
USE OF NOPCODES AS EXECUTABLE LABELS

Received: 78 April 7
Every microprocessor has one opcode defined as a “no­

operation” (NOP), useful as a filler in program gaps or timing
loops. In addition, some micros have opcodes (defined or
undefined, the latter “illegal” and so not necessarily identical
in chips from different mask sets) that are executed without
causing any detectable change anywhere. These can be called
nopcodes. E.g., the 8080 and Z80 have 7 instructions ($7F,
$40, $49, $52, $5B, $64, and $6D) that move the content
of a register into the same register, and so are defined
nopcodes. Although they must now be the least-often used
opcodes in the 8080 set, they could be used as executable
labels for the next instruction. Such labels, although meaning­
less to the CPU and with no effect on operation (except
timing), could be assigned meanings interpretable by
debuggers, relocaters and other programs. The information
content of the 7 “monops” (short for one-byte nopcodes)
is limited, but could be increased by using sequences of 2
(“monop-duos”) or 3 (“monop-trios”). For example, the
8080 could have 49 monop-duos and 343 trios. Since
interpreting logic could easily recognize solos, duos, and
trios, this would allow 399 different labels. If the 8080 NOP
(00) were allowed as the second and/or third element, the
total would become 511.

Although the 650X has no defined nopcodes, it now has
a large supply of undefined ones. (This of course will change
in the enhanced versions now in the design stage, but there
are thousands of systems now using the original design.)
It has 6 monops ($1A, $3A, $5A, $7A, $DA, and $FA).
It also has 5 two-byte illegals ($80, $82, $89, $C2, and
$E2) that require an “operand” byte but make no use of it.
I think of these as “binopcodes” (nopcode plus one
“noperand”) or “binops” . Since the noperand can be any one
of the 256 possible 8-bit bytes, the information content of
binops is very large (and they would be simpler to interpret
than monop-duos or -trios). There are also “trinops” (e.g.,
the 8 illegals of type X, C).

Before going on, I should reply to the letter by Paul Schick
(DDJ #21), that is a strongly negative reaction to my article
on 650X opcodes (DDJ #17). Neither in that article nor in my
note in BYTE (2 (12): 72, 1977) did I advocate the use of
illegal opcodes as instructions. In fact, the whole point of
my legality-testing subroutines OPLEGL (DDJ #17 and
#19) and HYLEGL (DDJ #22) was to screen out illegals.
I presume that the 650X designers know very well what their
chip does with illegal opcodes (although they see no need to
document it!). I respect their decision not to support even the
illegal operations that might be somewhat useful. However,
designers are not endowed with divine omniscience and
infallibility. They can—knowingly —do something foolish,
or—unkowingly—do something wise. The point I am trying
to make in this note is that some nopcodes may be so useful
as programming aids that their retention as defined elements
in an instruction set merits serious consideration by designers.
I am presently exploring the implementation of 650X binop-
labels, but this will require time and thought, so I am
publishing the concept in order to make it immediately
available to other programmers (and to designers).

In thinking over possibilities for scanning-debugging (of

Number 28

which my program SIMBUG in DDJ #19 is a very primitive
example), it became increasingly clear that the superiority
of assembly langugae over machine language largely rests
on its much higher information content, especially in labels.
This makes assembly-language programs much longer,
somewhat more intelligible to human beings, and quite
unintelligible to the microprocessor. A fairly complex
assembler program is needed to translate them into machine-
intelligible form. The assembler also acts as a scanning-
debugger and as a program locating and addressing controller.
Labels play the major role in these useful activities with
the crucial symbol-table at the core of everything.

In the KIM-1 program SWEETS by Dan Fylstra {BYTE
3 (2): 62, 1978), there is an ingenious use of machine-
language labels. However, a Fylstra-labeled program is not
executable. Labels must be removed before execution, and if
there are execution bugs they may need to be re-inserted for
the program revision. This limitation could be removed by
using binop-labels. In fact, some problems of machine-code
relocation might be soluble by retaining at least some nop-
labels in the taped or disked programs, which could then be
address-corrected by a relatively simple program.

A special kind of labeling is also possible with legal
opcodes. E.g., a STORE instruction addressing a location in
ROM is in effect a NOP, so that both the ROM page and the
location on that page can convey information. Also, any
instruction that is unreachable in program operation could be
used to store non-program information (a trick used in my
subroutine BYTNUM, in DDJ #17,1977. However, the detec­
tion of and information-retrieval from such labels would be
less convenient than with monop- or binop-labels. A ROM-
trinop ought to use a STORE opcode normally rarely used in
working programs, to make detection easier (the page of every
such opcode would have to be checked to distinguish between
ROM and RAM), but would still involve more bytes and
execution time.

The conservative view of a microcomputer system is that it
should differ from large systems primarily in scale, in the way
that a VW differs from a Mercedes, and that there ought not to
be qualitative differences in hardware, software, or methods of
operation. Innovations should arise in the giant systems, and
then (to the extent that the micropocketbooks of micro users
allow) be copied at the lower levels. I prefer another analogy.
There are no elephants that burrow underground like moles or
can fly like bats, and downsizing to the level of insects allows
even greater diversification. Micro systems are going to be
individualized and customized in ways that would horrify
IBM, and some innovations at the micro level (most will of
course be failures) may well migrate upward.

H.T. Gordon University of California
College of Natural Resources Berkeley, CA 94720

Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, Ca 94025 Page 29

363

