
* # # # # # # *

• f "

650X,
opcodes

H. T. Gordon,
Dept, of Etomology 
University o f California 
Berkeley, CA. 94720

Dear Mr. Warren, Aug. 2, 1977
This is a write-up on 650X  opcodes. The two programs in it  are 

system-independent and so not right for KIM-1 USER NOTES (that 
doesn't like subroutines anyhow).

By the way, my earlier note on a STRING O UT revision (that you 
published) had a few typos in the program. I've not bothered to send 
corrigenda because anyone who knows what he's doing will see them 
right away and few novices will read DDJ. In the programs / send here
with, with more complex logic, typos might give potential users a few 
headaches. / agree that direct reproduction o f teletype output would 
be better, but some of us churchmice still don't have them.

Sincerely,
H. T. Gordon

Three recently-published programs (a debugger by Larry 
Fish in the Aug. ’77 Kilobaud, and relocators by Ralph 
Sherman in the April ’77 DDJ and by Jim Butterfield in the 
# 4  ’77 Kim-1 user notes) include routines for calculating the 
number of bytes required by a 650X opcode. All use quite 
different logic, and none is richly documented or coded as an 
independent subroutine. This decoding operation is a wheel 
that has probably been reinvented many times (I did it as 
an early programming exercise long ago, as a not-very-efficient 
51-byte subroutine). The following table shows the intricacy 
of the problem. It lists the 16 opcode types from X0 to XF, 
roughly in order of usage frequency in programs (650X pro
grammers try to avoid using 3-byte codes!). Decoding exe
cution time will be shorter if common codes are the earliest 
decoded, when this is compatible with an efficient bit-sifting 
routine. Types X0 and X9 are unusual in that the number of 
bytes is determined by X (the term X0 means an even number 
and X, an odd number). Although the last 4 types are all il
legal, coding errors may cause them; since they make up 60% 
of all illegal opcodes and are easy to sift out, this may be 
worth doing (but only the Butterfield program does it).

The Sherman program uses mostly (AND, CMP) logic. 
It sifts out all 1-byte opcodes in 4 steps: 00, then 20, then 
(4,6)0, then X(8,A), then all 3-byte opcodes in 3 steps: 
X1 (CJ),E,F), then X1 (9 3 ) ,  then X0 (C,D,E,F). Residuals 
are 2-byte opcodes. The Butterfield program uses a sequence 
of seven (AND,EOR) siftings in an indexed loop, addressing 
a 22-byte table of operands: first the illegals X(3,7,B,F), 
then 20, then the X.,0 branches, then (0,4,6)0 and (0-7)8, 
then (8-F)8 and XA, then X.,9, then X(C,D,E). Residuals are 
2-byte opcodes. Although ingenious and powerful, the pro
gram optimizes byte-economy at the cost o f longer execution 
time.

Type X Jytea f le-- • 1. ./ i 1 ^  *1

X0 0, U ,  6 1 3 0

W * T 1 2 e. 0

X0 Xo ^  7 2 3 1

X0 2 3
Tj. /

X6 1 16 0

LA 1 10 6

L I 2 16 0

*5 2 16 0

Lb 2 16 0

X9 X
0

2 7 1

X9 X1 3 8 0

Xlj. 2 7 9

X2 2 1 15

XC 3 8 Qw

XD 3 16 0

XE 3 16 0

X3 0 16

X7 0 16

XB 0 16

XP 0 16

includes a11 branch opcodes

The Fish program relies mostly on the 650X BIT instruc
tion. Although suboptimally coded, it heightened my aware
ness of the power of BIT, not merely for detecting the pre
sence or absence of single bits but (equally important) the 
simultaneous absence o f 2 or more bits. The original program 
required 6 bit-masks in zero-page and had one error (that was 
corrected in a much more efficient revision sent to me by the 
author). I shall not analyze his bit-sifting operations, except 
to note that the very clever idea of splitting them into 2 
branches (one for types X(0-7), the other for X(8-F)) was his. 
The following revision (further optimized and coded as a sub
routine by me) saves both program bytes and execution time. 
The subroutine expects to find an opcode in the accumulator, 
and returns the correct number of bytes in the X register.

