
SOFTWARE & CORRECTION

Dear Jim, Received: 77 Oct 28
My 650X subroutine O PLEG L, published in the Aug. '77 DDJ let

one illegal opcode (9E) slip through its net. So there 105 illegals, not
104. I am therefore submitting a rewrite that fixes this error and also
spruces things up some. So that O PLEG L will be more than an academic
exercise in sorting, I have added a primitive debugger program that uses
both O PLEG L and BYTNUM. I am also submitting a new byte-count-
computing subroutine (NUM BYT) that uses utterly different logic from
any earlier one. It lacks the cool precision of BYTNUM, but has a fiery
eccentricity and some novel ideas that will appeal to some users, and
comes closer to what I feel should be the ultimate goal of subroutine
design: to return the maximum possible amount of information to the
main program, whether or not this is needed by the program it was
written to serve.

Sincerely,
H.T. Gordon
Agricultural Experiment Stn.
University of California
Berkeley, CA 94720
©1977 by H.T. Gordon

P.S. While I wish to make the software in this paper freely available
without restriction to individual users, I retain full copyright for any
commercial use. My motivation is not greed (my fee would be trivial and
usually waived) but curiosity. Some time ago I sent a binary-to-decimal
conversion program to MOS Technology, stating that it was to be in the
public domain. Recently I asked them whether they had used it in their
PET. The reply was that they did not plan to release any information on
its programs. Puzzling, since anyone who buys a PET will be able to read
its ROM. I am an admirer of their 6502 and KIM designs, and I sympa
thize with their desire to avoid hassles. Still, this gave me food for
thought. Software is a trickier thing than the books and magazine
articles for which copyright law was written, and in which changing a few
words won't affect value. A seemingly minor software revision may so
enhance value that its original will (and should) vanish forever. Like it or
not, every programmer is part of a collective mind, and progress demands
that he educate and be educated by others. There is no precise answer to
the question: what is the value of a piece of software, and who owns
what part of the value? In the software-cost controversy argued in DDJ
by Tom Pittman and others, I strongly favor keeping all costs at the bare
minimum and legal conflicts at zero, since I am primarily a user. Program
costs are not easy to calculate. In my present "package", O PLEG L took
a lot of time, BYTNUM much less because I was only modifuing Larry
Fish's logic. NUM BYT was even easier because I knew what needed to be
done, and SIM BUG was child's play. Still, all these things were simultan
eously working themselves out in my mind, and without the basic
(originally more grandiose) concept of a scanning-debugger I would never
have bothered with O PLEG L. This concept was inspired by Jim Butter
field's screening-out of the 64 "easy" illegals in his relocator program. I
was receptive to this because of earlier problems caused by an illegal
opcode. So in a way SIM BUG is a costly program.

The real value of anything is not in its cost, but in its utility. It may
cost a lot to produce a white elephant, but the result is still worthless. In
our social system, utility tends to be measured in the marketplace, in
dollars. This has worked well for hardware, and for any software that
can be inextricably linked to hardware. Unattached software can be
valued in dollars only to the extent that users can be compelled either
to buy it or do without. But it is so readily diffusible and copiable that
many users will not buy it except at a price little above the cost (in
money and time) of copying. Copyrighted printed matter is now photo
copied illegally by individuals with complete impunity, because enforce
ment is not practical. Where law fails, we cannot expect too much of
ethics. So the utility (in the economic sense) of even the most useful
"software" is low. One could say the same of rainfall and sunlight!

OPLEGL CORRECTION, AND A
6502 SCANNING-DEBUGGER

H. T. Gordon

The following corrected version of subroutine OPLEGL
adds 4 bytes to screen out opcode 9E but saves 5 bytes by
improved logic and structure, so is down to 66 bytes total. The
task of saving the accumulator is left to the main program.
The accumulator will return modified by from 2 to 6 successive
logical-shift-rights. Otherwise, only the status register is
affected. The Z flag is set only by A2 and the 5 legals o f type
X i(4, A, C); these also set the C flag. The C flag is set by
X91, 5, 9, Dp*8 D, by X(6 ,E)>A6 , by Xo0>90, and by all X8 ,
but cleared by all others. The N flag is always the complement

of the C flag. The V flag is not affected. This status informa
tion may or may not be useful to the main program (who can
tell?) but one ought to know that it exists.

