G.sommodore
 October 19ef 21.00
 PUING
 international

VICAID

Two sets of Fabulous Utilities in one! PROGRAMMERS TOOLKIT Gives extra commands: Auto, Number, Help, Delete, Change, Trace, Step, Light Pen, Break etc. MACHINE CODE MONITOR

Gives Save, Memory Display, Load, Verify etc. Similar to TIM on PET. Examine the VICS ROM Needs DAMS RAM/ROM board or similar $\square+$ + VAT

VICMON

THE ULTIMATE PROGRAMING AID FOR THE VIC

Full machine code package with:
 Assembler, Dissassembler,
Fill, Re-locate, Identify, Exchange, Compare, Printing, Dissassembler etc., etc.
Needs DAMS RAM/ROM board or similar

VIC
LIGHT PEN

DAMS PRICE ONLY

£17.35

+ VAT
FOR PET
$12^{\prime \prime}$ SCREEN

RAM 'N ROM BOARD
 3K RAM
 In Hires area.
 Alsó space for VICAID and VICMON
 programming aids.

BUY THE 3K RAM 'N ROM BOARD WITH VICAID AND VICMON WITH MACHINE CODE MANUAL (WORTH £5.00) FROM MOS TECHNOLOGY FOR ONLY $£ 67.85$ + VAT AND GET A FREE VIC LIGHT PEN (WORTH £17.35) VIC REFERENCE GUIDE R.R.P. £14.95 DAMS PRICE £14.50

VIC STARTER KIT

VIC 20
C2N Cassette Deck, 10 Blank Cassettes,
User Manual, Vic Programmers Reference Guide,
1 Joystick.
Worth £238.30 ONLY 924400 +VAT
(VAT INCL. PRICE = £244.62)
OR VIC 20
With free 3K RAM pack or
Super Cartridge Game ONLY

Editorial

Editor

Pete Gerrard

Advertising Manager

Peter Chandler: tel 01-439 3537

Production

Lithotype Design
London EC1.
Managing Editor
Nick Hampshire
Commodore Computing is published 10 times per year by Nick Hampshire Publications. It is not in any way connected with Commodore Business Machines U.K. Ltd.

Typesetting by

Centrepoint Typesetters Ltd, London
Printed by Spottiswoode Ballantyne Ltd, Colchester and London.

If you would like to contribute to Commodore Computing, please send articles or programs to: -

[^0]We will pay 10 pounds for each program printed, and 20 pounds for each article published, which should be approximately 1,000 words long.

To many people the Pet is a computer capable performing just one task. In our own office, someone who'd never seen the Pet being used for anything other than wordprocessing was convinced that that was all it could do, and it took a lot of persuasion to make her realise that the wordprocessing program was just that and that alone: a program to enable the Pet to emulate a wordprocessor.

After a demonstration of a data base program and various other packages it was fairly clear that the Pet is a computer capable of many, varied jobs. A look through Commodore's own Approved Products catalogue would show just how many different uses a Pet can be out to: from accountancy to typesetting, from statistical analysis to space invaders, and frontiers beyond.

We hope that this diversity of interests is reflected in the contents of the magazine. By the very nature of the magazine we have to cover a lot of varied topics: what applies to the V10 will not (usually) apply to the SuperPet, for instance.

Certainly that diversity is shown by a look at a cross-section of you, the readers. From private individuals to the largest company conglomerate, there must be an awful lot of Pets out there doing some very strange things!
This, in a computer industry that is constantly changing must be a good thing. The occasional manufacturer who places all his eggs in one basket (e.g. Clive Sinclair, one ZX machine at a time), will succeed, but these are few and far between.
By taking advantage of the wide range of interests shown by the market place, and producing a computer to fill every available gap, a company will naturally be in a stronger position to survive. Commodore are attempting to do this with a variety of machines, from the Vic 10 (or whatever it will become known as) to the 720 series.

As Commodore continues to grow, so must we, the magazine. Whatever system you own or use, we look forward to having you with us!

Dear Sirs,
Please find a cheque for one years subscription to Commodore Computing.

I am an avid Vic fan, and a proud owner of such a machine. Could you tell me if the Vic 20 can be simply (and hopefully relatively cheaply) upgraded to such machines as the Commodore 64 when it appears, and will your magazine be covering Commodore's new machines as I have heard many rumours (nice ones at that) about the above named micro.

Yours sincerely
G. Hughes

Blackpool
Dear Mr. Hughes,
Thanks for the letter, and subscription cheque. We hope you enjoy the magazine!
We certainly shall be covering any new machines that Commodore produce. We are called COMMODORE Computing after all! Seriously, our aim is to expand the magazine as the range of machines available expands, so as to give the best coverage we possible can to each and every one of them.

The question of upgrading existing VIC 20s is an interesting one. Commodore's John Baxter has said that an upgrade will be available, and if he gets his way it will cost around 100.00 pounds (remarkable really: the VIC is just under 200 and the 64 is just under 300!). However, the Vic has outlet for one joystick, the 64 has two. There are other differences as well, about the only common thing being the keyboard.
So whether this upgrade means ripping out everything from the Vic 20 and being a total replacement (keeping the keyboard of course!), or what, we don't yet know. We'll keep you posted.

Dear Sirs,

I have a CBM 3032 which was acquired to help a schoolboy with computer studies. Now he is trying to get hold of software and program books to play games on the machine, as well as learn to program and operate it himself (dad's interested as well!!

Any advice, sources, books you can recommend would be appreciated. I often wonder whether tried and tested games
programs have every been collected into one book and published for the 3032. Have they?

Yours sincerely
T.J. Davies

Redruth

Dear Mr. Davies

Thank you for your letter. Many people decry games as being of no use to man nor beast, but as an initial introduction to computing I think that they serve a most useful purpose. It is no coincidence that Commodore's land other people's) best selling educational tapes, for instance, have had some kind of game-playing role attached to them.

Consequently, although there are many tapes available, from people like Audiogenic (tel. 0734586334) or Supersoft (tel. 01-861 1166), it comes as some surprise to find that there are remarkably few books of games listings around. Certainly for the 3000 series machines anyway.

Still, there is one, called Pet Fun and Games, published by McGraw/Hill. It is aimed at the Commodore range generally, rather than just the 3000, but the programs will nonetheless work on all machines. Well put together and well presented, a telephone call to 0628-23431 will give you all the information you need.

LDA $£ \$ 00$ STA \$9D JSR \$F47D LDA $£ \$ 60$ STA \$D3 LDY \$D1 BNE \$028C JMP $\$$ BF 00 JSR \$F449 JSR \$F4A5 JSR \$FOD2 LDA \$D3 JSR \$F143 JSR \$F1C0 JSR \$F1C0 SEC LDA \$2A SBC $£ \$ 02$ STA \$FB
LDA \$2B
SBC $£ \$ 00$
STA \$FC
JSR \$F38C
JMP \$F41C

[^1]
New Product News

LATEST Commodore News

Despite the oncoming launch of the new machines from Commodore, peripherals and addons for the existing Vic 20 continue to appear with great regularity.
D.A.M.S. up in Liverpool (051548 7111) have brought another light pen onto the scene. Admittedly at 19.99 pounds it is cheaper than the rest (probably because it uses less cable than any of the others, albeit sufficient), but apart from that what else can you say about a light pen? It works, there is a demonstration program supplied (which works in interesting ways its wonders to perform), and that is about it.

Still, it is on the market, at a fairly cheap price, so prospective buyers of light pens could do worse than examine this one.
One would never know that Audiogenic (0734 586334) had a new person handling their public relations. Bombarded with press releases, they do bring to light a number of interesting products.

They've just taken on board the Supersoft product Mikro Assembler, suitably modified for the Vic. Some of the facilities provided include an internal monitor and an assembler, to make machine code programming on the Vic significantly easier. As well as this, there is a high resolution plotting facility (based on a 176 by 160 matrix), and additional control over the Vics existing sound capabilities. Available on a cartridge, with an extra 3 K RAM, for just 49.50 pounds.

Next off the line comes something called BUTI, which they insist you pronounce as Beauty: this is what we in the trade call a chip Buti. In their now traditional format of coming in the form of a plus in cartridge with an extra 3 K RAM, Buti retails at 39.99 pounds. Essentially a variant on the old Toolkit idea, this adds an additional 17 commands to the Vic's existing Basic.

Moving smartly on, we come to Boss, described as the definative chess game for the Vic (but then aren't they all? When will Boss play Commodore's own version of Sargon?). Features implemented include castling, 'en passant' and queening (but we chess players know that you don't always want a queen!), at 14.99 pounds it does seem to be a fair buy. In a competition between itself, Sargon on the Apple, PetChess on the 8032 and Chessmaster on the TI 99/4A it came out well on top. We'll try and feature a full review of this in the coming months.

Before we turn this into the Audiogenic fan
club, we'll finish by mentioning Wordcraft 20 for the Vic, again as a cartridge, but with a whole 8 K extra this time.

The press release starts off somewhat grandly by proclaiming that 'the typewriter has now become completely obsolete'. Well. There is no doubt that Wordcraft 20 is a well-written and well-documented package, with most of the features of its big brother Wordcraft 80. However, the merits of owning a wordprocessing system that allows you only to see 24 characters in a line at any one time (I know it scrolls up, down, left and right) I will leave up to you.
If you want to do wordprocessing on a Vic Though, for 125 pounds this is certainly worth examining.

VATman and Robbins

One of the major problems facing any retailers using the familiar Simplex cash book is ... using the Simplex Cash Book! Although the system has been running now for something in the region of

QUALITY OF SERVICE PLEASES EVERYONE

If your users and operators deserve the best support available for Commodore Based Systems then contact Brian Homewood of PEACH DATA SERVICES LTD. on 0283-44968.

PEACH DATA SERVICES LTD. can supply and maintain all Commodore Systems. The software sold undergoes very careful appraisal and only the best is made available to customers.

By supplying fast, prompt service at all times, in all kinds of system emergency we keep your user departments working smoothly. Replacement systems, extra operators, customised training, frank system appraisals can all be obtained. Your staff will be pleased with the extra support; productivity of the department will improve.

New Product News

fifty years, it is still a time consuming process to actually fill the book out, and many errors will tend to creep in.

There is also the perennial problem of the VAT returns, a harrowing financial nightmare for any accountant, however well trained.

Now however, there is a package called MicroSimplex, which as you might surmise is based on the Simplex book. Thus, anyone who's used to using the book should take to the microcomputer equivalent very quickly. Designed by Catlands Information Systems in Macclesfield, the package is now being handled by Micro-Simplex, themselves an offshoot of Catlands. Mike Dawson is the man in the know about this, and he can be reached on 062561500 .

Essentially then this is of interest to the retail market, and we'll be bringing you a full review of this shortly, hopefully in next months issue.

Faulty Towers?

For a long time now there has been just one major suite of programs on the Pet for hoteliers, namely the series of programs from Landsoft.

Recently we received news of another system, this one being from Devon Computers 10803 526303). Everything in the promotional sales literature points to it being along roughly the same lines (just what is a hotel package supposed to do after all? Manage a hotel), so comparison between the two at your local dealers would probably be worthwhile if you're interested in this kind of thing.

However, when sales literature includes phrases like 'finest system available in the Commodore range for Hotels', 'review this fine product', 'put you in touch with some of our satisfied users', I for one tend to fall asle !

More New Chips

Kevin Viney of ICPUG has developed a trio of chips for the Commodore range of machines, and the latest of these (known appropriately as TRIOS) is now being actively marketed by a company called Consup (tel. 01-670 4411).

As is now standard with these chips, they replace one of the existing Pet ones, thus not losing any valuable space in the computer. This particular one goes into the 'E' ROM slot, and as well as retaining the Pet Basic adds a number of unique ones of its own.

For instance, the ability to scroll backwards through a listing, and to page through in either direction (a most useful routine), is presented here. Unfortunately that is basically it! One or two other things, such as shifted return deletes everything on that line after the cursor position (but does not erase it from memory until return
itself is pressed), OLD is a useful command if you've happened to type NEW by mistake, and DO ignores a line number and a REM, and executes any Basic statement following.

So, for 27.00 pounds, backward scrolling of a listing could be yours!

Training Courses

Yet more training courses have been announced recently for the Commodore range of micros, this time by a company called MicroTraining, based in the West Midlands - tel. 021-550 1827 for further details. These training sessions are usually carried out in two five hour blocks on site, or you can opt for attendance at the MicroTraining computer school in Ward End, Halesowen, for five, weekly, two hour sessions.

The aim of these courses is to introduce the businessman to the use of computers, and acquaint him with just some of the workload that microcomputers can take in the office environment.

Interestingly enough, MicroTraining claim that 'Commodore were so impressed by the courses that they appointed MicroTraining to be the only external authorised Commodore training centre'. I wonder what McDowell Knaggs and Associates in Worcestershire would have to say about that?!

Computer Aided Design

Jentech Services Ltd. (tel. 07462 5287), have recently brought out a complete system for microcomputer aid draughting, and for around 5,800 pounds you get a $32 \mathrm{~K} \mathrm{Pet}$, $1 / 2$ megabyte of storage on disk, a great deal of sophisticated software, and an intelligent $X-Y$ plotter.