Page 20 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 August 1977

316



021(2 A2 01 BYTNUM LDX -$01 (sets 1-byte ex it )

0212 2C 25 02 3XT3JQX BIT T'iZCX+k (tests bit 3)

0215 D0 0F 3NE HALFOP (all X (Q - F))

0217 2C 22 02 31T T3ICK+1 (tests bits 0-U, 7)

021A D0 15 3;;e 2 BYTE (a ll but (0 ,2 ,1 + ,6 )0 )

021C C9 20 CMP ,/$20 (conpare $20)

021E F0 10 3s:i 3 BYTE (3 -byte if = )

0220 60 ars (3 re-si iuals 1-byte)

0221 A2 97 r:ncK LDX ft:97 (a i d n n data «•)

0223 05 It OHA d u ::'iy " "

022? 06 pup ii ii

0226 2G 23 02 iLiLPOP BIT rKICK+2 (tests bits 0 ,2 )

0229 F0 07 BEQ 1 BYTE (a ll  X(8,Ji) )

0223 2C 2k 02 BIT THICK*3 (tests bits 2,14.)
0225 F0 01 BEQ 2BYTE (all XQ (9 ,B ) )

(3-byte residuals X1 (9,S)  and X (C ,D ,E ,F ) )

0230 E6 3 BYTE I MX

0231 E8 2 BYTE I MX

0232 60 13YTE RTS

*These are valid instructions that cannot be reached in pro
gram execution, but 4 of the 5 bytes serve as data operands for 
the BIT instructions, eliminating a data table. This trickery 
(suggested by a novel step in the Butterfield program, branching 
to a 00 operand as a BRK instruction) would hopefully pass 
inspection by simple assemblers or debuggers!

The operation should be fast since neither o f its 2 branches 
involves more than 3 bit-tests and 3 branchings; most of the 
common opcodes are decoded even faster. Of its 35 bytes, the 
5 “trick” bytes serve to make it self-contained and functional 
in any 560X system. In any actual system, however, not all 
of them may be necessary, since most of them have large ROM 
programs that are a treasurehouse of bytes, at fixed addresses 
that make them usable as BIT masks. The subroutine would 
then become system-dependent; e.g., in a KIM-1 system there 
is an 08 at 1EB3 and a 14 at 1C95, so one could save 3 bytes 
by using only 05 9F in the TRICK sequence. If one can find 
ah required mask bytes in ROM, the program will need only 
30 bytes and become fully relocatable.

The main program can set the X register (e.g., to 00 or FF) 
and bypass the BYTNUM setting by using a JSR BYTNOX. 
Operation affects only the X and status registers, e.g. the 
Z flag is set only by X(8,A) and is = bit 3 if both bits 0 and 
2 are = 0, while the V flag (unused by BYTNUM) is always 
= bit 6. The main program can add any or all of the special 
operations of the Sherman and Butterfield programs. The 
special handling of 00 would be invoked by a BEQ after 
loading the opcode. Isolation of branch opcodes would be 
done after the return by 6 bytes: AND #$1F, CMP #$10, 
BEQ BRANCH. I am less enthusiastic about the screening-out 
of 64 o f the 104 illegals, and I have therefore developed an 
independent legality-testing subroutine.

There are some special problems in legality testing. E.g., 
early versions of the 650X lacked the ROR instruction and 
had only 147 legal opcodes instead of the 152 in the current 
version. There are 2 kinds of “illegals” : many are interpreted 
as valid instructions and are executed by the 650X, while 
others seem to be blind alleys that halt further operations. 
E.g., “valid illegals” such as XF cause execution of both of 
the legals XD and XE, while “invalids” such as X2 (where

X f  A) fail to execute. (I sent a note on this to BYTE  long 
ago, that was accepted but has not yet been printed.) Also, 
there is added logical complexity in decoding the 6 types 
whose legality is determined by X, as shown in the following 
table o f legal X values:

X2 only X = A 
X0 all X except 8
X9 all X except 8
XA all XQ, plus 9 and B 
XC all Xc (except 0), plus B
X4 all X0 (except 0,4,6), plus 9 and B
My attempts to program this using the BIT, that was so 

effective in BYTNUM, were so inefficient that I changed to a 
somewhat unusual logic, relying on a sequence o f LSRs (that 
right-shift the opcode, lowest bit into the carry flag) to create 
extensive branch decisions. Like most first tries, the program 
must be suboptimal, especially since I have not had the advan
tage of seeing other legality programs (although the specs 
for the ECD MicroMind imply that such testing is done in their 
loading from tape cassettes).

