
Faster Circles for Apples

aniel Lee’s article, “Fast Circle Rou­
tine,” in DDJ No. 79 (May 1983)
inspired me to create a similar circle-

making approach for the Apple. Although
I first wrote an Applesoft BASIC program
to test the logic, I chose variable names
that could serve for both BASIC and as­
sembly language. Thus “X ” and “ Y ” refer
to the X and Y registers of the Apple’s
6502 chip, and “ X crd” and “ Ycrd” are
the coordinates for the points of the
circle.

A circle of radius R centered at
(Xmid, Ymid) is described by the familiar
formula

by Myron L. Pulier

Myron L. Pulier, M.D., 101 Cedar Lane,
Teaneck, New Jersey 07666.

(Ycrd-Ymid) A 2
+ (Xcrd -X m id)A 2 = RA 2

where Xcrd is the horizontal variable,
Ycrd is the vertical variable, and Xmid
and Ymid are constants. Differentiating
with respect to Xcrd gives

2 * (Ycrd-Ymid) *dYcrd/dXcrd
+ 2* (Xcrd-Xmid) = 0

whence
dYcrd/dXcrd =

- (X m id-X crd)/(Y m id-Ycrd)
The last equation implies that, in

drawing the circle, if we increase Xcrd by
1 to plot the next point we must decrease
Ycrd by

(Xm id-Xcrd)/(Ym id-Ycrd)
The slowest operation here is division by
Ymid-Ycrd, which must be performed
each tim e we want a new value for Ycrd.

We can reduce the num ber of these divi­
sions by evaluating the expression for
only one eighth of the circle and by p lo t­
ting the rest of the circle symmetrically
about the coordinate axes and about a
diagonal.

It is best to select the upper left ex­
treme of the circle as the starting point.
According to the Apple coordinate sys­
tem, where point (0,0) is the upper left
corner of the screen, our starting point is
given by

(X m id-R /SQ R (2),Y m id-R /SQ R (2))
From here we move to the right and stop
at the extreme top of the circle, which is
point (Xm id,Ymid-R). This choice of
starting and ending points facilitates a
simple FOR-NEXT program loop (FO R
Xcrd = X m id-R /SQ R (2) to Xmid) and
avoids the divide-by-zero error we might
encounter at the extreme right and left of
the circle, where the slope is undefined.

D

Reader Commentary

More Fast Circles . ..

Dear DDJ,
Daniel L. Lee’s algorithm has got

to be faster than Microsoft’s pedestrian
CIRCLE command, but both suffer
from the same malady: they reinvent
the wheel — only this time it’s square!

When I think I’ve discovered a
marvelous algorithm, I wonder if I’ve
outsm arted the professionals. I usually
haven’t. But hope springs eternal. I
search the literature anyway. My
brainchild is at least 17 years old [B.
K. P. Horn, “ Circle Generators for
Display Devices,” Computer Graphics
and Image Processing (5), pp. 280­
288 (1976)].

Neither trigonometry nor calculus
is needed to devise a circle generator.
For a circle o f radius R one wants to
plot points (X ,Y) with integer coordi­
nates which most nearly solve the
equation

X2 + Y2 = R2
The difference between the left

side and R 2 is a measure of nearness.
A suitable circle generator simply
chooses successive points to minimize
this difference. The enclosed listing
(see Listing Three, page 30) is a ren­
dering of such an algorithm. It gener­
ates points for about one eighth of the

circle and, using the symmetry of the
circle, plots eight points for each point
generated. For use with digital plotters,
the algorithm is invoked eight times
forward and backward so that the
points are of concentric circles; the
low algorithm is plotted in counter­
clockwise order. I enclose a plot of
concentric circles in low resolution to

exhibit the algorithm’s behavior (see
Figure 2, below).