As an inexpensive approach to C.A.D. this system offers more than most, and at a very reasonable price. Upward expansion from the basic set-up is available should it be required. You can build up a library of drawings, shapes and standard parts or symbols, to be called up as required, stores on disk, scaled up and down: in other words, to be done with as you wish! A comprehensive package.

Words on Word Processing

Last month we mentioned Superscript from the Independent Commodore Products Users Group, but also said that there was some confusion over the future of the program, what with the odd court case pending. Superscript has now been taken over by a company named Precision Software (01-330 7166), and is being actively marketed by them.

It's interesting to note that Commodore thought enough of Superscrpt (including praise
from Jack Tramiel himself!), that they asked the author, Simon Tranmer, to produce a version for the Commodore 64, so expect that out before long.

One bone to pick with Precision Software though: when ICPUG had the program it cost 35 pounds to buy, but Precision were talking about a price in the region of 240 pounds, which defeats the object somewhat.

Hopefully that price will come down: ICPUG started a nice precedent by releasing a really powerful, low cost word processing package, and not it's been taken out of their hands.

Whilst we're talking about word processors, another package has appeared from Landsoft (01-878 7044/7), in the form of a new version of Wordform (II this time).

Based on their earlier Wordform, it is very much a 'What you see is what you get' word processor, using as it does the screen as a typewriter: no bad idea, when introducing secretaries unfamiliar with computers to the are to using one. In other words, as you type a screen 'window' moves its way along in front of you, performing a carriage return whenever you get to the end of a line, taking any word with it as necessary.

An easy to understand package, and at 150.00 pounds probably the cheapest major program now on the market, with Precision Software having altered the price of Superscript. Well worth a look at.

Diplomacy

When you think of a really nice name for a new Pet product, perfect it, do all the literature, and get prepared for the big launch, it must be a major disappointment when you realise that the name is not, after all, quite right.

Such is the case with the Versatile Interface Card, now being distributed in the U.K. by Corrtronic, in Manchester (tel. 061-865 5070). A nifty little name you might think but what are the initials? V.I.C., the name of a certain well-known other computer from Commodore, unfortunately. So, the VIC-2 has now become known at the Diplomat.

This is a card which fits inside the existing Pet case (although optionally outside), and provides many additional external interface capabilities. On board we have 80 I/O lines (the equivalent of 8 Pet User Ports!), 2/16 bit timer counters, and 2 serial I/O ports.

In addition to all this we also set a 1 K battery backup RAM, a built in calendar/clock, a power down detector, and one or two other things as well.

At a cost of 380 pounds this is worth a look if you're into interfacing to the outside world.

Program Storage

As an alternative to the usual disks or cassettes, a new form of program storage has arrived from Microscience in Stockport (tel. 061-477 3888). As is the case with Diplomat, this takes the form of a board that fits inside the Pet, and has the ability to store from 2 K to 28 K , using a range of 2716 or 2732 Eproms as necessary, depending on the size of the program to be stored.

As an additional security there is the facility to have your programs (which can be written in Basic, machine code, compiled, or a combination of all three!), once stored on Eprom, run automatically on computer switch on. Alternatively, programs can be called up with our old friend the SYS command.

New Printers

Ever since Commodore disbanded the old 8026 and 8027 daisy wheel printers, the market has been waiting for a replacement to come along.

None such has appeared from Commodore, but two new printers have come out recently, and the first of these bears a remarkable resemblance to the 8026: hardly surprising really since it's virtually the same machine! However, there are one or two nice additions which our old friends never had.

We now have 10,12 or 15 characters per inch, and the ability to accept paper up to 17 inches wide, with a 14 inch print width. Bi-directional printing (at last!) gives us a much faster print speed, and the rather nice 4 K buffer allows the unit to happily print away in its own time, while you get on with the host computer.

It comes with either IEEE, RS232 or Centronics interfaces, so it should link to just about anything, and if you're after further information on this 1098 pound printer ring Dataplus Ltd., on 0242 30030/37373, and say 'what can you tell me about the Scripta II?'

How many daisy wheel printers have you seen recently, priced at 485 pounds? Well, ButelComco have brought one such into the world, having had a few words in the ears of SmithCorona Typewriters. Linking up to the old Pet quite easily, it is a true daisy wheel, with two versions currently available: 10 characters per inch or 12 characters per inch. You must specify the one you want at time of purchase.

An admittedly low print speed of just 120 words per minute (or about 10 characters per second) is not one of its strongest features, but at 485 pounds one can't really complain. We'll bring you more on this one next month, but meanwhile ring 01-202 2277 and ask for Cliff Osborne.

Club News

Two User Groups

There are many independent user groups up and down the country. Their enthusiastic members meet regularly once a month (well, fairly regularly), to discuss and demonstrate the Commodore range of machines. These meetings are a great opportunity for Commodore users in a particular area to get together and pool their information.

Nobody knows everything about computing, so these get-togethers give experienced users, and perhaps more importantly the not-so-experienced users, the chance to swop ideas, listen to guest speakers, and watch demonstrations of both hardware and software. All the latest news from Commodore, and the industry in general, are poured over at these gatherings, which, apart from the computer aspect, make a very pleasant social event.

This month we take a look at two of the independent user groups in the south of England, namely the Canterbury group and the Watford group.

Canterbury Group

The Canterbury group meets on the first Tuesday of each month, at the Physics department of the University of Kent. It began its life back in the summer of 1980, and was officially affiliated to I.C.U.G. in July 1981. With a starting list of just five members, this has now risen to forty and, as they say, is rising every month.

A typical club night involves a broadcast of the latest news in the industry, and also includes news of the South East group (featured a while ago on these pages), with which there are close ties.

After a break for refreshments, they usually feature a guest speaker giving a talk or demonstration of some new item of hardware or software : a recent example was a showing of The Administrator, by Stage One Computers. Other guests have included the knowledgeable Harry Broomhall, and the General Secretary of I.C.P.U.G. Jim Tierney.

The evening is finished off with a question and answer session on whatever topics are brought out into the open. Usually they'll round off at about eleven o' clock, having spent some three and a half hours covering all the bases.

Members are kept well informed of forthcoming meetings and events by a monthly circular. As with all these user groups, their members come from many walks of life: Canterbury in particular features children, school teachers, businessmen,
and many more. In short, everyone is welcome.
If you live in the area, own or use a Pet or Vic machine, and would like further details, your person to contact is John Bickerstaff, at 48 Martin Down Road, Whitstable, Kent. He can also be reached by telephone on 0227272702 at home, or during the day on 01-499 9102 .

On to Watford

Another well organised club is the Watford group, run by Stephen Rabagliati and Rod Eva. After a recent telephone conversation with Stephen we were given a rundown on the history of the club, and how it has progressed to its current form.

The club is now a year old, and was started just after the Pet Show of 1981. Stephen and Rod decided that they would like to form a group of their own, and so with help and ideas from Mick (of the South East regional group), the club began its life.

The existence of this new club was soon on the streets via the newsletter Oz (no, not that one!). Other promotions included a mailshot to all known owners and users in the area, asking them to come down to the meetings.

The first meeting had an encouraging start, with forty people turning up. This continued for the next three months, but each month the forty people were different... a worrying time for Stephen and Rod. Everything finally settled down, and now the club has seventy paid up members (membership being just three pounds per year).
The club has five Pet machines, allowing members lots of hands-on time, obviously a great benefit. The majority of members are businessmen, so naturally the emphasis is on business hardware and software. Recent work has involved the use of Prestel on the Pet, and other projects have included help in preparation of the I.C.P.U.G. software library. Obviously an active and enthusiastic bunch, they also involve themselves in exhibition work, both locally and nationally.

Meetings are usually on the second Monday of every month, and in addition a monthly newssheet is sent out informing members of changes, general information and personal requests for help.

Future plans include a separate group for the Vic machine, so if you live in the area, own a Pet or a Vic machine, and want to get involved, please contact Stephen, care of Grocery Distribution, Grange Lane, Letchmoe Heath, Watford.

If you would like your club featured in a future issue of Commodore Computing International, please get in touch with the editor of the magazine at the address on the masthead.

Education

Computer Programming History

I recently read an account of the sinking of the Bismarck and then began to realise how this age of computers can subscribe towards today's presentation of history and also to posterity.

The Bismarck epic is typical of countless others on land, sea, and in the air inasmuch that a great deal of documented orders, times, positions etc. is available. It is from such detail that computers can be programmed to virtually re-create historical events such as this, and here therefore exists a means to present and preserve history with proved accuracy because for example, if orders for speeds and headings have been correctly recorded, a computer will produce tracks, courses and engagement areas to scale. They therefore are also capable of producing a 'living' diagram of land, sea, and air battles and this is particularly significant with respect to visual displays of history which may provide both interesting television material and accurate reference for future historian.s.

Take the Bismarck action as an example. A computer programme based upon documented times available enables this epic to be presented literally to any time scale. This means that the five days elapsing from the time fo the Bismarck's sailing from Bergen until its sinking at 10.40am

It's easy to complain about advertisements.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.
ASA. Ltd. Brook House. Torring ton Place, London WCIE THN.

on May 27th 1941 can be scaled down to a (say) one-hour programme. Thus, a coloured 'live' diagram graphically displaying distribution of forces involved and their courses of action serves as a fundamental reference throughout a television programme of the sinking of the Bismarck.

It is at this point an ability to scale time adds further facilities for clarifying this major event in World War Two. For example, while a one-hour programme must display progress or events at a rate 120 times faster than the actual time ensuing between the 22 nd and 27 th May, this is a practical rate for displaying an overall reference diagram of television screen size. On a 20 -inch screen for example, the distance covered by the Bismarck from Bergen to its final resting place in the Atlantic is approximately 21 inches i.e., its position on a television screen changes at an approximate rate equivalent to the tip of the minute hand of clock, seven inches in diameter. While it is to be appreciated that five or six other deplying forces are to be simultaneously displayed and indicated during a commentary. At certain stages also, the programme will be re-scaled in time to enable detailed accounts of major incidents to be illustrated.

The fundamental programme in addition to providing a realistic continuity, also serves to trigger existing historical pictures and films into the television programme at appropriate times including their actual times of happening relative to the basic time scale. Furthermore, and in order to augment this type of presentation, computer techniques today enable events to be graphically re-constructed. For example, a computer programme may be re-scaled in time and in graphics to produce separate diagrams where warship outlines, ranges, and shell trajectories are illustrated along with vulnerable target areas, hits, torpedo strikes and their subsequent effects. At this stage however, a programme should not be just a technical exercise but a vehicle for respecting and remembering thousands of dedicated and brave souls who were lost at this time.

It is not impractical to forecast that the day will come when much of history will be re-created using computer techniques including three dimensional displays of battle areas on land sea and in the air. Here is a beginning using two dimensions and if to some, a re-creation of the past is wasted time and energy, perhaps it is as well to remember it is the past which determines our future and this should therefore be clearly and accurately recorded.

Microcomputers in Business.

Taking the Next Step

Last month we presented a few introductory tips on what to look for, and indeed what to look out for, when going about purchasing for the first time a microcomputer system for use in the business market.

This month we'll go one step further, by assuming you have your system installed and running in your office, and that it's quite happily solving the major problem you bought it for. However, in the back of your mind is the nagging feeling that this is, after all, a microcomputer, and shouldn't it be doing something else as well?

But all you know is how to press SHIFT/RUNSTOP to set the program running. How do you go about taking the next step? That's the problem we'll try and solve.

Training Courses

We have reported in past issues of Commodore Computing on the large number of companies that are now running training courses based on Commodore equipment. You only have to look at virtually any New Product News section to see just how many there are.

This is probably one of the best first steps you could take. These courses can last for any length of time from one day upwards, although two or three is the more usual schedule. Cost will obviously vary from place to place, so it's worth having a look around to get the best value for money.

The sort of material covered will again depend on the course, but as an initial foray your best bet would be to try one that was a more general introduction, rather than an attempt to teach you Basic programming in three hours (they exist!).

To begin with, you won't really want to get into programming. First of all, you'll need to know whether it would be worth your while to do this, so get an ideal of what your micro is capable of doing from the people who know, in preference to deciding yourself what you think it's capable of doing.

Next Steps

Having obtained at least some idea of what the Pet can achieve for you, one then arrives at the question: how do I go about implementing it?

There are three major options available to you, and the final decision must depend on cost, time and your own personal aptitude.

The first option would be to do it yourself. Cer-
tainly cost would be a minimal factor here, since you're hardly going to bill yourself for programming work done on behalf of your own company (are you?!). A look at this month's Applications Story will give you an idea of how someone else has tackled this quite difficult task, particularly if you've never programmed before.
If this is the course you decide to follow, then you're going to have to learn about programming for yourself. As stated earlier, there are a number of courses open to you, any number of which can take you into the mysterious depths of programming, both in Basic and machine code. Whether you want to go on any of these will be entirely up to you. Out of the three choices I personally would go for this one. Firstly, you will be able to implement not only immediate changes, but any future ones, yourself. Secondly, if at any stage you decide to install more equipment, you will stand less chance of being bamboozled by the slick salesman. Finally, it will not cost you the sometimes quite large sums of money that our second option will cost, and this is ...