The program assumes that an opcode is in the accumulator. 
It acts as a filter, causing a program break if the code is illegal. 
Although operation destroys the byte in the accumulator, it 
is preserved intact in the X register, so that it can be restored 
by a TXA in the main program after the return.

02 U0 AA OPLEGL TAX

021+1 LSE A (bit 0 carry)

02L|.2 90 09 3CC TYPS02 (all evens)

0214.14- UA LSR A (odds, bit 1 - *• carry)

021+5 30 Hi- 3CS ILLBGa  (all X (3 » 7, 3, F )

021+7 8a TXA (restore opcode)

021,8 C9 89 CMP ,r$89 (conpare to 89)

021 (A F0 0F BE3 ILLBGA (89 is illegal)

0214-C 60 ars (all other X ( 1 ,5 ,9 ,B ) )

02t|D 1+A TYP302 LSR ^ (evens, bit 1 carry)

021+S 90 17 3CC TYPE0 (all X (0,1+ , 8 , C ) )

0250 I4A LSR A (bit 2 carry)

0251 90 01 3CC TYPE2A (all X U ,a ) )

0253 60 RTS (all X (6 , E ) )

0251+ U TYPE2A LSR A (bit 3 —9  carry)

0255 B0 05 3CS TYPi|AC (all X (A ) )

0257 G9 0A CMP /$0A (tests for X = a )

0259 F0 01+ 3EC} LZGa LA (A2 is lei’al)

0253 00 ILLSGA 3RK (otner X2 illegal)

0 2 5c 1+A TYPl+AC LSR A (bit Ij. -» carry)

025D 30 01 3CS XIVX. ( a l l  odd X)

025? 60 LEOnLA RTS ( r e s i d u a l  even  X)

0260 29 06 A'-'L / 6  ( t e s t s  X = 9 , 3 )

0262 G9 0k CMP r$01i (”iust = 01,)

0261; D0 15 3."E lOTCHG ( illescal X, )

August 1977 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 21

317



0 ^  o o0 :il’S (lev <i Is X =

y *11 !m rVF30 n  ( 1 r. 2 - 9  curry)

02;>6 i*0 0 .' TYr’Elid (all X (i)., 0 ) )

02-6/\ lu ..S.i a (bit 3 -*■ carry)

B0 0U HSS LEU T  (all X (8 ) )

02oD 09 08 CKP ,-$06 (tents 60)

026F F0 0A !3E;a NOTLEO (60 is 1 lie, al)

0271 60 LEO IT STS (all X0 le.rals)

0272 I ,A TYPEI|0 LSR A (bit 3 - 9  carry)

0273 F0 06 3SQ NOT LEG ( 0! |,  0C ille.-ials

0275 90 05 300 TYPE1+ (ot.ior XI4.)

0277 C9 09 CMP ^$09 (tests 90)

0279 D0 El 3IIE TYPlj-AO (residual XC)

0273 00 ! COT LEG BHIC (90  i s  i l l e g a l )

027C 29 0D TYPEl| AND #$0D ( t e s t s  1;!;, 6I4. )

0 272' G9 01+ CMP /$0U (nust = 01+)

0260 D0 DA 3NE TYP^AC ( r e s i d u a l  Xi+)

0262 00 3H X (I4.I4., 6I4. i l l e g a l s )

When OPLEGL was tested (on a KIM-1, with a simple pro
gram that caused each BRK to display the illegal opcode for 
a few seconds) all 104 illegals were correctly identified. Nearly 
half of the 67 program bytes are required by X(4,A,C). Minor 
restructuring could save a few bytes, but I have not bothered 
because other programmers may now feel challenged to create 
a subroutine that will be both more byte- and time-efficient.