William A. McWorter, Jr.
Mathematics Department
Ohio State University
231 W. 18th Avenue
Columbus, OH 43210

(Listing Three begins on page 30)

1 8 Dr. Dobb’s Journal, December 1983
723

See Figure 1 (at right).
For each point that we find by the

above method, we can generate seven
symmetric points by reflection through
the horizontal and vertical diameters of
the circle and by exchanging Xcrd with
Ycrd. A point (Xcrd,Ycrd) is ABS(Xcrd-
Xmid) distant from the vertical axis of
the circle. Since its reflection should be
the same distance from this axis, its ab­
scissa is 2*Xm id-Xcrd. Similarly, reflec­
tion through the horizontal diameter
gives an ordinate o f 2 * Ymid-Ycrd. To
reflect a point through the diagonal line
that runs from upper left to lower right,
we find the point whose distance to the
vertical axis equals the distance of the
original point to the horizontal axis and
whose distance to the horizontal axis is
the same as the original point’s distance
from the vertical axis, namely

(Xmid+Ymid-Ycrd,Xmid+Ymid-Xcrd)
This new point can now be reflected as
before through the vertical and horizontal
axes.

In Listing One (page 21), subroutine
9000 plots four points symmetrically
about the horizontal and vertical axes.
Lines 10050 and 10055 switch the X and
Y coordinates, then line 10060 calls 9000
to plot the four new points. The parame-

Figure 1.
Faster C irc le

Reader Commentary

. . . And Fast Ellipses

Dear Sirs:
Mr. Daniel Lee, in the May ’83

issue, presented a fast circle generator.
It compensated for any given screen
aspect ratio, and as such may be used
as an ellipse generator. I submit the
algorithm described below as an even
faster alternative. The speed improve­
ment results from the elimination of
all division and most of the multiplica­
tion. The approach taken could easily
be modified to allow the generation
of arcs.

The method which I present here
is based on the equation o f the circle,
and a trick which eliminates a great
deal of multiplication. There is no
calculus or trigonometry involved, im­
plicitly or explictly.

The equation of the circle is well
known:

x2 + y2 = r2 [l]
where r is the radius. Since we want to
minimize multiplication, we have to
use “ magic.” A magical property of
the positive integers is that the square
of a positive integer n is the sum of the
first n odd numbers. This means that if
we want to com pute x2 for each x we
can actually plot (i.e., each integer x),
we only need to know which odd

numbers to add up. The same applies
to y2.

In order to plot a circle, we might
start at the point (0,r) and plot towards
(r,0), using symmetry to generate the
other arcs of the circle. This would
mean that x would go from 0 to r, y
would go from r to 0, x2 would go
from 0 to r2, and y2 would go from r2
to 0. It is easier than it first appears to
calculate y2. Note that y2 is the sum
of the odd numbers from l to 2 y - 1. In
the initialization phase it will be neces­
sary (perhaps) to compute y2 directly,
but f o ry ’ = y - l , y’2 = y2 - (2 y - 1).

Above I said “ perhaps” because it
develops that one does not need to
refer directly to y2 or even to x2. The
procedure for drawing the circle
requires that we assume, as we did
above, that we will draw primarily
from (r,0) to (0 ,r) and use symmetry
to generate the rest o f the points. As
we compute the points for the primary
arc, we maintain a total e. The total
starts at 0; for every time we actually
move in the positive x direction, we
add 2 x - l to e; for every time we actu­
ally move in the negative y direction,
we subtract 2 y - l from e. We decide
precisely which step or combination of
steps to take by insisting that the e
that would result from the step or
combination of steps be as close to 0
as possible.

An Ellipse
To generate an ellipse is a slightly

more complex matter, but in the end
we lose little speed. The equation for
an ellipse centered at the origin is

b2x2 + a2y2 = a2b2 [2]

where b is the positive y-intercept, a is
the positive x-intercept, and a/b is the
resulting aspect ratio. I claim that in
order to successfully trace the ellipse
we need only do exactly as we do for
the circle, but we must multiply every
reference to x by b2 and every refer­
ence to y by a2. In other words, every
time we actually move in the positive
x direction, we add b2(2 x - l) to e; for
every time we actually move in the
negative y direction, we must subtract
a2(2 y - l) from e. Again we decide
which step or combination of steps
to take by insisting that the e that
would result from the step or combi­
nation of steps be as close to 0 as
possible, fn this case we are plotting
from (0,b) to (a,0).