The only U.K. magazine dedicated to Commodore Users and Commodore Equipment.
Editorially aimed at the experienced (and not-so-experienced!) user of Commodore Computers.
Always first with the latest Commodore news and views.
Packed with programming hints and listings.
With a controlled circulation to known Commodore users and dealers it is the foremost advertising avenue to an estimated 100,000 Commodore audience.

MICROSCRIPT Word processing made simple!

YOU DON'T HAVE TO BE A WIZARD TO USE MICROSCRIPT

Whether you're a secretary, businessman, author, or journalist - MicroScript can help you. From a single page letter to volume mailings, from one page reviews to complete books - MicroScript is simple to use yet rich in facilities.

MicroScript has the largest text memory capacity of any word processor for the Commodore 8000 series computers - even though it's probably the longest program ever written for the 8032 and 8096. Sounds incredible doesn't it?

Here's how we do it: MicroScript is the first in a
new generation of business software, supplied not on a floppy disk but burned into banks of microchips. What this means is that instead of using the memory that's already there, MicroScript adds 46 k of ROM and $2 k$ of RAM to your computer. It even doubles the ROM expansion capability.

What does all this mean for you, the user? It means that you're investing in the latest technology. It means that you're buying the Rolls-Royce of word processors. Most of all it means that you're investing a little money to save a lot of time. Simple, isn't it!

Microcomputers in Business.

Outdside Help

There are many programmers, software houses, dealers etc. who would be only too willing to customise existing and future programs to your specific requirements, so that you could have no quarrels over the functions those programs would perform. You stated what you wanted the program to do, and they made it do the job for you.

Sounds ideal, doesn't it? There are, needless to say, pitfalls.

Principal amongst these is the price. Custom programs do not come cheaply, and even by doing a lot of shopping around you are not going to reduce the price by much. Essentially, everyone knows what everyone else is charging, so its up to how competent you think the programmer is rather than by how much you think he's trying to line his wallet which should be your ultimate guideline.

You will pay a lot of money, but on the other hand you will get a program that does its job satisfactorily. No more, no less : you will only get what you ask for.
In many ways this is not an ideal solution: it's expensive, is the main downfall, and you could really do it yourself if necessary. Still, not everyone has the time to do it themselves, so the decision is yours.

Off the Shelf?

And so onto our third option, namely buying a package that is available off the shelf.

Software packages exist to cover just about any commonly encountered computing requirement, and even most of those which are extremely uncommon! Certainly, the majors of word processing, stock control, accountancy etc. are all admirably covered by a host of companies. The difficulty begins when you try and settle the one that's right for you.

Presumably, you'll have started with such a package anyway, so an important area to look at will be the interfacing from one package to another. For instance, just about anyone who produces a generalised data base package has realised the importance of interfacing that package to a word processor.

Most of the accountancy packages around have a similar link. The well known Visicalc program will interrelate to just about everything currently on the market. This could save you an awful lot of time when working on generalised information.

As a final example, Microfacts82, reviewed last month, is a totally integrated accountancy package that has links to a stock control, and many other options as well.
So, always be conscious of this facility: future

expansion could be severely hindered if not enough thought is given to this in the early stages of office development.

Other Considerations

There is a great temptation to purchase a package simply because it is there, rather than because you think it will benefit your office procedures. Rather, it is best to go for a modulated approach that fits in with what you already have, that can fit in with the existing software, and that is not going to involve starting off a whole new system the minute it comes into the office.

Whichever step you take is, of course, up to you. Rest assured that, wherever you start, it will not end there!

This is why it is important, as we mentioned last month, to cultivate a good relationship with your dealer. A helpful dealer isworth his weight in gold, and can be an extremely useful man to talk with whenever you're considering doing anything to your system, however trivial it may seem to be to you.

Obviously, dealers are in for the money: quite simply, they have to be. We've all got to make a living somehow! But, if you establish that vital rapport with him, you're far more likely not to be charged the earth for any particular job that required doing. He knows, as well as you do, that given good service you'll be back again.

Conclusion

Buying a system (hardware and software), and especially for the first time, is not an easy decision to make. Expanding that system is probably even more of a daunting task.

It is no use plunging into the dark unassisted. Read all you can beforehand, and having acquired your original system cultivate that dealer relationship: you'll find it very useful.

MIDLANDS

COMMODORE PET

 SERVICE CENTREPhone Anne on 021-772 8181 about our

1. WORKSHOP \& FIELD REPAIRS
2. BUSINESS SOFTWARE
3. STATIONERY \& SUPPLIES

COMSLLTRATS
COMPUTER BUSINESS SYSTEMS
75 Watery Lane, Birmingham B9 4HW. Telephone: 021-772 8181 (7Lines)
KINGSLEY COMPUTERS LTD.
132 Desborough Road
HIGHWYCOMBE, BUCKS HP11 2PU
CBM BUSINESS SYSTEMS
VIC HOME COMPUTERS
COMPUTER ACCESSORIES
AND SUPPLIES
AGENTS FOR CBM
APPROVED PRODUCTS
COMMODORE
SERVICE CENTRE

CBM BUSINESS SYSTEMS
 VIC HOME COMPUTERS
 COMPUTER ACCESSORIES AND SUPPLIES

AGENTS FOR CBM APPROVED PRODUCTS

COMMODORE SERVICE CENTRE

Software Review

DMS Diamond

An estimated 20\% of all Commodore PETs incommercial environments have a DMS package, which probably makes DMS the top selling program in the U.K. Over 3,000 people are using it already, to handle some of the most diverse computer applications ever encountered. Some of the more standard uses include personel records, stock, library, student, policy, property, client, vehicle, medical and laboratory records, job costings and mailshots. Much more interesting to find are parish records stored on a computer, a refuse collection rota schedule, video library lists, and even a parrot breeders stock list!

DMS stands for Data Management System, and any type of data may be stored on DMS. Once the data is on file it may be manipulated in a variety of ways. Perhaps the best way to evaluate whether DMS can help you in your business is to look at the data handling options of the latest release. The version under review here is the DMS Diamond, newly available and with the major difference of offering users the ability to utilise data from two files simultaneously.

Creating Your Record Layout

When you first start with DMS you will have to tell DMS and the PET precisely what information you want it to store. You can allocate up to 40 fields (lines) of information, and tell DMS whether those fields should hold numeric, date, or text information. Instructions are simple enough to follow, and a typical file definition to hold a customer mailing list could be something like!

DMS FILE NAME - CLIENTS File Title
$=$ Customer records
Created 01/APR/82 Last accessed 15/JUN/82
Records used +78

Company	1	C	35	Address 1	2	C	30
Address 2	3	C	30	Address 3	4	C	30
Address 4	5	C	30	Contact	6	C	30
Salutation	7	C	30	Co. Type	8	C	30
Last							
Bought	9	D	6 Last mailed 10	D	6		
Purchases	11	C	250	Comments 12	C	100	
Rep	13	C	10	Action req 14	C	100	

Up to 100 characters may be allocated for each record. This is a longer record length than other programs of this type (Silicon Office, for instance, has a maximum record length of 250 characters
per record). This means that quite a lot of detail can be stored for each item, person or company on file. DMS can create as many different data files as required using just the one program disk, which is a lot easire than some other packages of this type.

Data Entry

Records may be entered via a standard screen display, or via specially formatted screens drawn up by the user. This is a particularly useful option in that the order of the fields may be changed, fields missed out completely, longer operator prompts inserted, calculations automatically performed etc.

This option is called 'MASK' on the main menu, presumably because it superimposes a mask over the standard file definition. As well as being useful for data entry, this option also allows for recall, amendment and printing of records. Records may be added to the file at any time.

Searching The File

Although individual records can be recalled almost instantly, the fundamental use of a computerised filing system is the recall of batches of records that meet various selection parameters. These selection parameters (or search criteria), are sets of instructions defined by the user. For instance, if DMS is being used for personnel records, your search criteria could be all staff who are:-
a) over a certain age
b) not in the pension scheme
c) on a salary over 9000 pounds

Or in a customer mailing situation you may want to find:-
a) all the customers who inquired into product Y
b) haven't previously bought
c) bought X and not Y
d) have not been mailed for the last two months e) live in the London area

As a final example, in an equipment servicing schedule, to find all the equipment where the machines:-
a) are due for servicing on or before a certain date b) are in location X

Up to eight selection parameters are usable at a time, and any number of different sets may be used. Each selection parameter may be connected with 'and' or 'or' to the others, and DEM will search for information equal to, not equal to, or in a range of certain information. There is no need to allocate separate fields for each bit of information as DMS does 'free text searching', so long descriptive fields can be scanned and records found, even if the crucial information is embedded in a long text field.

PEITSEED
 FAST ENOUGHFOR THE HUMAN RACE

hang around for slow software. He wants crisp responses and really fast processing.
For the human race too, slow PET BASIC is not good enough. When we run a program whatever it is, we want fast efficient action, on the bounce.
Petspeed can make any BASIC program run up to 40 times faster, including disk handling. We guarantee that PEISPEED is easier to use and generates faster code than any other PET BASIC compiler for Commodore Systems.
Using PETSPEED is about as simple as it could be. Just type in the name of your program, wait a few minutes and then watch your software run up to 40 times faster.
Petspeed is not simply a compiler, it contains a powerful OPTIMISER. While PETSPEED is compiling, it breaks your program down into tiny fragments and reassembles it removing the unnecessary and simplifying the complex

Petspeed is fully compalible with PET BASIC and can compile any program.
Also available INTEGER BASIC COMPILER - 150 to 200 times the speed of Basic. Integer Basic is for those applications where the speed of the machine is required without the inconvenience of assembly level programming. Ideal for scientific and educational users. Compatible with Petspeed.

PETSPEED (8000 or 4000 series)

Also available for Commodore 64 \& 720 machines
INTEGER BASIC (8000 or 4000 series)
SPECIAL OFFER: Petspeed PLUS Integer Basic for
Prices do not include VAT or postage and packing.
Write or phone today for a free copy of the 'Life in the fast lane' demonstration disk

Software Review

For numeric information, these search criteria are extended to less than, less or equal to, greater than, etc. DMS also has a true date searching option, to find either all dates between two dates, or all dates before or after certain ates, using the whole or just part of the date.

Sets of search criteria can be stored on disk, and then the relevant records used either for printing lists, labels, merging with standard letters, processing in various ways, or merging with other data items.

Sorting

DMS will sort records into order. It sorts either into alphabetic order, numeric order or date order, or combinations ofthese. Sorts are rapid: between 100 and 200 records on a floppy system, and up to 2 or 3 times faster using a hard disk.

Printing Time

Either the whole file or information may be printed, or you can use pre-selected, and/or presorted batches of records. Any print format can be produced. As the tailored reporting option is fairly difficult to learn compared with the rest of the program, it is nice to find a powerful 'standard' reporting facility, which allows for tabular printouts, field ommission, totals etc.

Most of DMS seems to be easy enough to use without a manual, and there is a tendency to be lazy about manual usage. However, reference is vital for the production of tailored reports.

The letter writing option was much easier to get to grips with. Text can be typed directly onto the screen, and information from the records automatically merged as the records are being printed. For anyone wanting a selective mailing program, DMS seems ideal. Either continuous or single sheet stationary can be used, with or without a cut-sheet feeder. Any number of letters, up to three screen fulls in length, can be created by DMS and stored on disk.

Self adhesive labels can also be printed, using the same names and addresses. Although personalised letters are a strong feature of DMS, many commercial users, such as mailing list companies dealing with vast numbers of enquiries, could simply use it to search the files and print the labels.

As well as all the print options, DMS will show the records on screen, count the records which meet the selection parameters, and print or display the totals.

Links to Other Programs

DMS also has, as standard, links to various PET wordprocessing packages such as Wordcraft, Wordpro and Superscript. These were originally
offered to complete the 'select and mail' system, now dealt with by DMS as a stand alone package. Other links include one toVisicalc, useful for statistical analysis of data, and there is an openended link to user written software or other commercial packages using sequential files. One final one currently under review is a link to the muchpraised Pegasus accounting package.

Multi File Referencing

The greatest difference between DMS Diamond and earlier releases is the ability for Diamond users to access two files simultaneously. This means that standard information stores on one file can be drawn into another file on a record by record basis: a useful facility for anyone using fairly static information in other more lively files, such as invoicing etc.

A similar facility is offered to people who have sets of numeric information to be introduced into records for computations or for textual insert. This is useful for exchange rate analysis, discount structures, prices etc., or wherever numeric rates apply.

Mathematical Processing

Either the whole file, or pre-selected groups of records, can be processed in a variety of ways, as DMS has a full commercial calculation program as part of the suite. Fields of numeric information can be totalled, sub-totals produced, fields may be added, substracted, multiplied or divided with each other or with constants. These functions can be used for batch price increases, salary changes, discounts, commissions, VAT totalling, sales figures, etc. Thus useful management information and projections can be produced.

Conclusion

The DMS Diamond, now offering multi-file referencing capabilities, looks to have overcome the major drawback of the 1981 release of DMS. This, plus a new facility for changing the search criteria quickly, makes DMS a powerful and comprehensive package, and useful for a number of different applications.

Compsoft have succeeded in maintaining a simple and straightforward program for the first time computer user, without loss of flexibility.

