100
each which can then be taped together for a complete, properly propor
tioned image, (see the cover for an example of each) Of course, the print
out program doesn’t really care what 8K memory location the pattern is
coming from so patterns can be written into ANY memory board, or
even taken from ROM, if desired. But the greatest impact and practical
ity will be achieved when this program is used in conjunction with the
MTU graphics board.

The second package is called AIM 65 GRAPHICS/TEXT SOFTWARE
(K-1008-5C) and contains such goodies as an interface program which
allows graphics to be generated directly from an AIM 65 BASIC pro
gram, a program which turns the Visible Memory board into a 53 char
acter by 22 line video display for AIM 65, a swirl pattern generator, a
320x200 Life game, a graphics subroutine library, and several BASIC
demo programs thrown in for good measure.

Page 4 n r r r a i t r i m y i

AIM 65 GRAPHICS

(The next two articles are being reprinted with permission from the
publisher of 65XX MICRO-MAG, a German publication dedicated
to 6502 based machines. 65XX MICRO-MAG is written almost
entirely in German so it would be useful to have a command of the
language. If not, we’ll be translating some of the AIM 65 articles
and reprinting them in future issues of INTERACTIVE. Thanks go
to Roland Lohr (Hansdorfer Strasse 4, 2070 Ahrensburg, W.
Germany)

AIMPLOT — PLOTTING MEASUREMENT VALUES

This utility plots the results of measurements on the AIM printer at a
speed of 9 dots per sec. VALDOT converts a parameter in A into a
dot position (hex 00 A 63), AIGRA does the printout.

By means of the subprograms presented here, the printer of AIM 65
becomes a measurement value plotter, which outputs about 9 values
per second. VALDOT converts a measurement value in the accumu
lator into the corresponding measurement point position. AIGRA
takes care of printing out this dot. The user therefore only has to con
vert his measurement value into the hexidecimal value range 00-63
capable of presentation.

With regard to the way in which the printer works, one should famil
iarize himself with the AIM USER’S GUIDE, pages 7-19 ff. There in
particular one is warned against manipulating the timing of the
printer. In this respect the user need have no fear, because the author
was able to return to the original routines of the monitor with its time
constants unchanged. With regard to commentary, reference is made
for the most part to the MONITOR PROGRAM LISTING.

0200 2C 11 A4 AIGRA BIT PRIFLAG ROUTINE CORRESPONDS
TO IPST IN

0203 10 2A BPL OUT $F045 FOR OUTPUT OF A
LINE.

0205 20 CB F0 JSR PINT INITIALIZE
0208 20 66 02 JSR NIPSU
020B A9 Cl LDA #$C1
020D 8D OC A8 STA PCR
0210 20 A0 FF JSR PAT23
0213 DO 08 BNE NIP02
0215 20 A0 FF JSR PAT23
0218 DO 03 BNE NIP02
021A 4C 79 F0 JMP PRIERR
021D 20 30 02 NIP02 JSR NPDOT
0220 20 30 02 JSR NPDOT
0223 AD 77 A4 LDA IDOT
0226 C9 0A CMP #$0A ONLY 1 LINE
0228 90 F3 BCC NIP02
022A A9 El LDA #$E1
022C 8D OC A8 STA PCR MOTOR OFF
022F 60 OUT RTS
0230 A9 00 NPDOT LDA #$00 ROUTINE CORRESPONDS
0232 BD 01 A8 STA DRAH TO PRNDOT IN $F087
0235 AD 0D A8 NDOTO LDA IFR
0238 29 02 AND #$02

F0 F9 BEQ NDOTO
AD 0C A8 LDA PCR
49 01 EOR #$01
8D OC A8 STA PCR
EE 77 A4 INC IDOT
AD 79 A4 LDA IOUTU
0D 00 A8 ORA DRB
8D 00 A8 STA DRB
AD 78 A4 LDA IOUTL
8D 01 A8 STA DRAH
A9 A4 LDA #$A4
8D 08 A8 STA T2L
A9 06 LDA #$06
8D 09 A8 STA T2H
20 66 02 JSR NIPSU
4C BA F0 JMP $F0BA CARRY OUT THE REST OF

ROUTINE PRNDOT
A2 00 NIPSU LDX #$00 ROUTINE CORRESPONDS
20 21 FI JSR INCP TO PRNDOT IN $F0E3
BD 60 A4 NIPS1 LDA IBUFM,X
CD 77 A4 CMP IDOT
DO 16 BNE NIPS3
AD 7A A4 LDA IBITL
F0 08 BEQ NIPS2
0D 78 A4 ORA IOUTL
8D 78 A4 STA IOUTL
DO 09 BNE NIPS3
AD 7B A4 NIPS2 LDA IBITU
0D 79 A4 ORA IOUTU
8D 79 A4 STA IOUTU
0E 7A A4 NIPS3 ASL IBITL
2E 7B A4 ROL IBITU
CA CA DEX, DEX
10 D8 BPL NIPS1
4C 18 FI JMP $F118 TO THE REMAINDER OF

ROUTINE IPSU
CALCULATE DOT POSITION FROM VALUE IN A

48 VALDOT PHA RESCUE PARAMETER
A2 00 LDX #$00 ERASE PRINT BUFFER COM

PLETELY
20 38 F0 JSR OUTPR
A2 00 LDX #$00 X AS ADDRESSER RETRIEVE

VALUE
68 PIA

C9 05 DIVA CMP #$05
90 05 BCC FEIN REMAINDER <5
E9 05 SBC #$05 DIVIDE BY 5 UNTIL REMAIN

DER <5
E8 INX ADDRESSER + 1
DO F7 BNE DIVA ALWAYS JUMP
18 FEIN CLC ADDITION PREPARATION
2C 82 EF BIT #$04 OPERAND FROM FIXED

VALUE STORAGE
08 PHP RESCUE STATUS
49 03 EOR #$03 INVERT 2 BITS
69 01 ADC #$01 COMPUTATION IN THE

4-PART COMPLEMENT
28 PLP STATUS RETURNED
F0 02 BEQ SPEI SKIP
29 03 AND #$03 IF REQUIRED , MASK 2 BITS
9D 60 A4 SPEI STA IBUFM,X PRINT STORAGE
8A TXA IF X IS...
2C 97 F0 BIT #$01 EVEN OR ODD DIRECT

OPERAND
DO 08 BNE ZUR IF ODD
BD 60 A4 LDA IBUFM.X
69 05 ADC #$05 ADD TO DOT POSITION
9D 60 A4 STA IBUFM,X
60 ZUR RTS

023A
023C
023F
0241
0244
0247
024A
024D
0250
0253
0256
0258
025B
025D
0260
0263

0266
0268
026B
026E
0271
0273
0276
0278
027B
027E
0280
0283
0286
0289
028C
028F
0291
0293

0296
0297

0299
029C

029E
029F
02 A1

02A3

02A5
02A6
02A8
02A9

02AC
02AD
02AF

02B1
02B2
02B4
02B6
02B9
02BA

02BD
02BF
02C2
02C4
02C7

r m w r r r g i k f l Page 5

) test program:

A9 00 LDA #$00 STARTING VALUE
85 00 STA $00 COUNTER
20 96 02 T1 JSR VALDOT COMPUTE
20 00 02 JSR AIGRA PRINT
E6 00 INC $00 COUNTER
A5 00 LDA $00 COUNTER
C9 64 CMP #$64 ALREADY 10
DO F2 BNE T1 NO
00 BRK END

The test program plots ascending measurement values fr
(dec.), which are passed on to the accumulator.