If perhaps the terms b2(2 x - l)
and a2(2 y - l) look like they involve
too much multiplication, please realize
that in fact no multiplication is re­
quired. For example, we would already
know the evaluation of b2(2 x - l) to

(Continued in box on page 20)

Dr. Dobb’s Journal, December 1983
V M

19

ters R2, X2, Y2, and XY have been intro­
duced to speed computation.

In the segment of the circle from the
upper left point through the upper mid­
dle, the change in Ycrd is fractional for
each unit change in Xcrd. Because the
Apple plotting routine deals with integers,
the decrement in Ycrd builds until it
causes the line being drawn to move up
one full position.

The assembly program in Listing
Two (page 22) runs much faster than its
Applesoft equivalent. Since Xcrd can
range from 0 through 279, it must be a

double-precision variable. It occupies lo­
cations XCRDH and XCRDL. Ycrd is
supplemented by a fractional portion
stored in YCRDF. Names of o ther double­
precision integer parameters are termi­
nated with -H or -L for the high- and
low-order portions, respectively. Single­
precision assignment is indicated in the
comments by while double preci­
sion is

The TEST program plots a circle of
radius 40 and midpoint (120,80). It ini­
tializes the hires screen by calling TURN­
ON. The subroutine called EIGHTH per­
forms calculations for the one-eighth

circle. Here the first order o f business is
to approximate the value of R /SQ R (2)
by using R * 3 /4 instead. Note that 3 /4
in decimal is 1/2 + 1/4, or 0.11 in binary.

The next lines of the assembly pro­
gram are a straightforward translation of
their Applesoft equivalents. Lines 75 and
76 initialize the value of YCRDF to 0.
PLOTFOUR is called in lines 104 and 119
to place four points symmetrically about
the horizontal and vertical axes of the
circle. PLOTFOUR uses the Applesoft
HPLOT routine to perform the actual
plotting. HPLOT requires that the horizon­
tal coordinate be in the Y and X registers,

(Continued from page 19)

be, say, ex . To determine ex’ when
x’ = x + l, note that

b? (2 x ’ - l) = b 2 [2 (x + l) - l l
= b2(2 x - l) + 2b ;

in other words,
ex’= e x + 2 b 2 .

A similar result obtains for the nega­
tive y direction, which we will simply
state:

ey>=ey - 2 a 2.

Algorithm Summary
To summarize the algorithm: start

with the point (0,b). Initialize e to 0,
ex to b2, ey to 2a2b - a 2, exy to
ex + ey. Plot the current point and cor­
responding points in the other quad­
rants o f the ellipse. Choose the next
point so that e plus ewhatever is mini­
mized. Set e according to that choice,
and update ex , ey , and exy. When the
point (a,0) is arrived at, the ellipse is
complete.

The Listing
The program shown in Listing

Four (page 30) is an MBASIC pro­
gram intended to interface to an LSI
ADM-3A terminal. Obviously, if speed
is a concern, BASIC is not the language
of choice. I chose it to permit the pro­
gram to be tried out basically anywhere,
since my facilities for computer
graphics are one-of-a-kind.

Lines 1050-1240 are the routine
itself. The point-plotting routine is on
lines 1310-1341.

Caveat
There is one thing that the imple­

m entor should be aware of before he
or she starts, to prevent untraceable
bugs. The formulae for ex , ey , and exy
include squares o f a and b. These
squares accumulate to a large total
rather quickly. The solution is to use a

wide word to store the total, and
perhaps (depending on the size of your
screen in pixels) the values of ex , ey ,
and exy as well.