For further information Compsoft can be reached at Hallams Court, Shamley Green, Near Guildford in Surrey, or by telephone on Guildford (0483) 898545.

"INSTANT ROM"
"Instant Rom" ROM/EPROM EMULATORS contain CMOS RAM with internal battery backup. When the power is switched off, data is retained for up to 10 years.
In the PET, a 4 K INSTANT ROM, can be fitted in the $\$ 9000$ or $\$$ A000 socket. Machine-code (and Basic) programs can be stored, and are available at switch-on.
INSTANT ROM saves time. It can be used for long periods; when the program is finally "bug-free", an EPROM can be programmed.
4K INSTANT ROM (ROM socket replacement)................................... £56.00 2K INSTANT ROM (character generator replacement)........................ 39.00 Adaptor GA1 (essential for PET users)... 60

'G-ROM E'

G-ROM E is a 4 K EPROM which will Auto-run, at switch-on, any Basic or Machine-Code program stored in INSTANT ROM. Basic programs can be Machine-Code program stored in INSTANT ROM. Basic programs can be
stored with a few quick key-strokes. No skill is needed: Programs can now stored with a few quick key-strokes. No skill is needed. Programs can now
be run without a tape or disk unit, and can be changed without cost to the be run without a tape or disk unit,
user. Diagnostic aids are included.
user. Diagnostic aids are included
G-ROM E (specify type of PET)....
Postage ($£ 1.00$) and VAT are extra. Leaflets are available
"INSTANT ROM" and "PETCLOCK"' are COMMODORE APPROVED PRODUCTS.
GREENWICH INSTRUMENTS LIMITED, 22 BARDSLEY LANE, GREENWICH, LONDON SE10 9RF, UK. Tel: 01-853 0868. Telex: 896691 Attn. GIL

Give your PET a home.... Buy it a PETDESK!

A Commodore approved product.

Specially designed to take any Commodore Pet system. Black leathercloth top and Black metal frame. Paper feed tray, top extension shelf. Concealed cables and 4 way 13 amp plug socket. Mounted on castors. Size $1470 \times 560 \times 675 \mathrm{~mm}$. Delivered flat packed.
Price $£ 189.50$ includes VAT and delivery.
This offer available UK only. Cheques with order to:
Tirith Ltd, Pear Tree House,
Woughton on the Green, Milton Keynes MK6 3BE. Telephone: (0908) 679528

Hardware Review

Mini Digital Cassette Recorder

Many users of Vics (or Pets for that matter), who have been using cassette decks as a storage medium, must have yearned for the speed and capacity of disk drives.

Of those, almost as many must have given up in despair at the relatively high price of these units compared to the basic computer. The Vic disk drive, for instance, retails at just under 400 pounds, in other words almost double the price of the Vic itself!

This is clearly a ludicrous situation, but one which regrettably has had no straightforward solution. Tapes are slow, but cheap, and disk drives are fast, but expensive. However, to the rescue of all those who want to store more, and retrieve it faster, Currah Computor Components in Cleveland (tel. 042972996 for further information) have come along with their Currah 220M Digital Recorder, or to you and me a digital recorder that uses mini cassettes. There are versions of the 220M for 3000/4000/8000 series Pets, and for the Vic 20. Here we take a look at the Vic 20 model.

Appearance

Considering that the cassettes used are a mere 55 millimetres by 32 millimetres, the unit looks rather large in appearance when placed next to the Vic, measuring in at $230 \times 220 \times 110$ millimetres. Nonetheless it does fit in ergonomically with the rest of the Vic hardware range.

One major complaint is that there is no ON/OFF switch anywhere on the machine: this action has to be performed from the mains, which is rather annoying if you've spent hours trying to work out which plug is which, and then switched the wrong one off! Still, it does arrive with a plug fitted: more than can be said of many other manufacturers.

Also included in the price of 129.99 pounds (excluding our old friend VAT), is post and packing, a free cassette, the aforementioned plug, and a small, but excellent, manual.

First Steps

Most important of all, make sure that the 220M is switched on before attempting to initiate the television/Vic switching on sequence. If you don't, your Vic will power on all right, but the display will look rather alarming, with the familiar blue letters boasting 'Commodore Basic' etc. be-
ing replaced by multicoloured ones, and one or two disappearing altogether.

Connection to the Vic is via the memory expansion port, the manual procaliming that you make the connection with the Currah logo uppermost on the connector. Well, unless their logo has been changed to the words 'Vic 20' you won't find one! Having made the connection, a single SYS command produces the words CURRAH CTOS on the screen, and the 220 M is ready for action.

Incidentally, if you already have cartridges etc. fitted to the memory expansion, you need to get into expansion unit mode (Commodore, Arfon etc.), whence it will work quite happily.

The first thing the manual (quite rightly) recommends that you do is to check out the unit, making sure that it is installed correctly, and working to your satisfaction. A number of simple Peek and Poke commands suffice for a rough check, but these are mostly designed to ensure that the physical workings of the tape drive are operating properly.

To get a better guide to the actual unit's performance, an introduction to CTOS Basic is then given.

Storage

Having discovered that there will be an error reported if you attempt to rewind a cassette without a cassette present, one gets onto more esoteric subjects such as formatting a directory for a data tape that will use files of length 256 bytes.

'They're Kinda Cute Once
You Get Used to Them.'

It is recommended that data tapes and program tapes are kept separately, as the cassette data file pointers would become corrupted, which would in turn corrupt any programs that might also be present on the tape.

Data files can be kept in multiples of 256 bytes, up to a maximum of 1280 bytes (the equivalent in 220 M terms of 182 numeric variables), and it is this which determines how much information we can store on our mini-cassette. At the largest size we can have up to 40 files stored on one side of the tape, giving us a storage capacity of 50 K . Of course, being nothing more wonderful than an ordinary cassette tape we can use both sides, to end up with a total capacity of 100 K per tape. As mentioned, Currah do provide you with a free tape in the price.

In terms of storing programs, it is best to keep to programs that are a minimum of 200 bytes long (not too difficult to achieve), as the CTOS language cannot handle the extremely slight movement of the tape required to save such a small program.

The format of the directory is rather simple: it just tells you the equivalent of the disk header, and the names of any programs that are on there. Another reason for keeping programs and data on separate tapes! To find out how much room you have left on any one tape is not presented to you automatically, but is easy enough to discover. Nor are you told how long any particular file is: rather, you have to find this out for yourself.

New Language

Currah CTOS adds an additional 21 commands to the existing Vic Basic, all designed to be used in conjunction with the 220M. In other words, you donb't get commands repeated that can be found elsewhere, such has Help, Renumber, and all the other usual additions.

All are prefixed by the '@' symbol, and have been designed to be as easy to remember as possible. Thus a directory load becomes @DL, verify becomes @VE, and so on.

Those of you used to tapes (and to a lesser extent disks) will be pleased by the relative (sorry!) ease with which data can be stored and retrieved. Very simple commands allow storage of variables, both numeric and alpha, and calling these back can (interestingly) be in any order. I.E. if you've saved, say, two alpha and three numeric variables in that order, you do not have to read back the two alpha first if it's the numeric you're after: you can just go straight to the numeric. A type of random sequential filing system I suppose!

A number of useful routines exist within these commands (append a basic program to one

already in memory for instance), and in describing them the manual in turn gives some further extremely useful information for use when using the 220M: how string variables are stored, Pokeing in data, saving machine code, and so on;-

Commands such as read block, write block etc., mean that sequential file handline is now (inexpensively) within our grasp. Sample program listings included cover this, and we can find out about such things as creating files and inputting data, accessing files and retrieving that data, storing names and telephone numbers (now there's an unusual example!), saving and reloading screens of text, all of which are reasonably straightforward.

Various built-in error trapping routines and commands complete a versatile package.

Summary

The Currah 220M Digital Recorder is an efficient, low cost entry into the world of faster storage media. At a price of under 130 pounds it will be welcomed by all those who-would previously have baulked at purchasing a disk drive, but would love to make the next step up from cassettes.

If we've not been overly technical here it's because we believe that for this sort of unit you want to know if it's value for money (which it is), and if it competently performs the tasks expected of it (which it does), rather than knowing how many millimetres of tape are used per K of storage. If you want to find that out you can always ring the number mentioned earlier: Currah are a very helpful company, and at this point I'd like to thank them for the loan of the machine, and the help and advice offered along the way.

In the end of course we're down to the old question of you pay your money and you take your choice. If you can afford a disk drive I would not recommend you buying this unit. On the other hand, if you (or your bank manager) can't make that step just yet, but cassette decks are driving you around the bend, this is certainly worth looking at.

To conclude in a single sentence, this is very good value for money.

Book Review

At a rough guess there are some fifty million books on the market at the moment, all purporting to teach you how to use a Pet. Some are better than others: here we take a look at one that isn't, namely Learning to Use The PET Computer, by Garry Marshall, and published by Gower Press at 6.45 pounds.

Learning to use the PET Computer

One mustn't blame Garry Marshall totally for this book. Other contributors included Michael Fluskey, of Gower itself, and Peter Wayth, headmaster of a school in North London.

In his foreword, Mr. Marshall states that really basic, introductory books for the Pet are in short supply, and he is quite right. There is certainly a demand for a good, down to earth, book that takes you all the way from switching the machine on, to programming the beast in machine code.

Books such as Ray West's Programming the Pet/CBM, and the Pet/CBM Personal Computer Guide by Adam Osborne and Carroll Donahue, are probably the best that there are available in this field at present, but experiments with total newcomers to Pets (and perhaps more importantly computers and computing in general) convince me that both those publications tend to leave people far behind.

Don't get me wrong, they are both excellent books, but there is nothing for the complete tyro.

So Mr. Marshall is quite right. However, having stated his aims it is a shame that Learning to use the Pet Computer has ended up the way it has. It is a slim volume, coming in at just 87 pages, which immediately compares unfavourably with the two mentioned earlier, both of which hover around the 500 page mark.

Given 87 pages, one then wonders why so many of them are devoted to an introduction to the history of the Pet, and a very airy-fairy overview of Pets and their uses. Fascinating stuff no doubt, but it certainly didn't tell me how to use a Pet computer.

Indices, forewards, etc. leave us with a bare 58 pages: certainly not enough. The appendices leave out far more than they put in, and are the briefest of brief overviews of the software and hardware scene. Far better to have left this out, than to have bothered wasting space that could be used to much greater advantage.

Content

When you actually get into the meat of the book, it certainly does a lot of jumping about. Commands are introduced at random, with little or no explanation, and many of the program listings perform no useful purpose.

In its defence, the book has got a number of-
things right. For instance, the program listings are clear in the extreme, and they've adopted the standard put forward by Computing Today (is this why he states in the back of the book that 'I consider this the best of the popular computing magazines ?) for explaining the various graphic symbols that appear when cursoring left, reversing field etc.

Thus, what listings there are are pretty easy to follow. I just wish. they did something!

Again in defence the book does give a glance in the direction of most of the things that can be done on a Pet. Graphics, business programming, a quite good section on flow-charting before diving off to produce some code, and indeed a (very!) brief look at some of the special Pet features: user port, memory maps, internal timings etc., but again these are so brief as to be not worth bothering with.

Summary

It is a clearly put together book, well illustrated, well laid out and designed, however ...! To quote Groucho Marx, 'It was one of those books that, once you'd put it down, you just couldn't pick it up again'.

I don't like being this damning of a book, particularly one whose aims are as good as this ones are. Unfortunately, it really doesn't work at all. Too little time is spent explaining just how to 'Learn How to Use a Pet Computer': you certainly wouldn't learn how to program from reading this book.

It is supposedly part of a series: the idea is there, it is a good one, and let us hope that the rest of this series improves on this beginning. One final point: don't charge 6.45 pounds for an 87 page book. Just about every computer magazine on the market is bigger than that, so I don't really think it's justified.

PET/CBM Personal Computer Guide

Since the explosion of the microcomputer, hundreds of books have been brought out for the top computers: Apple, PET/BCM and Tandy. Obviously they differ in quality and quantity, some are brilliant where as some should really never have been written. This one, PET/CBM Personal Computer Guide, is in the former category.

This is the second edition and is an update on the original, covering the newer Commodore Computers; the 4000 and 8000 series PETs. This edition, written by Adam Osborne and Carroll S Donahue (the authors of the original book), gives an indepth coverage of cassette drives, floppy disk drives (both the 2040 and 8050 models), two printers, the 2022 and 2023
models, and a much expnaded tutorial on the Basic language.

The book gives the beginner 500 pages of highly informative information on the computers themselves plus peripherals as well as recent (for 1980) operating software: Basic 4.0 and the Disk Operating System DOS 2.1 and DOS 2.5. Everything the serious CBM computer user wants to know can be found in this book, described in minute detail from a clear and consise introdution on the original PET through to extensive information on editing functions on the 8000 series systems.

Chapters One to Four : The Background chapters
The first three chapters are concerned mainly with the basics of the CBM range (and covering everything in the first book), ie., 2001/8K, 8N, 16 N and $2001 \mathrm{~N} / 32 \mathrm{~N}$, prior to introducing you to the new 4000 and 8000 series cassette units and tapes, disk drives and floppy disks and the printers. The second chapter introduces you to immediate mode: using the PET as a calculator, and then into program mode, etc. Chapter three is all about screen editing: some of the information here had been covered in the first book, but it is essential to repeat it if the user is going to fully understand the update from Basic 2.0 to Basic 4.0 and the screen editing functions involving Basic 4.0 with the 12 inch monitor Pets.