I have noted with regret the common tendency to bury 
complex logic inside special-purpose main programs instead of 
coding it as subroutines. This seems desirable to me only when 
it is vital to attain the absolute minimum execution time. The 
saving of 4 bytes needed by a JSR and RTS is a trivial gain. 
Even when its originator cannot conceive that a logic block 
could ever be useful in any other context (and who can be 
certain o f that?), subroutining may offer greater structural 
flexibility, intelligibility, and ease o f debugging and modifi
cation. Especially in ROMS (unalterable, but with a wonderful 
“always-there” character) rich internal subroutining can 
greatly increase the power of a system; KIM-1 users have exer
cised great ingenuity in accessing much of the programming 
in the 2K ROM, a task made more difficult by the failure of 
its designers to anticipate this. Furthermore, a microprocessor 
may be incorporated in many diverse systems (especially true 
of the 8080 and 650X chips), so that main programs are very 
often system-dependent. To the extent that they use system- 
independent subroutines, their adaptation to systems other 
than the one for which they were developed is facilitated.

Dear Dr. Warren, August 5, 1977
Enclosed is a one-page, one-paragraph addition to the MS / sent 

you a few days ago. I t  is an afterthought prompted by reading Stork's 
simulation program, in the issue o f K IL OBA UD / received after sending 
you my MS. Like Adam Osborne, / find instruction sets fascinating. 
They are where the real power resides. Although a primitive set, used

S-100 BUS COMPATIBLE MUSIC BOARD

news release Received: 77 Jun 30
Newtech Computer Systems’ low-cost Model 6 Music 

Board enables anyone with an S-100 bus computer to pro
duce music and sound effects. Applications include genera
ting melodies, rhythms, sound effects, Morse code, touch- 
tone synthesis, and much more.

The Newtech Model 6 S-100 bus compatible Music Board 
comes fully assembled and tested. Its features include selecta
ble output port address decoding, a latched 6-bit digital-to- 
analog converter, audio amplifier, speaker, volume control 
and RCA phono jack for convenient connection to your 
home audio system. It employs a glass epoxy printed circuit 
board with plated-through holes, gold-plated fingers and top 
quality components.

A complete Users Manual, supplied with the Model 6 
Music Board, includes a BASIC language program for writing 
musical scores and an 8080 Assembly Language routine for 
playing them.

The price of the Model 6 Music Board is $59.95 through 
computer stores. Delivery is currently from stock.

For information contact your local computer store, or 
write to:

NEWTECH COMPUTER SYSTEMS, INC.
131 Joralemon Street 
Brooklyn NY 11201 
(212) 625-6220

by experts and provided with powerful auxiliaries, will outperform a 
superior design that lacks these enrichments, in the long run class 
will tell.

Sincerely,
H.T. Gordon

Like everyone else’s, most of my main programs are system- 
dependent and involve routine operations. Whatever elegance 
there is must reside in the subroutines, codable in countless 
ways. Separately publishing these makes them available to any 
program in any 650X system, and may also focus attention on 
some elements o f software design in all systems (in this in
stance, the advantages o f branched- vs. linear-sequence sift/sort 
operations). Opcode decoding can be useful in non-650X 
systems; e.g., a debugging program-execution-simulator by Lee 
Stork in the Sept. ’77 KILOBAUD has an opcode-byte-count 
routine in 8080 assembly language, using a linear sequence 
of 14 bit-tests (6 ANI and 8 CPI) and 14 jump-on-conditions. 
It is likely that this decoding existed previously, hidden in the 
mass of 8080 software. The absence of relative-branch instruc
tions in the 8080 set seems strange to users of later designs 
of microprocessors (although I suppose 8080/Z80 users 
would feel handicapped by their limited range!). Still, mini
computers (and their micro copies) do without them, and the 
creation of a status register and a flock of jump-on-condition 
instructions was one of many brilliant innovations by Intel 
designers in the evolution of the 8008/8080 chip. One won
ders what heights the Z80 might have reached, had these 
same designers not felt constrained to maintain software- 
compatibility with the 8080. When one sees how willing 
users are to rewrite logic blocks, instead of hunting for them 
in older software, the compatibility argument looks very 
weak! Although BASIC interpreters are not cheap, many 
versions exist for the 8080 and even for the 650X.

Page 22  Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 August 1977

318