AIMGRAPH
PRINTER

GRAPHICS CAPABILITY FOR THE AIM

This program lends 63 graphics characters to the AIM printer. You
may even create other character fonts like Arabic or Chinese by only
altering the contents of the table.

By studying the AIM MONITOR PROGRAM LISTING, it can be
seen that the ROM starting with cell F2E1 is also a character genera
tor ROM. The dot matrix is contained in 5 table sections for the col
umns. Here the table is controlled with the hexadecimal value of the
symbol to be printed as the index. This is again almost a classical
solution of how one can replace hardware by software. Our program
pursues this line further and dupes the program run at the point at
which the monitor comes back from the subprogram INCP. The
pointer built up in $A47D and $A47E for the dot pattern to be used is
manipulated to the appropriate location of our table, which starts
from 0300.

By means of this method, it is obvious that any other desired symbol
sets can be generated, even multiple sets in direct access. The author
does not have sufficient time to play with these possibilities, and for
this reason the standard graphic printout of a beautiful girl is missing.
Readers will certainly take care of that promptly and exert themselves
to bring games such as LIFE onto the printer.

AIMGRAPH can rely on an almost identical subroutine AIGRA such
as the program AIMPLOT in this issue. Only the command for line
counting is changed as follows:

0226 C9 5A CMP #$5A FOR 90 DOTS

The subprogram NIPSU called up is to be replaced by the following
NIPSU2. Whoever wants to operate AIMPLOT and AIMGRAPH
simultaneously can query a software switch in AIGRA before the dot
counting and correspondingly also in the subprogram s
NIPSU/NIPSU2, which are very similar to each other.

CORRESPONDS APPROXI
MATELY TO IPSU IN $F0E3

CLIP AS ADDRESSER

ADDITION PREPARATION
CONVERSION TO NEW
TABLE BASIS

0266 A2 00 N1PSU2 LDX #$00

0268 20 21 FI JSR INCP
026B BD 60 A4 N1PS1 LDA IBUFM.X
026E 29 3F AND #$3F
0270 A8 TAY
0271 18 CLC
0272 A9 IF LDA #$1F

0274 6D 7D A4 ADC JUMP

0277 85 00 STA PNTL

0279 A9 10 LDA #$10
027B 6D 7E A4 ADC JUM-f-1
027E 85 01 STA PNTL+1
0280 B1 00 LDA (PNTL),Y

0282 2C 7C A4 BIT IMASK
0285 F0 16 BEQ NIPS2
0287 AD 7A A4 LDA IBITL
028A F0 08 BEQ NIPS3
028C 0D 78 A4 ORA IOUTL
028F 8D 78 A4 STA IOUTL
0292 DO 09 BNE NIPS2
0294 AD 7B A4 NIPS3 LDA IBITU
0297 0D 79 A4 ORA IOUTU
029A 8D 79 A4 STA IOUTU
029D 0E 7A A4 NIPS2 ASL IBITL
02A0 2B 7B A4 ROL IBITU
02A3 CA CA DEX, DEX
02A5 10 C4 BPL NIPS1
02A7 4C 18 FI JMP $F118

ADDRESS COMPUTED BY
INCP
MAKE $00/01 THE TABLE
POINTER
DITTO FOR HIGH ADDRESS

HOLE DOT PATTERN FROM
TABLE
DOT SET
...AS (N SECTION IPSU

TO THE REMAINDER OF
ROUTINE IPSU

<M> =0300 0080 C0E0 F0F8FC 400C 2010101008 0 4 FE CHARACTER
GENERATOR
TABLE
FORA
GRAPHICS
FONT

< > 0310 18AA 02 C61C0010 1000 0E1EFE0280 1882
< > 0320 0010 00 04 F4 0010 1000 1028100006 1C80
< > 0330 1CFE FE FE FEFE00 0000 000EFEFE00 020E
< > 0340 0080 C0E0 F0F8FC401C2010381008 0482
< > 0350 8C54 02 AA 88 0010 1000 0E1E800C80 04 CC
< > 0360 00 10 1C FC C000 20 08 00 10 1010 00 0E 3C60
< > 0370 4400 FE FE FEFEFE 0000 OOOE3E0200 020E
< > 0380 C080 COE0 F0F8FC4038 2010FE1E08 0482
< > 0390 FEAA 02 92 FE IE IE F0 F0 0E1E80 01 80 FE01
< > 03A0 00F0 00 04 E806C006 FE FE7CFE00 IE EE01
< > 03B0 8200 00 FE FEFE00 FE00 00FE1E02FE 02FE
< > 03C0 2080 CO E0 F0 F8 FC 401C 2010 38 10 08 04 82
< > 03D0 8C54 02 82 881000 00 10 0E1E80 6080 04CC
< > 03E0 0010 70 FC C00800 0010 001010 FE3E 3C0C
< > 03F0 4400 00 00 FEFEOO 00FE 00E00E02 FE 02E0
< > 0400 0080 C0E0 F0F8FC400C 201010 1008 04FE
< > 0410 18AA 02 82 1C1000 0010 0E1E8080FE 1882
< > 0420 0010 00 04 F41000 0010 002810FEFE 1C02
< > 0430 1C00 00 00 00FE00 0000 FEE00602FE FEE0
As can be seen from the instruction in $026B, the program provides
the information in the printer buffer starting with $A460 with a
graphic meaning. It is not at all difficult to bring this information by
program to that location. But the question has still not been answered
as to how one goes from EDITOR directly and interactively by means
of a USER OUTPUT FUNCTION to the graphic printout of the open
text line. To this end suggestions are welcome.

To test out AIMGRAPH, there is the following program for printing
out the first 20 ASCII symbols ($20-$33 corresponding to a gap up to
3). By changing the initial value in the accumulator, one is able to

BUILT UP AND
IN SUCCESSION
AS TABLES
COLO THRU COL4
MONITOR
PROGRAM

INVERSE
REPRESENTATION
POSSIBLE BY
EXOR-ING
TABLE CONTENTS

print out the entire symbol set.

0500 A2 LDX #00 ADDRESSER
0502 A9 LDA #20 ASCII = BLANK (SPACE)
0504 9D STA A460,X IBUFM.X
0507 38 SEC
0508 69 ADC #00 ADD X]
050A E8 INX
050B E0 CPX #14 20 CHARACTERS
050D DO BNE 0504
050F 20 JSR 0200 PRINT
0512 00 BRK BACK TO MONITOR

— o—

INSIDE BASIC Dyadic Operation

addition C5A9
Jim Buterfield subtraction C592
Toronto multiplication C76A

division C851
exponentiation CC7F

(This article is being reprinted with permission from the publisher of logical a n d BD42
TARGET, a newsletter dedicated soley to the AIM 65. Lets thank logical OR BD3F

Jim Butterfield for providing the world with so much information on i^cd°NOT BC9C

AIM 65 Basic! More information on Target can be gotton by writing comparison BD6F

c/o Donald Clem, RR #2 , Conant Rd., Spencerville, Ohio 45887)
Zero Page Usage

Basic Token List AIM BASIC VI. 1 -
0000-0002 0-2 New-line jump
0003-0005 3-5 USR jump