The first three chapters having got you well acquainted with the PET and its basic functions, chapter four begins to teach you how to program on the PET: something it does concisely and very extensively, leaving nothing out. Fifty pages are dedicated to this task, with sub-chapters on Elements of a Programming Language, Basic Statements; Subroutine statements and PEEK and POKE statements being just a few of these, and a Functions sub-chapter covering Arithmetic, String, System and User Defined functions.

Making the Most of CBM Features

The heading explains itself, and here nearly one hundred pages have been given over to indepth instruction on Hardware Features, String Concatenation, Input and Output programming, mathematical programming, graphics and Random Numbers. Again they have left nothing at all out.

A chapter on peripheral devices describing their various uses and how to get the most out of them is given approximately one hundred pages. Yet again this is comprehensively presented. Do this team ever make mistakes?!

The final two chapters cover System information and CBM Basic. Such topics as Memory Maps and Basic Statement Storage are given
coverage, as well as Assembly Language Programming. Basic statements, Functions and 8000 Editing Functions are given sub-chapters of their own with nearly fifty pages of information and instruction for the user.

Finally we come to the Appendices.
These are incredibly detailed with many tables of figures, clearly printed but perhaps a bit small and slightly apt to cause confusion if you should accidently drop down a line by mistake: book publishers should provide magnifying glasses!

Summary

Here is a book so well thought out that you should not need any other to teach you about the PET. It costs a mere $£ 10.95$, and for a book that covers all it does, in such depth, $£ 10.95$ is very good value for money. The contents are well set out and clearly defined; the print is clear and so are the diagrams; the listings are not too long and are a direct copy from the machine, thus giving less chance of error.

The authors have put this book together extremely carefully, and have taken great care not to skip about from one subject to another. As far as I am concerned, unless you're the kind of person who's going to spend the rest of their lives locked up in a garret, programming in machine code and designing ever more complicated boards and circuits, this is an extremely useful guide to becoming a competent PET/CBM user.

It is printed by Osborne/McGraw-Hill in Berkelye, California, but is readily available from all top computer book shops.

An old ROM version of the Commodore DOS Support Program

In my last article I described a machine code routine to enable loading and saving disk programs when using an 8050 Disk Drive in conjunction with an Old ROM PET. Although the system works well in the described form, it requires the additional OPEN and SYS commands which are not necessary when using the later ROM PETs. When Commodore introduced the Disk Drives they also produced a DOS Support Program which simplified the Load and Save commands, allowed a simple method of passing commands direct to the Disk and displaying the contents of the Disk directories. In its published form, the DOS Support Program would only run on later ROM PETs as it accessed various routines in the Basic interpreter. As I wished to take advantage of the above facilities when using an 8050 Disk Drive on my Old ROM PET, I converted the published program and the following are details of the final result. It must be pointed out that the converted routine will only run on Old ROMPETs and the Disk Load/Save routine described in the previous article, must already be loaded into Cassette Buffer 2.

The DOS Support program

The Commodore DOS Support Program consists of four component parts:
(i) An instructional Basic component to display program operating details.
(ii) The actual DOS Support Program in machine code.
(iii) A relocation routine to place the DOS Support Program at the top of available store and adjust the top of the store pointer.
(iv) A universal Wedge routine to couple into the normal Basic Interpreter routines.

In its currently issued form, the DOS Support Program is issued as a Basic program with item (i): above written in Basic and followed by items (ii), (iii) and (iv) in machine code but contained within the area of the whole Basic program, i.e. the End of Program/Start of variable table pointers are set to after item (iv) above. As will be appreciated, the number of changes necessary to run on the Old ROM PET, were considerable and in order to allow an easy presentation in this article, the program is shown as a complete Basic program. The machine code is contained in Data statements for poking direct into their final locations. Figure 1 shows the complete Basic program and the user is advised, after input, to save the program on

Disk (using the Load/Save routine in my previous article) or tape before running, as one mistake in the Data statements will cause the PET to crash.

Details of the Basic DOS Program

Referring to Figure 2, lines 5 to 270 contain the instructional lines displayed once the DOS Support Program has been loaded into the top of available store. Lines 510 to 580 contain the Data statements for relocation and Wedge routines, whilest lines 1010 to 1330 are the actual DOS Support Program Data statements. It will be noted that the relocation and Wedge routines are loaded into locations 634 to 752 which are within the Cassette 1 Buffer. This is no problem as, after setting up the DOS Support Program, this code is no longer needed. Figure 2 is a disassembled print of the relocation and Wedge routines when loaded into Cassette 2 Buffer. Figure 3 is a disassembled print of the actual DOS Support Program shown loaded into the top of an 8K RAM although the program is relocatable to the top of any available RAM i.e. there could be another routine above the DOS Support Program. For those who are interested in more details of the code employed in the above routines, reference should be made to Commodore PET Users Club Newsletter, Volume 2, Issue No. 1 which contains full details of the standard DOS Support Program. The prime changes between the Standard and Old ROM versions are in Basic ROM addresses.

Using the Old ROM Version of the DOS Support Program

All the facilities offered in the standard PET DOS Support Version 4.0 are available in this Old ROM version with the addition of a Save program to disk command. In offering the Save program to disk facility the command character @ is used and therefore it is no longer an alternative to which was introduced for business keyboard PETs.

Example. (to save a program)

type: @PROG where PROG is the name of the program to be saved.

The operating instructions for the Old ROM DOS Support Program are displayed on the screen when it is run and are also contained in the Commodore Disk Manual (with the exception of the Save facility described above). The constraints on
using INPUT and GET commands in conjunction with a DOS Support Program (referred to in some Commodore publications) do not apply to the Old ROM version. The standard Commodore DOS Support Program includes the ability to print the Disk Directory direct to a Commodore printer. This code has been converted and included in the Old ROM Version but never tested as I do not have access to a Commodore printer. I would like to hear from any user of this facility in this Old ROM Verison just to set my mind at rest that it works.

Using other than 8050 Commodore Disk Units

Although the Old ROM DOS Support Program and the Load/Save routine in my previous article, have only been tested on an 8 K Old ROM PET using the 8050 Disk drive, I see no reason why the routines should not work on other Commodore Disk units provided they use the standard Commodore IEEE interface as do the 2040, 3040, 4040 and the latest single drive unit 2031. As thePET has no knowledge of the disk unit type attached and only produces character strings which are sent over the IEEE interface, I see no reason why there should be any compatability problems. I would like to hear from any reader who has the facilities to try alternative units.

752 FFQ 60 RTS

20 FFINTTAEI 7 G. GET OLI FOM IME SHFFCRT日
© FPINTTAE (14) पNOW LOAIE I
40 FFINTTAE (9) "COMMENIS FOLLOHING"
EG FRINTTAE (10)"A IN COLLMN 1 WILL"
EA FRINTTAE GI "EE FRGSEI TO THE TIEK,
on FFINTTAB (7) "CMI IESCFIFTIOH"
140 FPINTTAE (7)"

160 FRINTTAE (7)" $=1$ IIIFECTGFY IFIUE IO"
180 FFINTTAE (7)" FLL TITEK COMMAMIS MAY DE
190 FPINTTAE
EOD FPINTTAE (7) "ENTEFEI RG IF THEY MEFE IN

249 FPINTTAE (T)" F FUN A FROGPFM
250 FRINT" SFECIFL COHMFNIS STRFT IN CCL. 1 FNI
260 FFINT"MFE FOLLONED IY F IISS FILENFHE.
220 HEW
540 FORI $=634$ TOTSE: FERDA: FOKE I, F: NE
51 IATA $165,134,24,233,16,13,134,165,125,283,2,133,185,169,7,141$ Se0 IATA $248,2,122,228,165,124,123,174,165,155,132,175,169,0,182$, ह27 540 IATA $3,173,247,3,201,16$, हดe, $7,173,248,3,201,9,240,9,2$ 20

 Fh IATA $169,76,141,246,3,96,169,76,133,194,164,134,166,135$, 20n. 2as. 1 550 IATA $232,132,195,134,196,96$
EQ4 SYS $(634): \mathrm{F}=\mathrm{FFEK}(134): \mathrm{C}=\mathrm{PEEK}(135): \eta=(0 * 256)+E$

1010 TATH 234, 230, 201, 200, 2, 230, 202, 134, 197, 186, 189, 1, 1, 291, 157, 208, 9
1020 IATA $189,2,1,291,195,292,2,240,5,166,197,76,200,0,165,202$
1000 IATA $208,41,165,201,201,10,208,35,160,0,177,201,133,197,200,201$
1040 IHTA $62,240,14,201,64,240,29,201,47,240,25,201,94,249,21,208$ 1050 IATA $10,177,201,240,9,201,36,240,7,208,7,76,200,0,240,114$

1060
100
IATA
IATA
246

1104 IIATA $6,32,255,243,32,34,244,184,20,20,169,97,135,240,32,45$ 1100 IATA $6,32,25,243,32,34,244,184,80,20,169,97,133,246,32,45$ 1104 IATA $192,54,240,6,32,58,3,76,139,155,32,62,3,104,104,76$
11301 IATA $181,198,240,4,240,107,298,69,122,201,169,8,133,241,32,182$ 1140 IARTA $240,169,111,133,240,22,44,241,165,197,201,62,240,6,32,135$ 1150 IRTA $241,184,60,36,22,135,241,201,13,240,6,32,234,227,184,80$ 116 IATA $243,22,234,227,165,197,201,62,202,6,32,122,241,76,290,0$ 1170 IATA $169,5,22,265,242,76,139,195,201,48,268,219,96,169,8,133$ 1189 DATA $241,169,111,133,240,32,166,240,165,240,32,44,241,230,201,160$ 1190 IATA $0,177,201,249,6,32,103,241,184,80,242,32,126,241,76,204$ 1200 IATA $9,200,177,201,268,251,136,132,238,169,11,133,249,169,[1,139$
1210
DATA
$256,169,8,133,241,165,239,133,197,173,106,2,141,112,2,169$ 121ब IATA $250,169,8,133,241,165,239,133,197,173,106,2,141,112,2,169$ 12,3 IATA $0,141,12,2,16,14,132,239,169,63,32,130,241,32,45,245,16$ 1240 IATA $133,198,172,12,2,26 E, 41,32,267,255,133,199,172,12,2,208$ 125 IATA $31,164,252,12,2,26,2,4,32,244,255,174,112,2,224,3,240,5$ 1260 TATA $166,197,32,220,247,166,198,165,199,32,159,220,169,32,202,4$ 1279 DATA $208,97,208,194,22,210,255,32,204,255,162,14,32,134,247,32$ 1289 IATA 207, 255, 72, 32, 204, 255, 104, 174, 12, 2, 298, 71, 201, 6, 240, 29 129 IHTA $174,112,2,224,2,240,5,166,197,32,2 e 0,247,32,210,255,32$ 1300 THTA $204,255,22,42,243,240,44,32,228,255,240,206,201,32,260,202$ 1310 INTH $32,2 \Sigma 8,255,240,251,208,195,169,12,174,112,2,224,3,245,5$

[^2]
Guest Expert

971	1 F 87	5		LIIA	507
73	1589	a 9 F	IIC	ISF	LiC9F
8076	1FEC	A9 20		LIA	\＃䒠を9
5078	1FEE	［164 04		ENTE	\＄1F94
80.60	1F90	［16） 61		ENE	\＄1FF3
8082	1F92	Lu 6		ENE	\＄1F56
8084	1F94	20 IE	FF	ISP	¢FFIE
8087	$1 F 97$	20 CL	FF	18 R	FFFCC
8090	1F9A	HE GE		LIX	\＃ 5 に
8092	1F9C	20 6E	F？	18F	FF7eE
8095	1F9F	20 CF	FF	18F	＋FFCF
8098	1FAE	48		FHA	
80199	1FFS	2000	FF	15 F	FFFCC
8102	1FAS	68		FLH	
8163	1FA？	AE 9 C	98	LIX	¢0こuc
8106	1FAF	［164 47		ENHE	\＄1FF3
8168	1FAC：	C9601		CMF	\＃ 509
8110	1FAE	FQ 27		EEO	1FI？
8112	1FEO	AE 70	02	LIS．	96279
8115	1FE3	Ea 03		CPX	\＃506
8117	1FES	FQ 05		EEC	\＄1FEC
8119	1 FE ？	H6 05		L0\％	\＄05
81 12	1FE9	20 IIC	F？	15 F	\＄F7LC
8124	1FEC	20 I2	FF	15F	
8127	1FEF	20 CO	FF	15 F	FFFCC
8130	1FCE	20 2R	F3	1 BF	FF32A
8133	$1 F C 5$	FGec		EE0	\％1FFS
8135	1 FCT	20 E4	FF	JSP	FFFE4
8135	1 FCA	FGCE		EEO	¢1F9日
8149	1 FCO	C920		C．MP	\＃
8142	1FCE	D0 CA		ENHE	\＄1F9
8144	1FIM	20 E4	FF	1 SF	FFFE4
8147	1 FIS	Fg FE		EEQ	¢1FDM
8149	1F15	H90 C		ENE	\＄1F9F
8151	1FIT	． $\mathrm{H9}$ E15		LIAF	\＃$\square_{\text {¢ }}$
8158	1FI9	FE 70	92	LD\％	
8156	1FIC	E0 63		CF\％	\＃503
8158	1FIE	FO． 05		EEC	\＄1FES
8160	1FEQ	AE 05		LIN：	065
8162	1FE2	20 IC	F7	ISF	¢F7EC
8165	1FES	20 IR	FF	JSF	FFFDE
8168	1FES	2000	FF	JSF	
8171	1FEE	20］TE	F1	JRR	钓17E
8174	1FEE	F60 6		LIY	\＃きに
8176	1FF0	The FO		ENE	\＄1F92
8178	1 FFE	68		PLA	
8179	1FF3	20 CC	FF	J5F	FFFCC
8182	1FF6	AG ME		LIH	\＃今㬉
8184	$1 F F 8$	20 CD	Fe	ISF	\％F2CD
8187	1 FFB	68		PLA	
8188	$1 F F C$	68		FLA	
8189	1FFD	4 C EB	C3	． M F	\％C38