Drawing Arcs
The method can be modified

to draw arcs (see Figure 3, below)
elliptical or otherwise, with careful
initialization and a well-considered
term ination condition. The initializa­
tion involves calculating ex , ey , and
exy for the initial point o f the arc to
be drawn. The routine should term inate
when the last point of the arc is drawn.
The actual coordinates of the final
point should be calculated in some
fashion that allows for rational num­
bers, and then a point with integer
coordinates should be chosen that
approximates the actual point. This
can be done by using the equation of
the ellipse. In other words, the best
integer approxim ation (xi,yi) o f the
terminating point (x ,y) is the one for
which (bxi)2 + (ayi)2 is closest to

(ab)2. Again, the integer coordinates
of the final point should be computed
in the initialization phase and used as
the term ination condition.

Conclusion
This routine can draw an ellipse

quickly, using no m ultiplication once
initialized. It should be easily imple­
mented in 68000 assembly language,
owing to that processor’s 32-bit register
operations. A little more difficulty
should be anticipated by users of the
8086, 6809 or Z80, though their
16-bit addition capabilities can be

, used to advantage. HLLs can speedily
draw circles with this routine, as well,
because of its incremental nature. And
finally, the algorithm can draw arcs
easily.

Michael T. Enright
2360 Hosp Way, #132
Carlsbad, CA 92008

(Listing Four begins on page 30)

* *

* **** ************************************ *********
**** * * ** ** ********* *** ** ** *** *** **

** * * * ***** ***** *** * ** ** ** ** ***
***** * * * * * * * * * * * * *
** * * *** * **** * * * * * *

* * * * * * * * * * * * * * * * * *

*** * * * *** * * * * * * *
* * * * * * * * * * * * * *

**** * * * *** * * *
* * * * * * * * * * * * * *

***** * *** ** *
* * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * * * * * * * *

****** **** **
*** *********** *** i
****** **** ***

** ************* **
* * * * * * * * * *

* * * * * * * * * * * * *

*

*

*

Figure 3.

*

20 Dr. Dobb’s Journal, December 1983
725

and the vertical coordinate in the A regis­
ter. HPLOT returns these coordinate
values at the zero-page locations named
LASTHH, LASTHL, and LASTV.

The division sequence starts on line
135. Since the divisor and dividend are
single precision, we can use a technique
that divides a one-byte divisor stored in
DIVISOR into a one-byte dividend held
in the A register. The eight shift opera­
tions and eight subtractions required are
counted via the X register. The result of
the division is a binary fraction generated
in QUOTIENT. This quotient is subtracted
from the previous value of YCRDF. If a

borrow is required, we decrement the
integer portion of Ycrd. In any case, Xcrd
must be incremented by 1 in a double­
precision operation. The FOR-NEXT
loop of the BASIC version is implemented
in assembly language by counting the
value of R2 down through zero, since
R /SQ R (2) points will be plotted for one
eighth of the circle.

Using zero-page locations for varia­
bles and parameters and a faster division
algorithm will increase speed, but the bot­
tleneck is the Applesoft HPLOT routine,
which maps horizontal and vertical co­
ordinates into the Apple video locations.

Replacing that routine with a table
lookup results in very fast circle genera­
tion.

With some modification the “ faster
circle” technique can produce filled-in
disks or wedges for pie charts. It can also
rotate and translate shapes and objects
quickly for animation effects.

(Listings begin below)

Circles (Text begins on page 18)

Listing One

1000 * * * * * * * * * * * * * * T U R N O N
1005
1010

Hgr
Hco1or = 3

2000 TEST
2005
2010
2015
2020
2025

R = 40
XMID = 120
YMID = 80
Gosub 10000
End

9000 * * * * * * * * * * * * * * P L OTFOUR
9005
9010
9015
9020
9025

Hplot H,V
Hplot X2 - H, V
Hplot X2 - H,Y2 -
Hplot H,Y2 - V
Ret urn

V

10000 * * * * * * * * * * * * * E I G H T H
10005 R2 = R * .7
10010 YCRD = YMID - R£
10015 X2 = XMID + XMID
10020 Y2 = YMID + YMID
10025 XY = XMID + YMID
10030 For XCRD = XMID - R2 To XMID
10035 H = XCRD
10040 V = YCRD
10045 Gosub 9000