Token Operation Address 0006 6 Search character
80 END B65E 0007 7 Scan-between-quotes flag
81 FOR B55C 0008 8 Input buffer pointer; # subscripts
82 NEXT BB00 0009 9 Default DIM flag
83 DATA B767 000A 10 Type: FF = string, 00 = numeric
84 INPUT B9BC 000B 11 Type: 80 = integer, 00 = floating point
85 DIM BDDA oooc 12 DATA scan flag; LIST quote flag; memory flag
86 READ B9F0 000D 13 Subscript flag; FNx flag
87 LET B814 000E 14 0 = input; $40 = get; $98 = read
88 GOTO B714 000F 15 Comparison evaluation flag
89 RUN B6EC 0010 16 Input flag: suppress output if negative
8A IF B797 0011 17 I/O for prompt suppress
8B RESTORE B631 0012 18 Width
8C GOSUB B6F7 0013 19 Input column limit
8D RETURN B741 0014-0015 20-21 Integer address (for GOTO, etc.)
8E REM B7AA 0016-005D 22-93 Input buffer
8F STOP B65C 005E 94 Temporary string descriptor stack pointer
90 ON B7BA 005F-0060 95-96 Last temporary string pointer
91 NULL BF87 0061-0069 97-105 Stack of descriptors for temporary strings
92 WAIT C56C 006A-006B 106-107 Pointer for number transfer
93 LOAD E848 006C-006D 108-109 Misc. number pointer
94 SAVE B69F 006E-0072 110-114 Product staging area for multiplication
95 DEF C0F1 0073-0074 115-116 Pointer: Start-of-Basic memory
96 POKE C563 0075-0076 117-118 Pointer: End-of-Basic, Start-of-Variables
97 PRINT B8A9 0077-0078 119-120 Pointer: End-of-Variables, Start-of-Arrays
98 CONT B685 0079-007A 121-122 Pointer. End-of-Arrays
99 LIST B4BC 007B-007C 123-124 Pointer: Bottom-of-strings (moving down)
9A CLEAR B481 007D-007E 125-126 Utility string pointer
9B GET B9AD 007F-0080 127-128 Pointer: Limit of Basic Memory
9C NEW B465 0081-0082 129-130 Current Basic line number
AE SGN C978 0083-0084 131-132 Previous Basic line number
AF INT CAOB 0085-0086 133-134 Pointer to Basic statement (for CONT)
BO ABS C997 0087-0088 135-136 Line number, current DATA line
B1 USR 0003 0089-008A 137-138 Pointer to current DATA item in memory
B2 FRE C0BD 008B-008C 139-140 Input vector
B3 POS CODE 008D-008E 141-142 Current variable name
B4 SQR CC75 008F-0090 143-144 Current variable memory address
B5 RND CD96 0091-0092 145-146 Variable pointer for FOR/NEXT
B6 LOG C729 0093-0094 147-148 Y-save; new-operator save; utility pointer
B7 EXP CCF1 0095 149 Comparison symbol accumulator
B8 COS CDD2 0096-0097 150-151 Misc numeric work area
B9 SIN CDD9 0098-009B 152-155 Work area;-garbage yardstick
BA TAN CE22 009C-009E 156-158 Jump vector for functions
BB ATN 00BB 009F-00A8 159-168 Misc numeric work and storage areas
BC PEEK C54C 00A9-00AE 169-174 Accumulator No. 1: Exponent, 4 Mantissa, Sign
BD LEN C4BA 00AF 175 Series evaluation constant pointer
BE STR$ C1A3 00B0 176 Acc No. 1 high-order (overflow) word
BF VAL C4EB 00B1-00B6 177-182 Accumulator No. 2: E,M,M,M,M,S
CO ASC C4C9 00B7 183 Sign comparison, Accumulators No. 1 vs No. 2
Cl CHR$ C42A 00B8 184 Acc No. 1 low-order (rounding) word
C2 LEFTS C43E 00B9-00BA 185-186 Series pointer
C3 RIGHTS C46A 00BB-00BD 187-189 Error jump
C4 MID$ C475 00BF-00D6 191-214 Subroutine: Get Basic char; C6, C7 = Basic pointer

Basic Entry Points

(Note: addresses indicate where a routine is: the first address is not
always the entry point.)

B000-B002 Cold start jump
B003-B005 Warm start jump
B006-B009 Vcctors to subroutines; Floating to fixed, fixed to fl.
B00A-B043 Action addresses for primery keywords
B044-B071 Action addresses for functions
B072-B08F Hierarchy and action addresses for operators
B090-B174 Table of Basic keywords
B175-B1AB Basic messages, mostly error messages
B1AC-B1D9 Search stack for FOR or GOSUB activity
B1DA-B21C Open up space in memory
B21D-B229 Test: stack too deep?
B22A-B256 Check available memory
B257-B27E Send canned error message, then:
B27F-B29C Warm start; wait for command
B29D-B328 Handle new Basic line from keyboard or device
B329-B355 Rebuild chaining of Basic lines in memory
B356-B3AD Receive line from keyboard
B3AE-B435 Change keywords to Basic tokens
B436-B464 Search Basic for a given Basic line number
B465 Perform NEW, then:
B481-B4AD Perform CLEAR
B4AE-B4BB Reset Basic execution to start-of-program
B4BC-B55B Perform LIST
B55C-B600 Perform FOR
B601-B630 Execute Basic statement
B631-B63F Perform RESTORE
B640-B65B Check Fl key, and if down:

i B65C-B684 Perform STOP or END
B685-B69E Perform CONT
B69F-B6AA Perform SAVE
B6AB-B6B8 Get input character
B6B9-B6D7 Send formatted character to output
B6D8-B6E2 Check if I/O device is Cassette, TTY, or User
B6E3-B6EB Test if any key depressed
B6EC-B6F6 Perform RUN
B6F7-B713 Perform GOSUB
B714-B740 Perform GOTO
B741-B766 Perform RETURN, and then:
B767-B774 Perform DATA, i.e., skip rest of statement
B775 Scan for next Basic statement
B778-B796 Scan for next Basic line
B797 Perform IF, and perhaps:
B7AA-B7B9 Perform REM, i.e., skip rest of line
B7BA-B7D9 Perform ON
B7DA-B813 Get fixed-point number from Basic line
B814-B89C Perform LET
B89D-B8A8 Enable printer on “!” character
B8A9-B949 Perform PRINT
B94A-B966 Print string from memory
B967-B987 Print single format character (space, question mark)
B988-B9AC Handle bad input data
B9AD-B9BB Perform GET
B9BC-B9E6 Perform INPUT
B9E7-B9EF Prompt and receive input
B9F0-BADB Perform READ; common routines used by INPUT and GET
BADC-BAFF Messages: EXTRA IGNORED, REDO FROM START
BB00-BB58 Perform NEXT
BB59-BB7E Check data type, print TYPE MISMATCH
BB7F Input and evaluate any expression (numeric or string)
BCB9 Evaluate expression within parentheses ()
BCBF Check right parenthesis)
BCC2 Check left parenthesis (
BCC5-BCCF Check for comma
BCD0-BCD4 Print SN (syntax) and exit
BCD5-BCDB Set up function for future evaluation
BCDC-BCFF Set up variable name