How to buy a word processing program．．．

First，go to your CBM／PET dealer and see at least two wordprocessing programs． Second，make sure that one of those you see is a WORDFORM from LANDSOFT．

We are serious when we say you should see more than one．Everyones wordprocessing requirements are different．You will want to ensure that the package you buy will do all you require． But also you will not want to pay for functions you don＇t need：

There are two LANDSOFT word－ processors－WORDFORM and WORDFORM II．They are both exceptional programs．You may well find that WORD－ FORM will do everything you need，but should you ever want to update to WDRDFORM II， we will always supply for the
difference in price on return of the other program．

So don＇t be talked into a very expensive program until you have satisfied yourself that one of the WORDFORMs will not do all you want．Buying another program and then becoming aware of the WORDFORM excellence would be most frustrating．

WORDFORM versions for 3032， 4032 and $8032 £ 75+$ VAT．

WORDFORM II for 8032 only £150 ＋VAT．

LandSoft

28 Sheen Lane，
London SW14 8LW．
Telephone：01－399 2476／7
SUPERIOR PROGRAMS FOR THE CBMIPET MICROCOMPUTER

A NOTICE TO ALL PET LOVERS

INTRODUCE YOUR PETS TO OURS

AND SOLVE YOUR INTERFACE PROBLEMS

Only £195.00

Only $£ 195.00$

ANALOGUE/DIGITALI/O
THE PUPI

* 4 ANALOGUE INPUTS (12BIT)
* 2 ANALOGUE OUTPUTS (12 BIT)
* 4 RELAY OUTPUTS
* 4 LOGIC INPUTS

When connected to the "PET" User Port the PUPI gives you all the above features together with an operating system in EPROM, which interacts with Basic's variables, giving extremely simple operation. Inputs and outputs are $\pm 10 \mathrm{~V}$ and relays are rated at 10VA. Logic inputs can be used for microswitch sensing etc.

HIGH SPEED A/D CONVERTER

THE PUSSI

* 4 ANALOGUE INPUTS (12 BIT)
* 50 MICROSECOND CONVERSION
* STOP AND START TRIGGERS
* DATA ACQUISITION SOFTWARE

Using an operating system in EPROM, the PUSSI provides a high speed A-D Converter with 4 multiplexed inputs, which is under control of either software, or remote start/stop triggers. A-D Conversion can be carried out from Basic, or Machine Code, with up to 1500 readings entered directly into memory at a software determined rate.

CIL MICROSYSTEMS LTD. DECOY RD.,
 WORTHING, SUSSEX BN14 8ND. TELEX: 87515 WISCO G ATTMIC TEL: (0903) 210474

Write, phone or to

obtain further information circle number

Applications

A Year in the life of a PET

A piercing scream echoed along the darkened corridor, dying away as quickly and mysteriously as it arose. "Oh dear", sighed the typist in a resigned manner. "That must be the tenth time today his new program has crashed".

Actually it's not been quite as bad as that but I have been pretty near to screaming on many occasions, while on just the odd occasion I even started wondering what life must be like in a monastery far away from printers that won't print, disk drives that won't drive and computers that won't!

I work in a small local authority planning department in what is known at the Local Plans section. Basically my job, in a team of three others with a section head, is to prepare the forward planning policy statements for the district, and to keep track of a fair amount of statistical information much of this is used in the preparation of "Local Plans' ${ }^{\prime \prime}$.

About a year ago we managed to convince our boss and the Council's treasurer of the merit of some form of computer system to handle this data. We ended up with a 3032 computer, 3022 printer and 3040 disk drive.

There was nobody in our department with any programming expertise - we were well and truly on our own.

Programming the Computer

I elected to familiarise myself with programming the computer, and set about the seemingly awesome task. Though it may seem a paradox I found that by typing in games listed in magazines I managed to learn a great deal. It was, however, a process of trial and error. I began to write what now seem incredibly simple little programs: such things as a conversion program for metric/imperial or simple modelling projects where one could input and alter certain parameters to ascertain the net effect in, say, a population projection. Other programs were perhaps outwardly less useful but were of great interest to me, enabling me to become more proficient with screen graphics, presentation etc., or helped me to learn more about the PET and its built-in functions, and increased my knowledge of Basic programming such as string handling, loops etc.

The machine had now been in the office a couple of months and it was becoming increasingly obvious that I had to start producing the 'goods',
if only to justify the expenditure! I realised that without a proper knowledge of disk file handling routines I was completely stuck. I was to remain 'stuck' for quite some time - certainly in respect of random access files.

First Venture

My first venture into disk file handling was with sequential data files, and my first real success came when I managed to convert the Mouse/Maze program (Practical Computing, February 1980) for writing the maze 'data' to disk instead of to tape.

I then started to write my first truly work orientated programs. These were designed to handle statistical data to be stored on disk rather than in numerous files littering the office. They were relatively simple programs with very limited error correction capabilities. Data was entered into a two dimensional array consisting of some 400 plus entries. After only a couple of attempts at retyping in all that data following mistakes I rewrote the program to put the data into separate one dimensional arrays, identified by the year, which were then individually written to disk. These sequential files of population statistics, dwelling stock, housing completion rates etc. were gradually built up.

The 'Read' program was intended to access those sequential files and to perform simple statistical calculations, Unfortunately I have to do all the work on the PET in my spare time, which is little enough during the day - in fact I used to take the machine home only to work into the small hours - with the result that this first series of programs was never completed. At least the disk accessing routines worked!

Breakthrough

The real breakthrough came when I bought myself Nick Hampshire's books 'The PET Revealed' and 'The PET Library of Subroutines'. These helped in three main ways:-
a) They gave me an insight into some of the machine's workings and organisation, which though not vital information certainly helped me to understand better what I was doing.
b) They provided very useful routines which I could use in my own programs directly (e.g. the Random Access routines), or indirectly using the machine code routines located at the top of memory to enhance displays etc.
c) They opened up the world of random access to me!

I then started work on a series of programs to store and manipulate a large volume of data relating to the availability of land for residential development. This information, which is kept on ordnance Survey sheets and various schedules, is required for a number of reasons. Perhaps the most demanding and time consuming of these is to complete twice yearly a government return (inown as PS3), which required a search through all of the recorded information to produce sum totals under various categories and headings.

A more interesting use ofthese figures is used internally in the department to plot how the housing needs in different parts of the district are being met, and to see what the effects are likely to be on the population totals and the level of services in various settlements due to changes in their commitments to residential development.

The need was for a data handling system that would manage a fairly large amount of numerical and verbal data, be able to select and analyse different sections of that data, do user controlled searches on specified parameters, print out various schedules, and produce models/projections given differing inputs or situations.

The Start!

I very naively started to write one program to do the lot, having options in the form of a menu to input new data, update existing data, read data off the disk given the search parameters, manipulate data, print schedules, compile a PS3 return, and so on. To make matters worse I has also tried to input all of the selected records into memory from disk for a specific task. I very rapidly ran out of memory space! I had mistakenly assumed that the DIM statement actually allocated the space for the arrays themselves, and when checking for FRE memory after execution of the DIM assumed there to be plenty of room. I have since then twigged what actually does occur!

Major modifications were required. I suspect that trained programmers would have thought out all the requirements of the program quite thoroughly and would have drawn up complex flow charts. Whilst I see the merits in that, and make serious attempts to do just that, the work at the keyboard and the ideas which came while working and running the program soon overtook any flow-charting I had managed. Needless to say I spent many hours, often into the early hours, retyping vase sections of program, often for the most ludicrous of reasons.

The eventual outcome was a suite of programs, sad to say still incomplete for lack of time, which
are specific to the major functions listed above. These programs are all linked and will call other programs in the suite on a single key stroke. I have toyed with the idea of using a single set of subroutines and loading only the variable parts of the program, calculating the link address and so on. However, I have chosen to write each program complete with the common subroutines so that I need only alter memory locations $42 / 43$ (decimal). In some future work I think I would like to try the first option to enable variables and arrays to be passed on, but that must wait!

All the programs in the suite were designed with the lay user in mind. They use similar formats and screen presentations. From the programmers' point of view I have tried to be consistent too. They are all structured around the same subroutines, and by and large use the same variable/array names. Line numbers are grouped so that, for instance, all disk read/write routines occur in lines 50000 to 59999 while common routines handling certain display, error trapping and other functions are all from 60000 onwards.

I have even gone to the extent in one case of using the lines 40000 to 49999 for all hard copy output routines because the printer happens to be device number 4. The programs also use a number of machine code routines to draw a border around the 'menu' to flash the prompt message, to print out the screen display to the printer etc. I am now just at the stage of examining "PET Graphics" to see whether I can use any of those routines.!

Work So Far

The main programs in the suite are Menu, Input, Read, Update, PS3 and a couple of system backup programs. The input and update programs construct a key file which contains a string of data for each record on the random access disk. The main purpose of this is to keep track of the relative record number. The rest of each string contains extracts of the main data to enable searches to be carried out on a form of 'sieve"' approach.

This allows the user to select a number of parameters which will be looked for in the programs' search routines. The result is a list of records whose data accords with the search parameters. The read program then uses this list to find the relative record number, calculates the track and sector number of that record, and reads it into memory. Depending on the function being used a further check can be made on parts of the data not in the key file to ensure that this record should in fact be used by the program for the designated purpose e.g. printing schedules, giv-

Applications

ing totals etc.
As you can see the key file is a very important part of the operation of the suite, and so one of the backup programs is designed to read all of the random records in order (from track 1 sector 0) and reconstruct the key file array relevant to each record. Another such program constructs a simple array of all record numbers where the data has become obsolete. This enables re-use of blocks on the disk under program control. I have not used the block-allocate and block-free commands as I write all the random data to the disk using a relative record number - in other words DOS/BAM haven't the foggiest what is on the disk but the program does I hope!

Refinements

programs are gradually being refined. For instance, the input program now searches for the existence of any vacant blocks via the 'Vacbloc' arráy set up by the backup program. This array holds the record number of obsolete data blocks. Once this array of record numbers has been 'used up' the numbering of further new records reverts to sequential numbering starting from the total number of records on disk. The program simply
reads this variable from a counter incremented while the key file arrays are being read in using a simple loop which checks for the end of file status flag.

I hope shortly to introduce a system whereby up to a screenful of user instructions may be called from the disk directly onto the screen and then return to the point in the program the user had reached, without disturbing the memory, variables etc. I feel it ought to be possible and am busy scanning the journals and mags!

Other developments rather than refinements will enable a wide range of statistical analyses to be carried out on the information stored by these programs. This would include changes in the dwelling stock, growth rates of settlements, proportions of local government to private housing .. the list is almost endless (so my section head would have me believe!).

Summary

Perhaps I have been able to give some idea of a layman's progress with the PET, and made even a little encouragement for those who, like me, are beginners and often get that "bogged down" feeling - just persevere!

UNIVERSITY OF MANCHESTER DEPARTMENT OF EXTRA-MURAL STUDIES
 RESIDENTIAL MICROCOMPUTER COURSES AT THE UNIVERSITY CONFERENCE CENTRE holly royde

Learn Basic, Practical BASIC Fee: £189
Monday-Friday, 27 September-1 October, 1982
BASIC on the ZX81 Fee: $£ 59$
Friday-Sunday, 22-24 October, 1982
Start Programming with CBM Disk DrivesFee: £59
Friday-Sunday, 29-31 October, 1982
Machine Code on the ZX81 Fee: $£ 59$
Friday-Sunday, 10-12 December, 1982
BASIC Programming Fee: $£ 82.50$
Friday-Sunday, 14-16 January, 1983
Advanced CBM Disks Fee: £59
Friday-Sunday, 4-6 March, 1983
The fees quoted include tuition and full board accommodation in comfortable single study bedrooms. The conference centre is situated in its own gardens, approximately 4 miles south of Manchester city centre. For a fully detailed leaflet please contact Lynn Palethorpe, Department of Extra-Mural Studies, The University, Manchester, M13 9PL or telephone 061-273 3333 ext. 3076.