Coding for OPLEGL

0270 i|A OPLEGL LSR
0271 90 08 BCC
0273 LSR
027k B0 17 BCS
0276 C9 22 CMP
0278 F0 13 BEQ
027A 60 RTS027B I4.A TYPE02 LSR
027C 90 10 BCC
027E I4A LSR
027F 90 05 BCC
0281 G9 13 CMP
0283 F0 08 BEQ
0285 60 LEGALA RTS
0286 U TYPE2A LSR
0287 B0 20 BCS
0289 C9 0A CMP
028b F0 F8 BEQ
028D 00 ILLEGA BRK
028E kA TYPE0 LSR
028F B0 08 BCS
0291 kA LSR
0292 B0 0k BCS
029k C9 08 CMP
0296 F0 0C BEQ
0298 60 ALLOK RTS
0299 i|A TYPEliC LSR
029A F0 08 BEQ
029C B0 07 BCS
029E 29 0D AND
02A0 09 0k CMP
02A2 D0 05 BNE
02Ak 00 N0TLEG BRK
02A5 C9 09 TYPEC CMP
02A 7 F0 FB BEQ
02A9 u TYPLlAC LSR
02AA 90 05 BCC
02AC kA LSR
02AD C9 02 CMP
02AF D0 F3 BNE
02B1 60 LEGIT RTS

X(3,7,B,F))

C)

(•ther X(6,E))
l (bit 3 t« C)

LSRed t* 00)

(bit 5 t* C)
$02 (LSRed X=<
B n»w = 02)

It is natural that 6502 programmers would be more con
cerned about legality than the 8080 workers (who have only
a dozen illegal opcodes to worry about). In any program, a
wrong-bit bug can arise by miskeying or accidental bit-change
during transfer to or from storage. In an 8080 program, such
an error is likely to change an opcode to a different (wrong
but legal) one. With 105 illegals there is a higher probability
that a legal opcode will be altered to an illegal; furthermore, if
a branch or jump should be misdirected to an operand location
(by miscalculation, miskeying, or bit-dropping), the operand
may not be a legal opcode. Even if it is, I shall in a subsequent
paragraph indicate a way of proving that it is wrong. The

Page 42 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Number 19

412

underlying principle of a scanning debugger is that the inherent
structural rigidities in a program make possible the automatic
detection o f certain errors, without any execution of the pro
gram. Execution of a program bug can cause a lot of damage
in RAM — even creating bugs where there were none before —
so that even an imperfect pre-execution debugging scan may
well be worthwhile. The “ opcode-type-counting” aspect of
my program SIMBUG could be used for any microprocessor.
The “legality-testing” aspect is especially valuable for the
650X. The 650X control unit, that knows all about the
operands required by opcodes, knows nothing of legality and
will cheerfully execute 93 of the illegals and be stopped cold
by the other 12 (all type X2 except 82, A2, C2, and E2, of
which only A2 is legal but all 4 are executed). Either way
the result can be unpleasant, sometimes a subtle and far-
reaching bug. It was such a bug that first aroused my interest
in the executable illegals.

As an introduction to SIMBUG, I shall try to make the
concept more concrete by analysing a short program segment,
written in a schematic way as

M O] O t K i O3 J 1 K2 O4 B1 O5 K3 0 6

“0 ” indicates an operand, “J ” a 1-byte opcode, “K” a 2-byte,
and “ L” a 3-byte. “B” indicates a branch opcode, a subclass
of 2-bytes that is easy to detect (all 8 branches are type XjO)
and has a very high usage frequency (10% or more of all the
opcodes in most programs). All 4 types are counted by
SIMBUG.