BD00-BD3E Identify and set up function references
BD3F Perform OR
BD42-BD6E Perform AND
BD6F-BDD9 Perform comparisons, string or numeric
BDDA-BDE3 Perform DIM
BDE4-BE6D Search for variable location in memory
BE6E-BE77 Check if ASCII character is alphabetic
BE78-BEDB Create new Basic variable
BEDC-BEEC Array pointer subroutine
BEED-BEFO 32768 in floating binary
BEF1-BF0F Evaluate expression for positive integer
BF10-C08B Find or create arTay
C08C-C0BC Compute array subscript size
COBD Perform FRE, including:
C0D1-C0DD Convert fixed-point to floating-point
C0DE-C0E3 Perform POS
C0E4-C0F0 Check if direct command, print ILLEGAL DIRECT
C0F1-C11E Perform DEF
C11F-C131 Check FNx syntax
C132-C1A2 Evaluate FNx
C1A3-C1B2 Perform STR
C1B3-C1C4 Calculate string vector
C1C5-C231 Scan and set up string
C232-C263 Subroutine to build string vector
C264-C2FA Garbage collection subroutine
C2FB-C343 Check for most eligible string for collection
C344-C37A Collect a string
C37B-C3B7 Perform string concatenation
C3B8-C3E0 Build string into memory
C3E1-C418 Discard unwanted string
C419-C429 Clean the descriptor stack
C42A-C43D Perform CHR$
C43E-C469 Perform LEFTS
C46A-C474 Perform RIGHTS
C475-C49E Perform MID$
C49F-C4B9 Pull string function parameters from stack
C4BA-C4BF Perform LEN
C4C0-C4C8 Move from string-mode to numeric-mode (LEN, ASC, VAL)
C4C9-C4D8 Perform ASC
C4D9-C4EA Input byte parameter
C4EB-C529 Perform VAL
C52A-C535 Get two parameters for POKE or WAIT
C536-C54B Convert floating-point to fixed-point
C54C-C562 Perform PEEK
C563-C56B Perform POKE
C56C-C587 Perform WAIT
C588-C58E Add 0.5 to Accumulator No. 1
C58F-C5A5 Perform subtraction
C5A6-C685 Perform addition
C686-C6BC Complement Accumulator No. 1
C6BD-C6C1 Print OV (overflow) and exit
C6C2-C6FA Multiply-a-byte subroutine
C6FB-C728 Function constants: 1, SQR(.5), SQR(2), -0.5, etc.
C729 Perform LOG
C76A-C797 Perform multiplication
C798-C7CA Multiply-a-bit subroutine
C7CB-C7F5 Load Accumulator No. 2 from memory
C7F6-C812 Test and adjust Accumulators No. 1 and No. 2
C813-C820 Handle overflow and underflow
C821-C837 Multiply by 10
C838-C83C 10 in floating binary
C83D Divide by 10
C846 Perform divide-by
C851-C8E0 Perform divide-into
C8E1-C905 Load Accumulator No. 1 from memory
C906-C93A Store Accumulator No. 1 into memory
C93B-C94A Copy Accumulator No. 2 into Accumulator No. 1
C94B-C959 Copy Accumulator No. 1 into Accumulator No. 2
C95A-C969 Round off Accumulator No. 1
C96A-C977 Compute SGN value of accumulator No. 1

(continued on next page)

Page 8 iir rn iA « T iv E i

AIM-65 SOUND
Wouldn’t it be nice if your computer had a means of letting you know
when it needed some attention?

This particular circuit as well as the software presented was found in
the Rockwell Hobby Club newsletter but has appeared in numerous
other publications. Actually, if you’re on the lazy side, you can use
the battery operated speaker/amplifier from Radio Shack (about
$10.95) and save yourself the trauma of building something.

Well, now it can do just that with the addition of a speaker and some
additional parts. No, the idea isn’t new — just an adaption from the
PET since it also has a 6522 VIA chip installed. And because this
interface uses the CB2 line, you don’t really lose too much of the
system’s I/O capability.

+5V

The neatest thing about this method of sound generation is that once
the 6522 is properly initialized, the CPU can go off and perform other
tasks. NO FURTHER PROCESSOR IN TERV EN TIO N IS
REQUIRED!

This is because the shift register in the VIA can be set to operate in
the “ free running” mode. In this mode, whatever data that is loaded
into the shift register, will be continuously shifted out to the CB pin
on the 6522.

Hook up the transistor amplifier (or the Radio Shack speaker/ ampli
fier) to AIM 65 and load in the two example sound programs or just
fool around with three POKE locations in the 6522.

POKE 40971,16 (ACR) sets the 6522 chip to a “ free-running”
state with the shifting rate determined by T2 timer.

POKE 40970,51 (SR) loads the shift register with a “ constant”
that will be continuously shifted out on CB2.

POKE 40968,N (T2L) where N is a number from 1 to 255 that
determines the frequency of the note by setting the time out period for
T2.

Here are values for musical note equivalents. (Assuming a ‘51” was
poked into 40970.)

«

(continued from previous page)
C978-C996 Perform SGN
C997-C999 Perform ABS
C99A-C9D9 Compare Accumulator No. 1 to memory
C9DA-CA0A Convert floating-point to fixed-point
CA0B-CA31 Perform INT
CA32-CABC Convert string to floating-point
CABD-CAF1 Get new ASCII digit
CAF2-CB00 String conversion constants: 99999999,999999999,1E+ 9
CB01 Print IN, followed by:
CB0C-CB1B Pring Basic line number
CB1C-CC4B Convert floating-point number to ASCII
CC4C-CC74 Constants for numeric conversion
CC75 Perform SQR
CC7F Perform power function
CCB8-CCC2 Perform negation
CCC3-CCF0 Constants for string evaluation
CCF1-CD43 Perform EXP
CD44-CD8D Function series evaluation subroutines
CD8E-CD95 Manipulation constants for RND
CD96-CDD1 Perform RND
CDD2 Perform COS
CDD9-CE21 Perform SIN
CE22-CE4D Perform TAN
CE4E-CE85 Constants for trig: pi/2, 2*pi, .25, etc.
CE86-CE9D Character subroutine, to be copied to BF to D6
CE9E-CEA2 Initialization constants
CEA3-CFAE Cold start: initialize Basic, prompt, etc.
CFAF-CFF9 Startup messages and prompts
CFFA-CFFF Patch

HERE IS HOW TO MAKE MUSIC:
Use a subroutine for your musical sound effects. Start with

2000 POKE 40971,16
2010 POKE 40970,10: REM THIS IS FOR TONE-FROM 1 TO 255-VE RY MELLOW

TO VERY SHARP.
2020 POKE 40968,115: REM THIS IS PITCH. FROM 1 TO 255-HIGH TO LOW.
2030 POKE 40971,0: REM THIS TURNS SOUND OFF.
2040 RETURN

To play continuously, eliminate line 2030.

Here’s another one:

3000 POKE 40971,16
3010 POKE 40970,10
3020 FOR P = 1 TO 255
3030 POKE 40968,P
3040 NEXT P
3050 POKE 40971,0
3060 RETURN

Now you can start experimenting on your own with various sound
effects.

You folks without BASIC should take this opportunity to c o n v e r t^
these routines to machine language. The only possible problem area
will be in the time delay loop in line 3020. You’ll get the feel for how
slow BASIC is when compared to machine code.

PRODUCT SURVEY
LETS CLOSE THE LOOP

As a semiconductor manufacturer, we NEED your inputs. You are the marketplace, and should be the determining factor in the kinds
of products we produce. If you have any ideas for things that would be useful either on a system level (modules, single-board com
puters, etc) or, at the component level (peripheral devices, CPUs, interface chips and the like), LET US KNOW!!!!!! Here are some
questions to get you started. Please feel free to write a 10-page essay, if that’s what it takes.

SYSTEM LEVEL STUFF

As you know, we are second-sourcing the Motorola 68000 CPU. Since we may be building some sort of single-board computer with
this device, it would be very helpful to know what kinds of features you would desire in such a product.