* PLOT A POINTS

10050 V = XY - XCRD
10055 H = XY - YCRD
10060 Gosub 9000

* PLOT A POINTS

10065 YCRD = YCRD -
(XMID - XCRD) /

(YMID - YCRD)
10070 Next
10075 Return
END OF LISTING
PROGRAM LENGTH = 421 BYTES,

TOTAL OF 31 LINE NUMBERS

27 TOTAL NON-REM STATEMENTS,
6 TOTAL REMARKS

END
PR#0

End Listing One

Dr. Dobb’s Journal, December 1983
726

21

Listing Two

0800
0800 2C 50 C0
0803 2C 52 C0
0806 2C 54 C0
0809 2C 57 C0
080C A9 FF
080E 85 E4
0810 A9 20
0812 85 E6
0814
0814 A9 28
0816 8D 2F 09
0819
0819 09 78
08 IB 8D 37 09
081E A9 00
0820 8D 36 09
08d\i
0823 A9 50
0825 8D 3C 09
0828
0828 20 64 08
082B 60
082C
082C AC 2D 09
082F AE 2E 09
0832 AD 31 09
0835 20 57 F4
0838 AD 33 09
083B 38
083C E5 E0
083E AA
083F AD 32 09
0842 E5 El
0844 AS
0845 AD 31 09
0848 20 57 F4
084B A4 El
084D A6 E0
084F AD 3B 09
0852 38
0853 E5 E2
0855 20 57 F4
0858 AC 2D 09
085B AE 2E 09
085E A5 E2
0860 20 57 F4
0863 60
0864
0864 AD 2F 09
0867 4A
0868 18
0869 6D 2F 09

3 LST
4 TURNON BIT GRAPHICS
5 BIT FULL
6 BIT PAGE1
7 BIT HIRES
8 LDA #*FF
9 STA HCOLOR
10 LDA #$20
11 STA HPAGE
12 513 TEST LDA #40
14 STA R
15 •

116 LDA #120
17 STA XMIDL
18 LDA #0
19 STA XMIDH
20 121 LDA #80
22 STA YMID
23 ?24 JSR EIGHTH
25 RTS
26 527 PLOTFOUR LDY HH
28 LDX HL
29 LDA V
30 JSR HPLOT
31 LDA X2L
32 SEC
33 SBC LASTHL
34 TAX
35 LDA X2H
36 SBC LASTHH
37 TAY
38 LDA V
39 JSR HPLOT
40 LDY LASTHH
41 LDX LASTHL
42 LDA Y2L
43 SEC
44 SBC LASTV
45 JSR HPLOT
46 LDY HH
47 LDX HL
48 LDA LASTV
49 JSR HPLOT
50 RTS
51 552 EIGHTH LDA R
53 LSR
54 CLC
55 ADC R

;R <-40

;XM I D < <-120

;Y M I D <-00

;D R A W C I R C L E

;H P L O T H , V

;H P L O T X 2 - H , V

;H P L O T H 2 - H , Y 2 - V

;R2 <—R*3/4

(Continued on page 24)

22 Dr. Dobb’s Journal, December 1983
727

UirCIBS (Listing continued, text begins on page 18)
Listing Two

086C 6ft
086D 8D 30 09
0870
0870 ftD 3C 09
0873 ftft
0874 38
0875 ED 30 09
0878 8D 3D 09
087B
087B ftD 37 09
087E 0ft
087F 8D 33 09
0882 ftD 36 09
0885 2ft
0886 8D 32 09
0889
0889 8ft
088ft 0ft
088B 8D 3B 09
088E ft9 00
0890 8D 3E 09
0893 2ft
0894 8D 3ft 09
0897
0897 8ft
0898 18
0899 6D 37 09
089C 8D 39 09
089F ft9 00
08ft 1 6D 36 09
0804 8D 38 09
08ft7
08ft7 ftD 37 09
08ftft 38
08ftB ED 30 09
08ftE 8D 35 09
08B1 ftD 36 09
08B4 E9 00
08B6 8D 34 09
08B9
08B9 ftD 35 09
08BC 8D 2E 09
08BF ftD 34 09
08C2 8D 2D 09
08C5
08C5 ftD 3D 09
08C8 8D 31 09
08CB
08CB 20 2C 08
08CE
08CE ftD 39 09
08D1 38
08D2 ED 3D 09