Interfacing

Upgrade Roms for Old 8k Pets

For those of you with the old 8 k PET and 24 pin ROMs who envy the three empty sockets in the newer machines, good news.

The 'upgrade' ROMs for these machines only occupy four of the seven sockets and a simple cut and hack operation on your main board will enable you to use two of the freed sockets. All three sockets may be used by the simple addition of one more IC.

Furthermore, if you want to only use one socket for the toolkit, or the Word Pro 3, you don't even have to pull the board from the case.

A word of advice, however. If you are not reasonably expert in handling this type of operation (soldering directly to the IC pins), or live and work in a high 'static electricity' environment, don't try it.

This modification required two sequences of events:

1. Change the bank select lines to the emptied ROM sockets, and
2. Change the bank access to the external PET data bus.

Both these operations may be done with the main board still in the case if only one socket is to be enabled. If you want two sockets operational, you have to pull the board to get at a trace on the underside.

Change Bank Select Lines

The 'bank' addresses of the three freed sockets has to be changed from C, D, and F , (in hexadecimal notation; 12,13 , and 15 , in decimal), to $9, A$, and B, or whatever. The three bank select lines of interest originate at IC G2, pin 14 (select C or, 12), pin 15 (select D, or 13), and pin 16 (select F, or 15). They run a short distance toward the front of the board on the underside of the card, then surface near socket H4. They run across upper surface of the board toward the power supply for several inches then return to the underside of the board to connect to pin 20 of the appropriate socket. These three traces are to be cut just above H 5 . Be very sure that the traces are completely cut and that you remove all the metal scrap that is generated.

Now carefully solder three wires to IC G2 pin 10 (select 9), pin 11 (select A, or 10), and pin 13 (select B, or 11). Run these wires to the solder dots on the ROM ends of the traces just cut. Simple. But if you try to get the machine to recognize

ROMs plugged into these sockets, it will insist that there is nothing there!

Data Bus Access

The problem lies in the design of the data bus. The PET presumes that all addresses between the screen memory and the four ROMs of the operating system are external to the machine. When accessing these addresses, it enables the external data bus drivers. These drivers take data from the outside world and place it on the internal bus. In the meantime the ROM you have just installed is trying to do the same thing. That doesn't work well at all. The solution here is quite simple; don't allow the external data bus drivers to be activated when your ROM Socket is being addressed.

The IC which controls this action is G4, a 74LS21. Two of the input lines to this chip are not used in the original model and may be 'stolen' to enable two of the freed sockets. The trace that ties the two pins of interest (pins 4 and 5) together is on the underside of the board. If only one socket is to be used (say for WordPro) you do not have to separate them and the board can be left in place during the alteration.

These pins are held at logic ' 1 ' ('high') by a resistor at IC G3. The trace of interest is on the upper surface of the board, and goes from the resistor to IC G3, pin 9, and IC G4, pin 5. Cut the trace near G4, remove the scrap metal, and run a wire from G4 pin 5 to the appropriate bank select wire installed in part 1, above. To use a second socket, you have to remove the main board, cut the trace connecting IC G4 pins 4 and 5 together, and run a second wire from pin 4 to another bank select line.

The third socket may be used, but you have to instal another IC. Drop me a line and I'll send you a schematic. My address is Box 481, Rossland B.C., VOG 1 YO.

If you are like me ad have the Toolkit hung on the side of the PET at the expansion port, you can even have two ROMs with the same address, selectable with an external switch. The bank select signal goes to the switch and is routed to the appropriate ROM. The unselected ROM must have the bank select line pulled high with a 1 k resistor to the +5 volt power supply line. The circuit is left as an exercise, but don't forget to switch the external data bus drivers at the same time.

Sound ' n ' Vision

Real Sound in Real Time

If you ever wanted to synthesize instruments in real time on your PET/CBM, then this article will tell you of one marvelous, unadvertised, unpromoted program. It is Instrument Synthesis Software Package (K-1001-6C) from Micro Technology Unlimited. The cost of the program is $\$ 50$. The required digital-to-analog converter (DAC) is $\$ 60$.

Hal Chamberlin who is considered the father of real-time microcomputer music, has written several eloquent papers on the principles behind the system (see references). He invented an ingenious software method of producing multivoice sound on the PET and has recently elaborated that invention to include instrument building.

Hence, with minimal cost, a PET user can have an in-house synthesizer comparable in quality to some expensive hardware systhesisers. I recently attended a concert in Philadelphia at which Frank Covitz and Cliff Ashcraft, known in the trade as the Diatonic Duo, demonstrated the MTU's system with help of PET's distinguished 6502 ancestors: the Baroque Aim and the Home-brew Kim . The excellent sounds included a super 17 th century harpsichord and a $\$ 2$ ukelele pitch pipe.

Tiny Bit of History

Originally, the Chamberlin-style four-voice music software produced organ-like sound of varied characteristics, achieved through user's complete control of overtones. The sound had a sudden onset, level sustain and a sudden drop. There exist two such systems: $A B$ Computers' Visible Music Monitor, written by Frank Levinson and known for its superb graphic editor, and MTU's four-voice package written by Frank Covitz, known for its lack of an editor. Both systems are currently available.

The State of the Art

Hal Chamberlin elaborated on the idea of his original system by adding an instrument synthesis feature. It is now possible to synthesize just about any sound, reat or imagined. Fairly successful imitation of existing instruments has been done. Invention of new instruments via sound analysis permits us to hear, for example, Bach's inventions played by a word "NO" or "Raindrops Keep Falling on my Head'", played, quite appropriately, by a straw and, I think, water dripping into a glass.

The program permits the user to select from the book and/or create "instruments" by specifying the amplitude and its rate of change over time for each harmonic. This sounds hard, but isn't. Entering $\mathrm{X}-\mathrm{Y}$ (time-amplitude) coordinates does the trick, the program does the rest. The so defined composite amplitude envelope accomplishes the distinctions between various instruments: plucked, struck and blown instruments have been successfully implemented. The necessity for very high overtones does not yet permit building bowed instruments. There is no limit to the variety of sounds you can make (within the 8100 cps sampling rate), including different touch or attack characteristics, as well as crazy combinations of sound effects.

In fact, one of the features of this software I treasure most is that to the extent of available memory and speed of processing, it is infinitely flexible. Many sounds can be made, and any notetiming protocol can be set, not limiting you to a strict observance of the score. Knowledge of sound theory is not needed. The book gives enough information.

MTU has a demonstration audio tape available for $\$ 5$. You may hear the sounds before deciding to plunge into the synthesis. For those who alreayd have the program, MTU sells a floppy or two with precoded song data. The program and song data are loaded into the PET and, simply, RUN.

The explanation of the physics behind the system and the instructions on how to use the software are provided. I found only one, insignificant, error in the book. The instructions are complete, but difficult to use at first. The reason is that it is not immediately apparent from reading the descriptions of the available commands what is the commands' purpose. Their utility becomes obvious when one studies the book and a coded song together. The syntax of commands is unambiguous and yields an error message or silly sounding music if not observed. Locating an error is easy if the program's extensions are used.

How Does it Sound?

I like the sound. People who are familiar with the earlier, organ-like, music may be interested to know that through several ingenious programming tricks, Frank Covitz has improved the sound quality of the system, even though this program has to perform many more calculations in real
time than it did previously. There are no "clicks" between the notes and the signal-to-noise ratio has been increased by an audible 6db.

Chamberlin and Covitz remind the readers that the sounds are "guitar-like", "horn-like" etc. and not quite "the real thing." What's missing is the "liveliness" and the resonances of the instrument when limitations are built (though piano in the lower range is superb, since it uses 26 harmonics!). The reason is that the 8 kc rate is too slow to permit high harmonics without running into distortion problems at high pitch. Hence, it is not appropriate to compare it with the real thing. But these tones are nevertheless pleasing and the key characteristics of the imitated instruments are clearly present. Invented instruments, of course, are not subject to such comparison, and, therefore sound just terrific. One of my favourites is a wind instrument that gently whistles while it plays, the whistle coming in a bit after the highest amplitude of the rest of the sound.

Musically, many of the instruments in the book and in the already transcribed songs, are beautiful. Their interesting characteristics and their variety compensate for the "smallness" of PET's sound. Many instruments chosen for a particular piece of music sound appropriate to the coded music, even if that piece of music was written for another instrument. It takes some doing to orchestrate things. I like the results produced by Covitz, Ashcraft and Chamberlin.

Educational Possibilities?

Listening to transcribed music, in many instances, makes the music more accessible to the listener. The impact is similar to, for instance, Segovia transcriptions of Bach's keyboard or violin works for the guitar or the Canadian Brass Quintet's transcriptions of all sorts of music for trumpets and things.

The system has a great entertainment value built in. It may also have an educational value. You can study various aspects of music and the physics of sound without fancy sound analyzing gizmos, and without a multitude of instruments at hand. Your ears and the graphing paper tell you just about the whole story.

It is interesting to hear music performed at different speeds, without changing pitch. It's also interesting to study what happens if a line of music is played backwards or by a variety of different instruments. It points out the tie between an instrument, melody, mood, etc. It can be used to study how instruments fit the music. It shows that to be able to utilize the multitude of possible sound configurations, new music may need to be written. These are some of the things that cannot possible be observed with just a record player or a
tape recorder.
A curious result of coding your own music is a realization of a fact, well known to musicians, that the musical score is only a hint and that it is totally inadequate as a means of communicating the composer's wishes (whatever they may have been). Pages of notes are a necessary requirement for music, but by no means sufficient. It takes some doing to tell the PET to not perform like a machine but it can be done since the program places almost no limitations on the user. Your coded music will not sound big and powerful; but it can have a character of its own. Therein lies the fun of putting music on the PET.

How Easy to Code?

It could be worse if the book was ambiguous, which it isn't. But once you read the book, accept the syntax rules and code one or two measures of a song. It's not hard at all. Just tedious.

MTU considers this product an unfinished work. It is not promoted and as far as I can tell it will not be promoted until the "human interface", or a note and instrument entering editor is written. Writing such an editor is a great challenge, where half-way measures won't do. I can't tell when the editor will be available for the PET. Hence, we are stuck with coding instruments and music via the Machine Language Monitor. No machine code knowledge is required to use the system as it is an interpreter specifically designed for doing music. For instance, two of some 16 commands look like this: 'F2 tt' means tempo, ' FE pp bb ' means play a segment that is in memory at location pp bb. Knowing how to use PET's Monitor and a sense of pages in its memory is needed, but one can learn by doing.

You have two options. One is to use the program and the song data for enjoying it and wait with coding your own things until the editor is written. The second option is to jump in now and not miss all the fun. The system, even though tedious in places, is useable, error-free and invites experimentation. Debugging extensions to the program have been provided which help locate a note, or a song segment for easy finding of coding errors.

In case you might be worried that your song data may become obsolete should an editor be introduced, I'd say "don't worry". One of the key policies of MTU has been compatibility. It is unlikely they will obsolete anything. Just as, at the present time, a song coded on an APPLE, for instance, will play, with no modifications on any one of PET's many releases and 6502 relatives, I am pretty sure the introduction of an editor will not change a thing.

Sound 'n' Vision

System Considerations

MTU strongly recommends a 32 K PET. Only several available songs will play in a 16 K PET. Neither the program (2.5K) nor the song data (varies. $\frac{1}{4} \mathrm{~K}-2 \mathrm{~K}$ is a good guess) use much memory. The waveforms for the instruments, however, gobble it up pretty fast. A disk drive is not essential, though always very helpful. Monitor extensions, such as the Supermon or Extramon are essential. They permit easier editing of data, specifically, inserting, deleting and transferring code. You can't do without them. Both are public domain programs, available from various sources. The MTUs' Visible Memory board can, optionally, be used to see the elements of an instrument. A digital-to-analog converter board needs to be plugged into the User port of the PET. Two DACs can be used for stereo effect (2 voices to each channel). In a concert hall the stereo effect was incredible, but in a home situation it's not needed (I'm biased: I think monaural records are OK).

Other Information

Making this kind of music on your microcomputer is a lot of fun now and the results can be quite musical, even though the sound quality is that of a slightly noisy AM radio if only quiet instruments are picked. Do not let this discourage you. We can reasonably expect true high fidelity sound in a short time. All it will take is a faster processor and larger memories. It's worth taking the plunge now and be ready for progress.

REFERENCES

(1) Hal Chamberlin, A Sampling of Techniques for Computer Performance in Music, BYT E magazine, September 1977.
(2) Hal Chamberlin, Advanced Real Time Music Synthesis Techniques, BYTE magazine, April 1980.
(3) Hal Chamberlin, Musical Applications of Microprocessors (a big book, 653 pages), $\$ 25$.

Getting Usable Video Signals from 12'" Monitor PET/CBMs

This program works with any "fat" Commodore computer 18032, 12" 4032, 8096, and SuperPET). It re-configures the video controller to produce signals which more closely approximate the standard video sync signal frequencies. For those wishing to use an external video adapter to
display the PET screen on a video monitor, this program can save having to modify the monitor.

The PET screen remains completely readable, with only minor narrowing of the picture and the possibility of loosing part of the bottom line in text mode. However, this can be corrected with a slight adjustment* to the PET video section.