First, let’s discuss a little background on the 68000 chip so you have an idea of it’s place in the computing world. The 68000 is an
advanced 16-bit processor with a direct addressing capability of 16 Megabytes (up to 64 Megabytes with some simple bank select
logic). Actually the internal architecture of the machine works on 32-bit data but is externally limited to 16 bits because of present
packaging constraints. This machine has been favorably compared with the PDP 11/34 and is really a minicomputer CPU rather than
a microprocessor. Systems design will be much more complicated with the 68000 than with the 6502, for example, due to it’s
minicomputer-like design. You probably won’t see the 68000 used in small, dedicated controller applications because of this com
plexity. However, for high-end microprocessor and traditional minicomputer applications, the 68000 will really shine. In fact, a net
work of 68000s in a multiprocessor configuration could probably move into the mainframe area of ability.

A person looking through the 68000 documentation will probably wonder why there are no op-code tables published. One reason is
that by combining the 68000’s 56 basic instructions, variations on these instructions and 14 addressing modes, you can come up with
over 1000 instruction combinations! Another reason is that hand-assembly is next to impossible, and Motorola assumes that every
serious user will be using at least an assembler to program the beast and more likely a high-level language, since that’s what the
machine was designed for anyway. (After attempting to hand assemble a rather short 68000 program, I fully concur with Motorola).

Now that you’ve had a chance to see the 68000, (at least through my eyes), you can start thinking about what kinds of things you’d
like in a single-board computer designed around the 68000.

QUESTION 1

What sort of I/O device would you desire on a 68000 single board computer? In addition to an ASCII keyboard, you have a choice
between a 40 column printer/display or an interface for a user- supplied CRT and printer. Keep in mind that an on-board 40 column
printer display would probably raise the price of the board between $150 and $200 so if you’d be primarily using your own CRT and
printer, the increased cost of the on-board I/O would be wasted.

QUESTION 2

Which two of the following high-level languages would you like to see available for the 68000 single-board computer: Basic, Pascal,
Forth, Fortran, APL, LISP, or Cobol?

DETACH THIS SECTION AND RETURN IT WITH YOUR COMMENTS

What kinds of I/O capability would be necessary for the 68000 board to meet your needs? IEEE 488? Several RS232 channels? Cas
sette? Floppy? Video? What? Again, keep in mind that even though we’d like to have everything, the cost will go up needlessly with
things we don’t really need.

QUESTION 3

QUESTION 4

What kinds of features would you like that aren’t normally included in a single-board computer?

QUESTION 5

How much memory should be included on the main board How much ROM/PROM space? How much RAM? In the 68000, the
lowest IK bytes are dedicated to “ exception” vectors, trap, interrupt, reset and error vectors, so we must start with that much as a
base minimum.

TAKE A FEW MINUTES

For what applications would you consider using a 16-bit processor? (68000 or other machine)

QUESTION 5A

QUESTION 6

Now for some 6500-type stuff:
Assuming we were going to be designing another single-board computer based on the 6052, sort of an advanced AIM 65 type sys
tem, what would you like to see? Should an on-board printer/display be provided? Or would you rather see an I/O-independent sys
tem that could utilize an external CRT and printer? Remember the cost factor.

QUESTION 7

Would you insist on a floppy interface, or would cassette storage be sufficient for your application? You’d be paying about $60 more
for each board if the floppy interface were included.

QUESTION 8

What types of expansion modules do you have a need for in your application? RS232, IEEE, I/O etc.

TELL US WHAT YOU THINK

What would you be using an advanced 6502 system for? OEM? Software development, Hardware, development, Self-teaching,
hobbyist, engineering application, or what?

QUESTION 9

QUESTION 10

What do you feel is the minimum usable display/printer size that is practical for a low-cost development system -20, 40, 60, 80 or
120 columns?

Business Reply Mail
No Postage Stamp Necessary if Mailed in the United States

First Class
Permit No. 101

El Segundo
California

Postage will be paid by

ROCKWELL INTERNATIONAL
MICROELECTRONIC DEVICES
P.O. Box 3669
Anaheim, CA. 92803, U.S.A.

ATTN: MARKETING SERVICES
D/727 RC55

PRODUCT SURVEY

l i i E i s g n i i

® DISKS FOR THE AIM 65 compas "daim” system

Page 9

Five companies have announced disk systems for AIM 65.
These companies are:

HDE Inc
POB 120
Allamuchy, NJ 07820
(201) 362-6574

Micro Technology Unlimited
POB 12106
Raleigh, N.C. 27605
(919) 833-1458

Applied Business Computer
Suite G
707 S. State College Blvd.
Fullerton, CA 92631
(714) 871-1411

Here are the features for each:

COMPAS MICROSYSTEMS
224 S.E. 16 th St.
Ames, Iowa 50010
(515) 232-8187

RNB Enterprises
2967 W. Fairmount Ave.
Phoenix, Arizona 85017
(602) 265-7564

♦disk file compatability with the Rockwell System 65

♦uses the AIM 65/SYSTEM 65 expansion motherboard

♦can interface with up to two single-density/single-sided mini
floppy drives

* schematic is included

♦assembly listing of system available on disk for $10.

♦interfaces with the on-board AIM 65 Assembler and Basic ROM
options to enable the saving and loading of source and object files
(although the DAIM cannot link assembler files together from
disk, COMPAS has an optional disk-based assembler ($95) that
will do the job).

*able to assemble to and from disk (only one output file may be
open on a single drive at one time)

♦disk software is on ROM.

IDE OMNI-65 SYSTEM

♦uses the KIM-4, 44-pin expansion arrangement w/4.5” x6.0”
card

♦controller board, power supply, single drive and cables sell for
around $850 in the U.S.

♦two systems are available-a single-density/single-sided 5” drive
system (up to two drives) and a single-density/single-sided 8”
system (up to two drives)

♦system is disk-based and the bootstrap program must be loaded in
from cassette

♦this system has the ability to save and load Basic data files (as
well as program files), programs can be appended or chained
from disk, disk accesses may be accomplished under Basic pro
gram control, and machine language routines can be automatic
ally called in from disk when needing to link up with Basic
through the USR function.

♦able to assemble from disk only. Object code must be saved to
disk manually. Can link multiple source files together from disk
with special assembler directives

♦schematic included in documentation

♦source listing of system not available

♦controller board, power supply, cables, and a single-density/
single-sided mini floppy drive sell for around $800 in the U.S.

RNB VAK-7 SYSTEM FEATURES

♦uses the KIM-4, 44-pin expansion arrangement w/7” x l0 ” card

♦available only as full-size 8” drive system with double- density
capability included and double-sided drive an option.

♦ROM software includes the ability to assemble from disk, and
save and load Basic programs to and from disk

♦drive cabinet is included

♦uses DMA approach with IK shared RAM.

♦up to four double-density/double-sided drives can be handled by
the controller.

♦source listing not available but all routine entry points are
included in documentation.

♦schematic included.

♦controller board, cabinet w/one 8” double-density drive, power
supply, and cable sells for around $1300 in the U.S.

Page 10 n i E i j S S m

APPLIED BUSINESS COMPUTER FP-950 SYSTEM
FEATURES

♦uses the AIM 65/SYSTEM 65 expansion mothercoard

*can interface with up to four double-sided/double-density mini
floppy or full-size drives

♦ability to save and load Basic programs to and from disk

♦can assemble program to and from disk

♦includes information on accessing the disk from user program
control

♦able to execute programs directly from disk

♦has an on-board Centronics compatible printer port and printer

♦schematic not available

♦disk software is ROM-resident

♦source listing not available (company does provide some routine
entry points).

♦controller board, power supply, cable, and one double-sided/
double-density mini-floppy drive sells for around $850 in the
U.S.