56 ROR57 STft R258 559 L D f t YMID60 TAX
61 SEC62 SBC R263 STft YCRD
64 m

165 LDft XMIDL66 ftSL
67 STft X2L
68 LDft XMIDH69 ROL70 STft X2H
71 u

172 TXft
73 ftSL
74 STft Y2L
75 LDft #0
76 STft YCRDF
77 ROL
78 STft Y2H79 »

980 TXft
81 CLC
82 ftDC XMIDL
83 STft XYL
84 LDft #0
85 ftDC XMIDH
86 STft XYH
87 588 LDft XMIDL
89 SEC
90 SBC R2
91 STft XCRDL
92 LDft XMIDH
93 SBC #0
94 STft XCRDH
95 596 NXPOINT LDft XCRDL
97 STft HL
98 LDft XCRDH
99 STft HH

1 0 0 ?
1 0 1 LDft YCRD
102 STft V
103 5104 JSR PLOTF
105 5106 LDft XYL
107 SEC
108 SBC YCRD

;Y C R D <—C Y M I D—R23
;X < - YMID F D R LftTER

;X2 < <-C£*X M I D 3

;A <-YMID
;Y2 < <-C2*YMIDIl

;Y C R D F <-0

;ft <-YMID
;XY < <-• CX M I D + Y M I D 3

;X C R D < < — CXMID-R2D

;H < <-XCRD

;V < <—YC R D

;P L O T S E T OF P O I N T S

;H < <— CXY—YCRD3

24
728

Dr. Dobb’s Journal, December 1983

08D5 8D £E 09 109 STA HL
08D8 AD 38 09 110 LDA XYH
08DB E9 00 111 SBC #0
08DD 8D £D 09 11£ STA HH
08E0 113 508E0 AD 39 09 114 LDA XYL
0SE3 38 115 SEC
0QE4 ED 35 09 116 SBC XCRDL
08E7 8D 31 09 117 STA V
08EA 118 508EA £0 £C 08 119 JSR PLOTFOUR
08ED 1£0 ■90SED AD 3C 09 121 LDA YMID
08F0 38 1££ SEC
08F1 ED 3D 09 1£3 SBC YCRD
08F4 85 1A 1£4 STA DIVISOR
08F6 1£5 J08F6 AD 37 09 1£6 LDA XMIDL08F9 38 1£7 SEC
08FA ED 35 09 1£8 SBC XCRDL
08FD 1£9 508FD A£ 08 130 LDX #8
08FF 131 ?08FF A0 00 13£ LDY #0
0901 84 IB 133 STY QUOTIENT
0903 134 50903 06 IB 135 DIVIDEI ASL QUOTIENT0905 £A 136 ROL
0906 C5 1A 137 CMP DIVISOR
0908 90 04 138 BCC DIVIDE£
090A E5 1A 139 SBC DIVISOR
090C E6 IB 140 INC QUOTIENT
090E CA 141 DIVIDEE DEX
090F D0 F£ 14£ BNE DIVIDE1
0911 143 50911 AD 3E 09 144 LDA YCRDF
0914 38 145 SEC
0915 E5 IB 146 SBC QUOTIENT
0917 8D 3E 09 147 STA YCRDF
091A 148 5091A B0 03 149 BCS CKX
091C CE 3D 09 150 DEC YCRD
09 IF 151 5091F EE 35 09 15£ CKX INC XCRDL
09££ D0 03 153 BNE CKX 1
09£4 EE 34 09 154 INC XCRDH
09£7 155 509£7 CE 30 09 156 CKX 1 DEC R£09£A 10 8D 157 BPL NXPOINT
09£C 60 158 RTS
09£D 159 509£E 160 HH DFS 1
09£F 161 HL DFS 1