The debugger is initialized to pick up L] . It calls OPLEGL
to test its legality. If legal, it calls BYTNUM to determine
where the next opcode is. If there are no illegality errors
(that cause a program BREAK) it skips from code to code
until it eventually encounters an illegal. No branches or
jumps are taken (although more elaborate programming
would make this possible). Operation can be terminated at any
desired point by deliberately replacing a legal opcode by an
illegal.

Let us now examine the effect o f an opcode error (how
ever caused) that is an alteration of a correct code to an
incorrect but legal one, “W” . If W specifies the same number
of bytes, the error is undetectable. If W specifies 1 or 2 bytes,
the debugger will pick up either Oi or O2 as the next opcode.
Only if 0 1 is a legal 2-byte, or O2 a legal 1-byte, will it pick
up K(as the third opcode and be back “on track” . Such
chance “error compensation” will sometimes occur. Note,
however, that one 3-byte code has been converted into two (a
1-byte plus a 2-byte). In the example, the counts of 1-bytes
and 2-bytes would be too high by 1, and the count o f 3-bytes
too low by 1. The programmer is alerted to search for wrong
3-byte. One can extend this analysis to every possible W-type
error and see that it is highly improbable (though not impos
sible) that chance compensation will restore the correct
counts. The difficulties are obvious: the programmer must
know the correct counts, and in a long program the search for
the opcode error will be tedious. The latter can be minimized
if scanning is done in “chunks” of 256 bytes. This could be
easily implemented in SIMBUG but I have not bothered,
because this debugging concept is not yet (and may never
be!) an accepted one. Improvement can wait until the simple
version has (or has not) proved itself useful.

The only operand errors that a somewhat more complex
version of SIMBUG could detect are the branch offsets, and
then only if the error caused branching to an operand. The
debugger could calculate the location to which the offset
directed the operation, and start a scan from that address in
the hope that mistracking would not be compensated but
cause it to strike an illegal. A much more positive approach

would be for a first pass o f the debugger to record the address
of every presumptive opcode in its search area, and in a second
pass calculate the branch locations and compare them with the
list of opcode addresses. Failure to find a match would be a
guarantee o f error, most probably in the offset. The gain in
debugging power might not be worth the much higher memory
cost. Only about 10% of all operands will be branch offsets,
and the chance o f an error detection would be roughly 50-50.
It seems to be a characteristic o f all debuggers (including
human ones) that effectiveness is subject to severely dimini
shing returns, while costs increase exponentially.

Coding for SIMBUG
02 B3 A0 00 SIMBUG LDY #0
02B5 A2 07 LDX #702B7 9k 02 CLERIT STY CNTLO,X
02B9 CA DEX
02BA 10 FB BPL CLERIT02BC B1 00 LOADIT LDA (BASAD),Y02BE 20 70 02 JSR OPLEGL02C1 B1 00 LDA (BASAD),Y
02C3 20 10 02 JSR BYTNUM02C6 F6 02 COUNT INC CNTLO,X02C8 D0 02 BNE TSTBRN02CA F6 06 INC CNTHI,X02CC 29 IF TSTBRN AND #$1F02CE C9 10 CMP #$1002D0 D0 06 BNE IN CAD02D2 E6 02 INC CNTLO02Dli D0 02 BNE INCAD02D6 E6 06 INC CNTHI
02D8 E6 00 IN CAD INC BASAD02DA D 0 02 BNE NOPINC
02DC E6 01 INC BASAD+102DE CA NOPINC DEX02DF D0 F7 BNE INCAD
02E1 F0 D9 BEQ LOADIT
Zer*-page l*cati*ns affected:

00 BASAD l«w scan-start address
01 BA SAD+1 hi i t i t i t

02 CNTLO l»w branch-«pc»de c#unt
03 CNTLO+1 i t 1-byte- " i i

0k CNTLO+2 i t 2 _ i t i t i t

05 CNTLO+3 i i i t i t i i

06 CNTHI hi branch-*pc#de 11

a CNTHI+1 II 1-byte- " 11
CNTHI+2 I I 2-byte- " i i

09 CNTHI+3 II ^ _ H H it

As befits a moronic main program, both logic and handling
of SIMBUG are straightforward. The user inserts an illegal
code at the point he wishes to scan to stop, keys in the start
address in the BASAD zero-page locations, and runs SIMBUG.
Almost instantly there will be a BREAK to whatever program-
interrupt routine the'- user has decided on (this is system-
dependent). The user checks the current address in BASAD. If
it is a program-opcode location, this contains an illegal. This is
fixed and SIMBUG is started again (the address in BASAD is
right). If the illegal was at an operand location, derailing
occurred at an earlier point, probably by a wrong but legal
opcode calling for the wrong number of operand bytes. There
is also a (presumably faint) possibility that a correct opcode
was allotted the wrong number of operand bytes. This is

Number 19 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 43

413

hunted down and fixed. To play safe, it is a good idea to
rescan from the start address. Eventually the break will occur
at the pre-set terminator illegal. At this point, a track of legals
exists in the program, but possibly not the intended one. A
user who has not yet had his fingers burned may decide
to execute the program, without bothering to check the
opcode-type counts. Those who have previously gambled and
lost will compare the counts from their listing with the
SIMBUG counts, remembering that the computer is always
right. If they agree, SIMBUG can do no more. True gamblers
can strip SIMBUG of its 25-byte counting logic (the CLERIT
and COUNT segments) and cut it to a super-moronic 23 bytes.
The total byte-count o f this minimal operation, including the
two subroutines, is then 124. A less drastic stripping would
eliminate only the branch-testing segment TSTBRN, saving
12 bytes.

SIMBUG was tested on the KIM-1 monitor programs. In
the section starting at 1800, it was stopped by the illegal OF
at 1871. This is a data word, not an instruction. The counts
of opcode-types checked perfectly. Starting a new scan on the
program opcode at 1873, SIMBUG stopped at the data word
6B at 1BFA. It had scanned so many bytes that I did not
bother to check the type-counts. A scan from 1C00 was
stopped by the data word 4B at 1FDF. The scan had ploughed
through a string o f data zeroes well beyond the end of actual
programming, so the type-counts would not be correct (but
what can one expect from a minuscule moron?). Needless
to say, when turned on itself and its subroutines, SIMBUG
found no flaws!

As what I hope will be my swan song in this software area,
I submit a radically different alternative to BYTNUM. Subrou
tine NUMBYT is fully relocatable, equally byte-efficient, but
a bit slower. It includes some tricks that could be useful in
other contexts. Users of the 6800 and 650X know that both
designs have direct transfers between stack (S), accumulator
(A), and status register (P), implemented in a different way:
S-A-P in the 6800 but A-S-P in the 650X. The TAP instruction
of the 6800 sets all 4 testable flags in P to the pattern of the
4 low-order bits in A (because the P register is organized as
xxxxSZOC), and the elaborate conditional-branch instructions
allow sophisticated bit-analysis. However, although the pattern
is easily stored in S for later re-use (by a PSH ACA), it has to
pass through (and so destroy the content of) A in order to
move into P.

The 650X needs 2 bytes (PHA, then PLP) to move the A
bit-pattern to P, and the 4 testable flags then reflect the
status o f the 2 highest-order and 2 lowest-order bits (because
P is organized as NVxxxxZC). However, the pattern can be
stored in S (either by deferring the PLP until it is needed, or
by a PLP and PHP for both immediate and later use), and
moved to P without affecting A.