MICRO TECHNOLOGY UNLIMITED “APEX 65”
FEATURES

♦uses the AIM 65 expansion bus pinout which is compatible with
their own card cage.

♦the controller will handle up to four Shugart compatible, 8”
double-density/double-sided drives.

♦will save and load object code, Basic programs and Assembler
source code.

♦system is disk-based with bootstrap on ROM

♦DMA type with 16K shared memory

♦controller card sells for around $600 in the U.S. The user must
provide the power supply, the drives, and cables.

Check with each individual vendor to see if they’re delivering sys
tems and by all means ORDER THE DOCUMENTATION to see
what it’s like BEFORE you order the system.

If you have one of these systems, how about writing a product review
for INTERACTIVE The other readers would enjoy reading about it.

HOW TO USE THE SPECIAL
FUNCTION KEYS

Your AIM 65 is equipped with six keys which can be used for going
from the monitor to your programs with a minimum of keystrokes.
The first three keys are called the ‘FUNCTION KEYS’ and are desig
nated F l, F2, and F3 on the right hand side of the keyboard. The
operation of these keys is covered pretty well in the AIM USER
GUIDE section 3-47 of the Rev 3 edition (section 3-46 of Rev 2) so I
won’t go into too much detail here except to point out one thing. The
function keys are intended to be used in calling user-written monitor
extensions. The monitor treats these functions as SUBROUTINES so
an RTS is necessary at the end to allow returning to the monitor. If
the keys are used to jump to a user routine which isn’t meant to return
to the AIM 65 then the stack will be left with some garbage on it.
This garbage could fill up the whole stack if you get carried away
with the function keys unless the stack is cleaned up with two PLA
instructions when you enter your routine.

The three other keys (5,6 and N) would be of interest to those who are
installing EPROMS in the Basic or Assembler sockets in AIM 65 and
wanted to jump into them with one keystroke.

The most versatile entry is available with the Z26 ROM socket. Here
you have two entry points available with one keystroke each. In the I
monitor mode, pressing the ‘5’ key will transfer control to $B000.
This would be the logical cold start entry point for the new software
(an enhanced machine language monitor, for example). The ‘6’ key
jumps to location $B003 which could be the warm start entry point.

The ‘N’ key transfers control to $D000 which is the first address in
the Z24 ROM socket. This key isn’t as versatile as the ‘5 ’ and ‘6’
keys but can be still quite useful when non-technical persons may be
operating the equipment. They can just be told to press the ‘N’ key
after the machine is powered up instead of having to understand how
to set the program counter and then start running at the address.

WE'VE GOT OUR EARS ON

Leo Scanlon, Rockwell Documentation Manager, is eager to hear
from anyone who feels he has found an error in, or has a suggestion
for the AIM 65 documentation. When writing about a manual, please
refer to the text by section num- ber (rather than page number) and
the manual revision number.

Write to:
Documentation Manager |
Rockwell International
Box 33093, RC 55
Anaheim, CA 92803

IIIIB IC IIV I Page 11

DISASSEMBLER UTILITY

Unknown Author

(This handy little routine was submitted for publication and got inad
vertently separated from the cover letter. If you know who wrote it
(someone from France) please let me know so I can give the proper
credits)

One thing missing on the AIM 65 is a provision for disassembling a
single program line to the on-board display. If the printer is turned
off, the instructions just whizz by much too quickly to read.
Depressing the space bar, of course, causes the display to halt
temporarily but getting good enough to halt things after just one line
takes much skill.

Well, here’s one solution to the problem. A short program that does
the trick.

Start the program with the F3 key (assuming the proper jump location
has been initialized) and the program operates much like the built-in
disassembler from then on. Tape the space bar to advance to the next
instruction.

OUTPUT = $E97A
ADDIN = $EAAE
CGPCO = $E5D7
CGPC1 = $E5DD
REDOUT = $E973
READ = $E93C
CLR = $EB44
DISAS = $F46C
RCHEK = $E907
CRLF = $E9F0
* = $0112
JMP DEB
* = $EA
LENGHT * = *+1
* = $A425
SAVPC * = *+2

CORRECTION FOR THE AIM 65
BASIC MANUAL

An important page was inadvertently left out of the early AIM 65
BASIC manual. This page had the information which enabled the
ATN (arctangent) function to be added to BASIC. So here is that all
important information.

The ATN function (see Subject 307) can be programmed in RAM
using the AIM 65 Mnemonic Entry (1) and Alter Memory Locations
(/) commands, as shown below. The program is written for the AIM
65 with 4K bytes of RAM. The ATN function can be relocated else
where in memory by changing the starting addresses of the instruc
tions and constants, the conditional branch addresses, the vector to
the constants start address and the vector to the ATN function start
address.

ATN FUNCTION CONSTANTS ENTERED BY ALTER
MEMORY <M>

Constants Starting Address = 0F80t<<M> = 0F80 XX XX XX XX
</> = 0F80 OB 76 B3 83
</> 0F84 BD D3 79 IE
< /> 0F88 F4 A6 F5 7B
</> 0F8C 83 FC B0 10
</> 0F90 7C OC IF 67
</> 0F94 CA 1C DE 53
</> 0F98 CB Cl 7D 14
</> 0F9C 64 70 4C 7D
</> 0FA0 B7 EA 51 7A
</> 0FA4 7D 63 30 88
</> 0FA8 7E 7E 92 44
</> OFAC 99 3A 7E 4C
</> 0FB0 CC 91 C7 7F
</> 0FB4 AA AA AA 13
</> 0FB8 81 00 00 00
</> OFBC 00

ATN FUNCTION INSTRUCTIONS STORED BY
MNEMONIC ENTRY (1)

< i >oii x x x x = OFBD
.DEB LDA #$2A
JSR OUTPUT OFBD A5 LDA AE
JSR ADDIN ;READ ADDRESS = 4 DIGITS 0FBF 48 PHA
BCS DEB 0FC0 10 BPL QFC5
JSR CGPCO ;PC = FIRST ADDRESS 0FC2 20 JSR CCB8
LECT JSR REDOUT 0FC5 A5 LDA A9

CMP #$20 ;SP? 0FC7 48 PHA
BNE LECT 0FC8 C9 CMP #81
JSR CLR 0FCA 90 BCC 0FD3
JSR DISAS DISASSEMBLE ONE INSTRUCTION 0FCC A9 LDA #FB
LDA SAVPC 0FCE A0 LDY #C6
SEC OFDO 20 JSR C84E
ADC LENGHT ;ADJUST PC 0FD3 A9 LDA #80
STA SAVPC 0FD5 A0 LDY #0F
BCC FIN 0FD7 20 JSR CD44
INC SAVPC 4-1 0FDA 68 PLA
JSR RCHEK 0FDB C9 CMP #81
JSR CRLF 0FDD 90 BCC 0FE6

Instructions Starting Address =
OFBD

Starting Address of Constants = 0F80

FIN JMP LECT
.END (continued on next page)

Page 12 i iT n i i f f iT O R

(continued from previous page)
OFDF
0FE1
0FE3
0FE6
0FE7
0FE9
OFEC
OFEC

A9
AO
20

68
10
4C
60

LDA #4E
LDY #CE
JSR C58F
PLA
BPL OFEC
JMP CCB8
RTS

BASIC INITIALIZATION FOR ATN FUNCTION

BASIC memory must be initialized below the memory allocated to
the ATN function. The ATN vector in RAM must also be changed
from the address of the FC error message to the starting address of the
ATN function instructions. This can be done using BASIC
initialization, as follows:

<M>
MEMORY SIZE? 3968
WIDTH?