;V <-CXY-XCRD3

;PLOT R E M A I N I N G P O I N T S

;D I V I S O R < - H Y M I D - Y C R D 3

;D I V I D E N D < - C X M I D - X C R D 3 * £ 5 6

;B I T C T <-8

;C L E A R Q U O T I E N T

;YCRDF <-CYCRDF-QUOTIENT3

;YCRDY < -1?
; YES, YCRD <-[!YCRD-13
;XCRD < < — CXCRD+13

;TALLY R£
;REPEAT UNTIL XCRD=XMID

;HORIZONTAL PLOT VALUE
(Continued on page 28)

26 Dr. Dobb’s Journal, December 1983
729

Circles (Listing continued, text begins on page 18)

Listing Two

0930 162 R DFS 1 ;RADIUS
0931 163 R2 DFS 1 ;HOLDS R/SQR(2)
0932 164 V DFS 1 ;VERTICAL PLOT
0933 165 X2H DFS 1 ;HOLDS XMID*2
0934 166 X2L DFS 1
0935 167 XCRDH DFS 1 ;X COORDINATE
0936 168 XCRDL DFS 1
0937 169 XMIDH DFS 1 HORIZONTAL CENTER
0938 170 XMIDL DFS 1
0939 171 XYH DFS 1 ;HOLDS XMID+YMID
093A 172 XYL DFS 1
093B 173 Y2H DFS 1 ;HOLDS YMID*2
093C 174 Y2L DFS 1
093D 175 YMID DFS 1 ;VERTICAL CENTER
093E 176 YCRD DFS 1 ;Y COORDINATE
093F 177 YCRDF DFS 1 ;FRACTIONAL PART OF YCRD
093F 178 ■

9001A 179 DIVISOR EPZ *1A
0052 180 FULL EQU *C052
C050 181 GRAPHICS EQU *C050
00E4 182 HCOLOR EPZ $E4
C057 183 HIRES EQU *0057
F457 184 HPLOT EQU $F457 ;APPLESOFT HIRES PLOT
00E6 185 HPAGE EPZ *E6
00E1 186 LASTHH EPZ $E1 ;HORIZ COORD OF LAST HPLOT
00E0 187 LASTHL EPZ *E0
00E2 188 LASTV EPZ $E2 ;VERT COORD OF LAST HPLOT
C054 189 PAGE1 EQU *C054
001B 190 QUOTIENT EPZ $ IB
093F 191 ■

9093F 192 END

***** END OF ASSEMBLY

End Listing Two

2 8 Dr. Dobb’s Journal, December 1983

730

Listing Three

10 ‘ *** C IRCLE PLO T ***
2 0 '

30 INPUT "CENTER, RADIUS"; CX , C Y , R : X=R: Y=0: A=-2*X+l :
B =1 ; GOSUB 701 GOTO 30

40 '
5 0 ' P LO T A PO IN T IN EACH OCTANT^
60 '
70 PSET(X+CX,Y+CY) : P SE T (Y +CX , X+C Y): P SE T (- Y +CX ,X+CY):

P SE T (- X4CX , Y+CY) : P SE T (-X+CX, - Y+ C Y) : PSET (-Y+CX, -X +CY):
P SE T (Y+CX, -X+CY): PSET(X+CX, -Y+CY)