The price paid for these powerful flag-setting operations is
that non-testable flags are also affected (e.g., the interrupt-
inhibit flag). In the 6800, the stack must be reset to the
pre-call state (if the trick is used inside a subroutine) so that
the RTS can pick up the correct return address. However, the
650X has the unique capability of transferring one byte,
stored in the stack by a subroutine, to the main program.
If an RTI is used instead of the usual RTS, the stack-stored
byte is moved into P before the return address is picked up.
The main program can use the status information immediately,
and/or store it by a PHP for later use. NUMBYT uses these
tricks both in its inner operation and to return much more
information in its status register at exit than BYTNUM.
Since it destroys the accumulator, the main program has the
task of saving and restoring it if necessary. P at exit has 7 of
the original bits in A, rotated to 0x765432, where x is always
a zero bit and the original bit 1 is lost. The N, Z, and C flags
therefore are = bits 0, 3, and 2.

PRAISE FOR JAMES & MICROTRONICS

Dear Jim: Received: 77 Mar 29
I’m glad to see you printing the letters from satisfied cus

tomers o f companies as well as the ones from dissatisfied cus
tomers. Obviously it is as important for us to know the good
outfits to go to as the bad ones to avoid.

Along those lines, I echo the sentiments of your other
readers on James Electronics. If I order something on Monday,
I have it by Friday or the following Monday.

Another good outfit is right there at Box 7454 in Menlo
Park - - Microtronics. I had despaired o f getting turnaround
of anything less than a month on 1702A EPROM programming,
after experiences with two other outfits, both in the Bay area.
Microtronics gets them back in a week, and it only costs $3
(plus postage) for programming from a hex coding form! The
best service at the lowest prices. They sell some hardware and
software (on PROMS) as well as doing programming, but I
haven’t checked those products yet.
Jim Wilson 3250 Wing St. #402
Ketron, Inc. San Diego, CA. 92110

An optional modification of NUMBYT might be useful.
Just before its fifth (PHA) instruction, bit 1 is in the C flag
and bit 0 in the N flag. A 5-byte insertion: BCC SKIP,
BPL SKIP, BRK will cause a program break for the 64 type
X (3,7,B,F) illegals. This does not provide the complete
“insurance” against illegality that OPLEGL gives, but costs
much less in bytes and time. An added bonus is that if the N
flag is set (bit 0 = 1) , one knows the opcode was one of 64
“odds” of which only 1 (89) can be illegal, so that one could
forego a full legality test at small risk. If the N flag is clear, the
probability o f an illegal is 20 times greater and a call to
OPLEGL might be justifiable.

Coding for Subroutine NUMBYT

0240 A2 01 NUMBYT LDX #1 (sets X reg.)
02li2 18 GLG (clears carry)
0243 6A ROR A (bit 0 t# C)
0244 6A ROR A (bit 1 t« C)
0214.5 48 PHA (A f stack)
0246 6A ROR A (bit 2 t* C)
0247 6A ROR A (bit 3 t* C)
0248 B0 0D BCS NUMHAF (alltype X(8-F))
024A 6A ROR A (bit 4 t» C)
024B B0 13 BCS 2BYTE (X,(0-7))
02l|D C9 04 CMP #4
024F B0 0F BCS 2BYTE (all but(6,4 ,2,0)0)
0251 C9 01 CMP #1
0253 F0 0A BEQ 3BYTE ($20)
0255 40 RTI ((6,4,0)0)
0256 28 NUMHAF PLP (stack t# P)
0257 08 PHP (P t# stack)
0258 B0 05 BCS 3BYTE (bit 2=1,

X(C,D,E,F))
025A 10 05 BPL 1BYTE (bit 0=0,

X.(8,A))025C 6A ROR A (bit 4 t» C)
025D 90 01 BCC 2BYTE (bit 4=0,

X.(9,B))
025F E8 3BYTE INX
0260 E8 2BYTE INX
0261 40 1BYTE RTI

Page 44 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Number 19

414