3438 BYTES FREE
AIM 65 BASIC Vl .l

POKE 188, 189

POKE 189, 15

?ATN (TAN(.5))

.5

Limit BASIC to F80K

Change ATN function vector low to
b d 16
Change ATN function vector high to
0F16
Test case to verify proper ATN func
tion program
Expected answer = .5

ERROR!!! ERROR!!! ERROR!!!

There is a error in the JUMP INDIRECT instruction of ALL 6500
family CPU chips, no matter who they were made by. This fatal error
occurs only when the low byte of the indirect pointer location hap
pens to be $FF, as in JMP ($03FF). Normally, the processor should
fetch the low-order address byte from location $03FF, increment the
program counter to $0400 and then fetch the high-order address byte.
Instead, the high-order byte of the program counter never gets incre
ment ed and so the high-order address byte gets loaded from $0300
instead of $0400. For this reason, your program should NEVER
include an instruction of the type JMP ($xxFF).

Try this example to satisfy yourself that you understand the problem:
insert the following data into the AIM at the indicated memory loca
tions.

0300 04
0310 6C FF 03
03FF 50 05
0450 00
0550 00

Execute the instruction at $0310. If the instruction worked correctly,
the BRK at 0550 would have been encountered and the AIM display
should be displaying 0551 xx. But, since the JMP indirect did no^
operate correctly, 0451 xx will be displayed since the high-order byti
for the address was loaded from 0300 instead of 0400.

SAVING ATN OBJECT CODE ON CASSETTE

The object code for the ATN function can be saved on cassette by
dumping addresses $00BB through $00BD (Jump instruction to
ATN) and $0F80 through $0FEC (constants and instructions) after
the function is initially loaded and verified.

The ATN function can then be loaded from cassette by executing the
Monitor L command after BASIC has been initialized via the 5 com
mand. After the ATN function has been loaded, reenter BASIC with
the 6 command.

CORRECTIONS CORNER

The biggest boo-boos in issue #1 were in the AIM 65 SPARE
PARTS PROCUREMENT article. The proper phone number should
be (714) 632-2190 for orders or inquiries. Two other major errors
turned out to be that $2.00 handling fee is applicable to orders under
$25.00 (not $10.00) and the reset switch really costs $2.37 (not .30).
All this information is applicable only to U.S. orders.

i

IY11II \<M U I Page 13

w OFFSET LOADER FOR
AIM 65

Frank Reo
East Coast Tech Center
Rockwell International

(Editor’s note: Since AIM 65 has no built-in capability for loading
object code to a location different from where it was dumped, this
program will be a godsend for some).

Purpose

There are many methods of using the AIM 65 to burn EPROM’s. One
such method is to transfer object code from the AIM 65 to the System
65 (for use by its PROM Programmer) via the TTY interface (Doc.
No. R6500 N04). In order to perform this operation, it is required
that object code be stored in AIM memory. In most cases (if not all
cases) the object code will be assembled to operate from the address
range BOOO, DFFF (AIM ROM sockets). If code assembled at those
addresses is then loaded into the AIM, the data will go to ROM sock
ets and will not be stored in RAM. It now becomes desirable for a
user to be able to dump object code during assembly and reload into

«AM for transmission to the System 65 or simply for residence so
at it can be used by any PROM burning device.

Notice that this Relocator, relocates code byte-for-byte such that the
program being loaded may not necessarily execute at its relocated
address.

Description

Figure 1 is an AIM 65 disassembly of the Relocating loader program.
This program is essen tia lly a copy of the AIM m onitor
L-COMMAND (Pages 15 & 16, Doc. No. 29650 N36L). The first
difference is in the beginning (addresses 0200 0214) where the opera
tor defines the desired starting address of the object code. Those
desired addresses are stored in locations $A41C and $A41D (ADDR
& ADDR+ 1). The other difference is that when the absolute
addresses of each block are read in they are not stored (022D &
0230).

Figure 1 shows the programs located at address $0200 thru $0265;
however, the code is written such that it is relocatable. If these
addresses are desired for use as storage, the program can be used to
relocate itself in an area which will not be used for storage otherwise
and it will execute anywhere in memory.

•
Operation

Operating instructions for both modes appear below:

Paper Tape

1. Start program = 0200
2. G.
3. TO = XXXX desired address always 4 digits
4. IN = L
5. Start paper tape reader on completion will apear in the AIM

display.

Audio Cassette Tape

1. Start Program = 0200
2. G.
3. TO = XXXX
4. IN = T FILE = (NAME) T = 1 (or 2)
5. Start tape (PLAY) on completion will appear in the AIM

display.

0200 A0 LDY 05 ; point to MS5
0202 20 JSR E7AF ; disp “TO = ”
0205 A2 LDX 02
0207 20 JSR E95F ; get HI
020A 20 JSR EA7D ; Hex
020D 20 JSR E95F ; get next
0210 20 JSR EA84 ; pack
0213 CADEX
0214 AD STA A41C,X ; ADDR & ADDR+1
0217 DO BNE 0207
0219 20 JSR E9F0 ; crlf to display
021C 20 JSR E848 ; where I, “IN = ”
021F 20 JSR E993 ; get 1st char
0222 C9 CMP 3B ; is it a V
0224 DO BNE 021F , no
0226 20 JSR EB4D ; yes - clr chksum
0229 20 JSR E54B ; read record length
033C AA TAX ; of bytes in X
022D 20 JSR E54B read address
0230 20 JSR E54B do not store!
0233 8A TXA length to A
0234 F0 BEQ 0252 last
0236 20 JSR E3FD no - read data
0239 20 JSR E413 store (ADDR, ADDR+1)
023C CADEX update length
023D DO BNE 0236 done
023F 20 JSR E3FD yes - rd ckslim
0242 CD CMP A41F OK
0246 DO BNE 0263 no error
0247 20 JSR E3FD yes - rd cksum
024A CD CMP A41E OK
024D DO BNE 0263 no
024F F0 BEQ 021F yes - get next record
0251 EA NOP
0252 A2 LDX 05 ; read 4 zeros
0254 20 JSR E3FD
0257 CADEX
0258 DO BNE 0254
025A 20 JSR E993 ; read last (CR)
025D 20 JSR E520 ; set default
0260 4C JMP El 82 ; go to monitor
0263 20 JSR E385 ; error

This loader will work for both paper tape and audio cassette tape. Figure 1
— O —

Page 14 i \T r n A « T iv i

FOR YOUR INFORMATION

Here’s a list of all the companies that we know of who deal in acces
sories for the AIM 65. Rockwell makes no recommendations about
these companies and only publishes this list to help our customers
become aware of their existence.