80 '
9 0 ’ COMPUTE NEXT POINT. F IS X~2+Y~2-R~2, A IS THE CHANGE
100 ' I N X~2 WHEN X IS DECREMENTED BY 1, AND 8 IS THE CHANGE
110 ' I N Y~2 WHEN Y IS INCREMENTED BY 1. E IS NOT ALLOWED TO
120 'EXCEED R ; EQUIVALENTLY, THE PO IN T (X . Y) IS K EPT W ITHIN
130 'A D ISTANCE R+ 1/2 OF THE C IRC LE CENTER. THE ALGORITHM
140 ' I S DONE WHEN THE CHANGE IN Y~2 REACHES THE NEGATIVE OF
150 ’ THE CHANGE IN X~2 (B>=-A I.
160 ’
170 IE B> = -A THEN RETURN ELSE Y = Y+1: E = E + B : IE E>R THEN

E = E + A : A = A + 2: X = X+1
180 B=B+2: GOTO 70

End Listing Three

Circles
Listing Four

10 DEFINT A-Z
20 PRINT CHR$(26) 'CLEAR DUMB TTY SCREEN50 FOR 1=1 TO 11
55 AE=I*2 'WIDTH OF ELLIPSE
5b BE=I*1 'HEIGHT OF ELLIPSE
57 X(J=I*4+1 ' CENTER.X OF ELLIPSE
5b YC=I*1 'CENTER.Y OF ELLIPSE
6U GOSUB 1060 'PLOT A CIRCLE
7u NtXT I 'PLOT II CIRCLES
998 END
1050 ******* CIRCLE SUBROUTINE
1060 XF=0 1INIT X-OFFSET
10/u Yt-BE 'INIT Y-OFFSET
108<j XD=BE*BE 'INIT COMPUTATION OF X-SQUARED
109u YD=(2*BE-1)*AE*AE 'INIT COMPUTATION OF Y-SQUARED
1100 Dx=2*BE*BE 'DEFINE DELTA-(X-SQUARED)
1110 DY=2*AE*AE 'DEFINE DELTA-(Y-SQUARED)
1120 ER=0 'INIT ERROR (I.E. ER=AE"2*BE"2-XF?2*BE/'2-YF''2*AE"2)
1130 GOSUB 126U 'PLOT THE FOUR POINTS
114U TX=ER+XD

30 Dr. Dobb’s Journal, December 1983
731

: TY=ER-YD
: TB=ER+XD-YD

1150 IF ABS(TX)>=ABS(TY) OR ABS(TX)>=ABS(TB) THEN 1170
1160 XF=Xi?'+l

: ER=TX
: XD=XD+DX
: GOTO 1220

117U IF ABS (TY) >=ABS(TX) OR ABS (TY) >=ABS (TB) THEN 1190
118u YF=YF-1

: ER=TY
: YD=YD-DY
: GCTO 1220

119u IF ABS (TB) >=ABS (TX) OR ABS (TB) >=ABS (TY) THEN 1210
1200 XF=Xt'+l

: YF=YF-1
: ER=<TB
: YD=YD-DY
: XD=XD+DX
: GCTO 1220

1210 PRINT "OOPS"; 'IF HERE THEN THERE IS A BUG.
1220 GOSUB 1260 'PLOT THE POINTS
1230 IF YFO0 THEN 1140
1240 RETUKN
1250 '****** ROUTINE TO PLOT FOUR POINTS AT ONCE
126U XP=X(J+XF

: YP=YC+YF
: GOSUB 1320

127u XP=X(J+XF
: YP=YC-YF
: GOSUB 1320

128u XP=Xc-XJb'
: YP=YC+YF
: GOSUB 1320

129u XF=X(J-XF
: YP=YC-YF
: GOSUB 1320

1300 RETCKN
1310 '****** ROUTINE TO PLOT A POINT ON A DUMB TERMINAL
1320 Cl=YP+32

: C2=XP+32
1330 IF YP<0 OR YP>23 OR XP<0 OR XP>79 THEN 1360
134u PRINl' CHR$(27) ;CHR$(61) ;CHR$(C1) ;CHR$(C2)
lJoO RETUKN
1360 PRlNl' "POINT OUT OF BOUNDS"

: STOP
End Listing Four

Dr. Dobb’s JournaJ, December 1983
fW2