SUPPLIERS FOR AIM ACCESSORIES

ADVANCED COMPUTER PRODUCTS
1310 “ B” E. Edinger
Santa Ana, CA 92705
(714) 558-8813

Power Supply
Case
ROMs, paper

APPLIED BUSINESS COMPUTERS
Suite G
707 S. State College Blvd.
Fullerton, CA 92631
(714) 871-1411

Floppy Disk System

BETA COMPUTER DEVICES
1230 W. Collins
Orange, CA 92668
(714) 633-7280

32K Dynamic RAM Board

COMPAS MICROSYSTEMS
P.O. Box 607
Ames, IA 50010
(515) 232-8187

5” Floppy Disk System
EPROM Programmer Card
RAM/EPROM Board
16K Static RAM
Assembler Software

COMPUTERIST, THE
56 Central Square
Chelmsford, MA 01824
(617) 256-3649

Card Cage/Motherboard
Memory Board
Video Board
Proto Board
Power Supply

CONDOR, INC.
4811 Calle Alto
Camarillo, CA 93010
(805) 484-2851

Power Supply

CUBIT
2267 Old Middlefield Way
Mountain View, CA 94043
(415) 962-8237

Motherboard
EPROM Programmer
8K Static RAM Board

ENCLOSURE GROUP
771 Bush St.
San Francisco, CA 94108
(415) 495-6925

Enclosures

EXCERT, INC.
P.O. Box 8600
White Bear Lake, MN 55110
(612) 426-4114

Custom AIM 65 Configurations

FORETHOUGHT PRODUCTS
87070 Dukhobar Rd.
 ̂ _ .974-02
(503) 485-8575 ^

Expansion Board Products

HDE, INC.
P.O. Box 120
Allamuchy, NJ 07820
(201) 362-6574

5” and 8” Floppy Disk Systems

8K Static RAM Boards
EPROM Board
Prototyping Card
Motherboard/Card Cage

MICROTECHNOLOGY UNLIMITED
POB 12106
Raleigh, NC 27605
(919) 833-1458

5” and 8” Floppy Disk Controller
16K Dynamic RAM Board
Dot Graphics Display Board
Card Cage/Motherboard
Prototyping Card
EPROM, I/O, EPROM Programmer Board
Graphics/Text Software Package
Power Supply
Music Board and Software

6502 PROGRAM EXCHANGE (DAVID MARSH)
2920 W. Moana Lane
Reno, NV 89509
(702) 825-8413

Microchess
Assorted Software

QUEST ELECTRONICS
2322 Walsh Avenue
Santa Clara, CA 95050
(408) 988-1640

Motherboard
Color Video Board
Parallel Board
32K Dynamic RAM Board
EPROM Programmer
Briefcase Enclosure
Power Supplies

REHNKE, ERIC C.
1067 Jadestone Lane
Corona, CA 91720

FORTH Programming Language
Math Package

RIVERSIDE ELECTRONICS
1700 Niagara St.
Buffalo, NY 14027
(716) 873-7317

Motherboard
Video Board
EPROM Programmer

i \ i n i \ o r i v r Page 15

CONNETICUT MICROCOMPUTER, INC.
150 Pocono Road
Brookfield, CT 06804
(203) 775-9659

A/D Modules

RNB ENTERPRISES
2967 Fairmount Ave.
Phoenix, AZ 85017
(602) 265-7564

8” Floppy Disk System
8K/16K Static RAM Boards
Motherboard/Card Cage
EPROM Programmer
EPROM Board
Prototyping Card
Extender Board
Power Supplies

SEA WELL MARKETING
P.O. Box 17170
Seattle, WA 98107
(206) 782-9480

Motherboard
16K Static
Parallel I/O

PARITY BIT GENERATOR
PROGRAM

Mark Reardon
Rockwell International

The AIM 65, and most other 6500-based systems, use a seven-bit
ASCII character set, in which the high-order bit (Bit 7) is always a
zero. It is possible to give this character odd parity or even parity by
simply modifying this high-order bit.

The subroutine below takes an ASCII character in the Accumulator
and modifies Bit 7 as appropriate to give it even parity. The same
subroutine will generate odd parity if you change the LDX #08
instruction to LDX #09 and change the BPL AGAIN instruction to
BNE AGAIN.

0000
0000
0000
0000

THIS PROCEDURE IS WRITTEN AS A
SUBROUTINE. IT USES THE X AND
A REGISTERS AND LOCATION $00.

0000 TMP = $00
0000

ooCMil

0200 A2 08 PARITY LDX #08 :INIT COUNTERS
0202 86 00 STX TMP
0204 CA DEX
0205 6A AGAIN ROR A :PUT 1 BIT IN C
0206 90 02 BCC NOPR :COUNT l ’S ONLY
0208 E6 00 INC TMP
020A CA NOPR DEX
020B 10 F8 BPL AGAIN
020D 66 00 ROR TMP :PUT PARITY IN C
020F 6A ROR A :RESTORE A WITH PARITY
0210 60 RTS
0211 .END

BASIC BANNER PROGRAM

G. Brinkmann

(Editor’s note; when I first got this program, I couldn’t believe that this
short of a program could print out banners. Punch it in and try it out for
yourself

(See back page for sample)

10 REM "BANNER"
20 REM G♦ BRINKMANN
30 REM PRINTER OFF
40 POKE 42001>0
50 INPUT "TEXT'?A*
60 INPUT "TIMES"?C
70 REM PRINTER ON
80 POKE 42001x128

90 FOR 0=1 TOC
100 PRINT0 "JPRINT" " iPRINT'
110 FOR 1*1 TO LEN(A*)
120 REM GET CHARACTER
130 B” ASC(MID$(A$v I j>1))

140

1 5 0
160
1 70
180
190
2 0 0
210
220
230
240
250
260
270
280
290
300
3.1.0
320

330
340
350

360
370
380

390

IF B>63THENB~B-64
REM PRINTER-TAB
6=6+62177
FOR J«1T05

REM ALL TWICE
FOR N=1T02
REM LOAD BIT*6
A™64 t PRINT" " f
REM 7 ROWS
FOR J1*1T07

Z $ * B ■
REM BIT ON?
IF (PEEK(B)ANDA) THEN
PRINTZ$y t PRINTZ$f
REM BIT-SHIFT RIGGHT
A-A/2
NEXT J1
PRINT

NEXTN
REM NEXT COLUMN
B == B + 6 4
NEXT J

PRINT" "
NEXT I
NEXTIi
GOTO 40

! PRINT"

M n r a a a r a t i

« # * * 4 f 4 * » * # * ♦ ■W* # >
■ afe sm s dSB >R a s

■#> ■#> * 4 f « # ■ #

■#> a& =Hb

> 4 * * « # ■

* S B * ¥ * * * safe

* # * * • * M b # # > ■ * * # ■

> ajc a s atta das i e

> * ■

■ E * ■ F a n

« # * *

SB s j - - U .
■W*

* % * # * dcs ■ #>

ajfc JUm see rffc

I f * * « * f * # >
4 p 4 ? "ft*

«#> ■#*
dfc afe

* > # ■
< #

■ # # > < # « sfe ■ # * « #
4 r «** “ * ■s* <#* s*s

>#■ < # 4 * # >
see ass «#* «?■

♦ 4 afr <#■
!9F » % # >

saja # > adc # i afe 4 *
sfe a£ss JA.

NEWSLETTER EDITOR
ROCKWELL INTERNATIONAL
P.O. Box 3669, RC55
Anaheim, CA 92803 U.S.A.

■#> # • « * >#< * # *
seas a a rfnc a£e

■#« >#> ■#= ste * atta # :
> ■W* & # = * a sfas:
4 J» % . * 4 f» * *fF
<w> * ■ w sjflB afae
■ # < # ♦ <#> att:

• <#> 4 ^ ajs: 4 -f
> 4 p
M B * «

> # *
< # ait » # O B

SBC -1T“ ain # «
•*!»-rr ate ■Aj. # = mXJU.r r ads

=#>■#■■#< > # % # • # * ■#■
^ cUe ■ # * ■# atfe «■ ais

* ♦
* # !
#= #> «#> #= * "fF
OB 4fc OK * & 4?“ *i* *

< # ain
* #

>
mm *

>#> «#■ # »jfc
skb sjfe

a$r a t djfk =?* aj&:
ask s& ajfe sH= xfak

Bulk Rate
U.S. POSTAGE

RATE
Santa Ana Calif.
PERMIT NO. 15