Video adapters formerly used with $9^{\prime \prime}$ screen machines will not work directly with the new $12^{\prime \prime}$ machines as the polarity of the video out and horizontal sync signals have been reversed at the User Port. Correct this with:

POKE 59520, 12 : POKE 59521, 0
This will give the desired effect on the external monitor but the PET screen will be inverted (but still readable). To get back to normal, POKE 59520, 12 : POKE 59521, 16

Some video interfaces for $9^{\prime \prime}$ machines have a horizontal sync position control and thus may accept the inverted pulses. People have used this system and it saved them having to obtain new interfaces.

Video adapters for $12^{\prime \prime}$ screen machines are now becoming more readily available and may be used with this program to produce an external picture which might otherwise be unable to "sync" to the strange signal frequencies coming from a $12^{\prime \prime}$ machine without this program.

100 DATA $0,59,2,47,4,26,5,8,7,25,9$, 9
110 DATA $0,59,2,47,4,33,5,6,7,30,9$, 7
120 FOR $J=1$ TO 6 : READ A, B
130 POKE 59520, A
140 POKE 59521, B
150 NEXT J
160 POKE 59468, 14 : PRINT CHR\$(14)
170 PRINT "HIT 'STOP' FOR TEXT MODE
CONFIGURATION"
180 GET A\$: IF A\$=" " THEN 90
190 FOR J= 1 TO 6 : READ A, B
200 POKE 59520, A
210 POKE 59521, B
220 NEXT J
230 POKE 59468, 12 : PRINT CHR\$(142)
240 PRINT "HIT 'STOP' FOR GRAPHICS MODE CONFIGURATION"
250 GET A\$: IF A\$="' THEN 250
260 RESTORE : GOTO 120
*Refer to qualified service personnel

Programming Tips

Some Useful Hints on Dates

Have you ever wondered how nice it would be if the computer could tell you the date of the day 21 days from a given date? Whether you have or not, read on as there are several things that a computer can do with dates: not just store them!
Dates are one of the most awkward items to handle in computing, especially in languages like Basic, Comal, Pascal etc, which do not have user definable operators. For a start, there are several formats. For instance, Christmas 1982 could be written as

25 DEC 82
DEC 25, 1982
12/25/82
25/12/82
For the purposes of ease of writing, the last format will be used. There are several things that can be done with dates.
The ones covered here are

- Sorting in chronological order
- Conversion of a date to a number
- Conversion of a number to a date
- Input of a date
- Computing the day of the week
- Computing future or past dates

Sorting dates

The simplest manipulative operation on dates is a chronological sort. Dates can be easily sorted by reversing the positions of the day, month and year. This is given in "sort' dates" (lines 2000 to 2460).

Converting a date to a number

For most other operations on dates, two functions are required: one to convert a date to a number and another to convert that number back to a date. There are several formulae for doing the former but not all of them are reversible. The one given below is from the HP 25C Applications Programs Manual and is reversible. The algorithm is valid from March 1, 1900 to February 28, 2100 but the procedure given below is only valid from March 1, 1900 to December 31, 1999. This is given in "days' val" (lines 8000 to 8150).

Converting a number to a date

This procedure is semi-iterative (two iterations at most) to counter the truncation effects of the

INT function. This is given in "date" (lines 9000 to 9300).

Input of a date

Date input can cause problems: especially with invalid dates. The problems like checking the number of days in each month or whether the date is that of a leap year are quite common. With the routines DATE and DAYS'VAL, the checking process can be simplified. This is given in "input'date" (lines 100 to 240).

Computing the day of the week

This is a very common use of dates in the commercial world simply because most people do not work on certain days of the week. The day of the week can be computed by taking the remainder of the result ofVAL after dividing it by 7.0 means Sunday, 1 Monday .. 6 Saturday. This is given in 'weekday' (lines 1000 to 1040).

Computing past or future dates

Say you wish to tell a customer to come back in 21 days and it is 17/12/81 today and you do not have a calendar and he wants to know the actual date. No problem: just convert the date to a number, add 21 and convert the result back to a date. This is given in 'compute' (lines 4000 to 4160).

And to end ...
I hope the above routines which have been written in Comal (but can easily be translated into any other language) will open up new areas in programming for readers.

To end, here is a program to print a calendar. It is a Basic 2 program which was written on a 32 K PET but might just fit on to a 16 K PET. The date routine (41000) used here is the one given in A.J. Newey's "'One Hundred Computer Programming Problems" (Pitman Press, 1973, ISBN 0273 003080 9). The double SGN function is something left over from my Algol 60 days: it was faster and generated less code than an IF statement. On line 30050, if 29/02 is the same day of the week as 01/03 then it is not a leap year. It was written in a Fortran type style with all the 'declarations' on the top and subroutines at the bottom. This is not the most efficient format for programs on the PET but I did not know any better in those days.

Programming Tips

```
Listing of prosram ..
0100 proc input'date(ref dmy$) closed
0120 dim temp$ of 8
0140 repeat input dmy$ // Get the date
            input dmy$ // bet th
            // Compute what it should be
            exec date(days,temp$)
            // Terminate when it is the same
    antil dmy$=temps
proc wnokday(dmy$) closed
weekdas:=dass'val(dmy$) mod 7
andrroc weekday
proc sort(ref dt$(),num'dates') closed
    din temps of 8
    for is=1 to mum
            1:=1 to num' dates do
            dt$(i)=dt$(i,7:2)+dt$(i,4:2)+dt$(i,1:2)
    next i
    // Selection sort
    for i:=1 to num'dates-1 do
            for j:=i+1 to num'dates do
            if dt$(min)>dt$(j) then min:=j
            next J
            if i<>min then
            1/ Exchange
            temp$:=dt$(i)
            dt$(min):-dt*
            andif
        // Put dates back in orisinal form
        for i:=1 to num'dates do
            dt$(i):=dt$(i,5:2)+"/
            dt$(i):+dt$(i,3:2)+"/"+dt$(i,1:2)
    next i
nc!proc sor:t
// compute future dates
moc compute closed
    dim todas$ of 8, readys of 8
    print "Today's date:",
    input "Number of day*
    input "Number.of days: ": wait'time
    exec date(days'val(today$)+wait'time,peady$
    print "Come back on ",ready$
4160 endproc compute
```

$\begin{aligned} & 8000 \\ & 8010 \end{aligned}$	// convert a date to a number of dass proc days'val(date*) closed
8020	round:=1/256
8030	// numval converts à strins to a number
8040	day: =numval (date\$(1:2))
8050	month: =numval (date\$ ($4: 2$))
8060	year: =numval (date\$ $(7: 2))+1900$
8070	if month>2 then
8080	month: +1
8090	else
8100	month: +13
8110	year:-1
8120	endif
8130	days'val:=day+int(month*30.6+round)
8140	days' val:+int (year*365, 25 +round)
8150	endproc days'val
9000	// convert a number of days to a date
9010	proc date(days,ref res\$) closed
9020	round: $=1 / 256$
9030	year: =int (days/365.25+round)
9040	I/ evaluate the month
9050	repeat
9060	year2: =int (year*365. 25+round)
9070	month: =int ((days-year-2)/30. 6+round)
9080	if month<4 then year:-1
9090	until month> $=4$
9100	// evaluate the day
9110	repeat
9120	day: $=$ days-int (month*30.6+round)-year2
9130	if day $=0$ then month:-1
9140	until day>0
9150	// convert to a string
9160	resot=""
9170	if month>13 then
9180	year: +1
9190	month:-13
9200	else
9210	month:-1
9220	endif
9230	// the routine str does the following:
9240	// nes\$=res\$+risht\$(str\$ $(x+100), 2)$
9250	exec str (day,res $\$, 2$)
9260	date\$:=date\$+"/"
9270	exec str (month, res\$,2)
9280	date\$: =-date\$+"/"
9290	exec $\operatorname{str}\left(\right.$ year-1900,res\$ ${ }^{\text {d }}$ 2)
9300	endproc date

IF C $\$=$ " 4 " THEN
$A \$=\operatorname{LEFT} \$(E \$, \operatorname{INT}((80-L N) / 2))$
5720 A $=$ ="
IF $C \$=$ " y " THEN
$A \$=L . E F T \$(B \$, 40-L . N)$
15730
BOTO 15210
15800 REM--ERROR MESSAGES
15810 PRINT " (rvs. on 2 string too lons(rvvs. off)":
15810 PRINT " Grv
GOTO 15220
PRINT " \{rv5. on) no more space on page\{rvs, off\}"
GOTO 15220
REM =FFFINT FROMT FAGE
IF $L C=65$ THEN
RETIURN
IF LC $\langle>0$ THEN
$\mathrm{L} \$=" \mathrm{n}:$
FOR $\mathrm{I}=1$
FOR $I=1$ TO $\mathrm{L}:$
GOSUE 36000:
NEXT I
16110 FOR $I=65$ TO LC STEP -1:
$\mathrm{L}=\mathrm{L}+1$;
$\mathrm{L}=\mathrm{F}=\mathrm{P} \$$ (I):
GOSUE 36000:
NEXT I
16120 REM--FORM FEED
IF L〈>66 THEN
FOR $\mathrm{I}=\mathrm{L}$ To 66 :
gosue 36000 :
NEXT I:
16999 RETURN
20000 REM== INITIALIZE:
20100 REM--NUMBERS
FOR N $=0$ TO 9 :
REAB NM $\$$ (N):
$N M \$(N)=N M \$(N)+" n:$
NEXT N
20200 REM--LETTERS
20210 FOR N=0 TO 25:
READ LT\$(N):
$\operatorname{LT}(N)=L T \$(N)+" n:$
NEXT N
20300 REM--WEEKDAYS
20310 FOR $W=0$ TO $6:$
READ Lक:
$W K(W)=A S C(L \$)-A:$
$T \quad W$
NEXT W
20400 REM--B $\$=128$ ELANKS
20410 FOR $N=1$ TO 6:

NEXT N
20500 REM--MONTHS
20510 FOR $N=1$ TO 12
EEAD $M N(N), M N \$(N)$
NEXT N
20600 REM- CHARACTER CONVERSION ROUTINE
20610 REM CHECKSUM
$C 8=0$;
20620 FOR $N=826$ TO 1024:
READ CO:
IF COPO THEN
POKE N,CO:
NEXT N
20630 IF CS<>O THEN
(rvs. on)Error in Assembler prosram(rvs. off)":
IST 56000-56180

20660 REM－－IRE
IF PEER（40）＋PEEK（41）＊256 27.025 THEN
$\mathrm{E}=537$:

20700 20999

IF M\＄く＞＂＂THEN $=A \$+$ LEFT $(B)(B, 6)$
NEXT N
P\＄（L．C）$=A$ \＆$:$
IF $\mathrm{P}\langle>21$ THEN
NEXT．P
GOTO 15210
REM－－NORMAL CHARACTERS
IF LND80 THEN 15810
IF $C \$=$＂$y$＂THEN
$A \$=L E F T \$(E \$, \operatorname{INT}((80-L N) / 2))$
GOTO 15210

IF $C \$=$＂$y$＂THEN
$A \$=L E F T \$(B \$, 40-L . N)$
BOTO 15210

5810 PRINT＂（rvis．on）string too long（rvs．off）＂
GOTO 15220
GOTO 15220
$R E M==$ FPINT FREDNT FAGE
LC＝65 THEN
IF LCく＞O THEN
$\mathrm{L} \phi=" \mathrm{n}:$
FOR $\mathrm{I}=1$
NEXT I
16110 FOR $\mathrm{I}=65$ TO LC STEP－1：
\＄＝P\＄（I）：
NEXT I
16120 REM－－FORM FEED
IF L〈〉66 THEN
FOR $I=L$ TO 66：
NEXT I： 36000 ：
16999 RETURN

20100 REM－NUMBERS
20110 FOR $N=0$ TO 9： REAB $N M \$(N):$
$N M \$(N)=N M \$(N)+\cdots ": ~$
NEXT N

FOR N＝0 TO 25：
READ LT $\$(N):$
$\operatorname{LT\$ (N)=LT\$ (N)+"n:~}$
NEXT N
20300 REM－－WEEKDAYS READ L\＄：
$W K(W)=A S C$
NEXT W
20400 REM－- B $\$=128$ ELANKS

NEXT N
20500 REM－－MONTHS
20510 FOR $N=1$ TO 12 READ $M N(N), M N \$(N)$ ：
NEXT N

20610 REM CHECKSUM
20620 FOR $N=826$ To 1024：
READ CO：
IF CO＞O THEN
NEXT N
20630 IF CSRINT＂Crvs．on）Error in Assembler prosram（rvs．off）＂： LIST 56000－56180

20660 TF PEER $\mathrm{E}=537$ ：
REM－FUT TRAILER IN BOTTOM RIGHT CORNER
S $\$=R T G H T \$(E \$+S \$, 80)$
S\＆$=$ RIGH
RETURN
REM $===$ FCOFM THE MONTH
REM－－DETERMINE THE NUMBER OF DAYS
$\mathrm{N} I=M N(M)$
IF M＜＞2 THEN 30100
REM－－SPECIAL CASE FOR FEBRUARY
$1 \mathrm{l}=1$ ：
1 S ：

GOTO 15560

Programming Tips

```
gosue A1000:
\(\mathrm{N}=\mathrm{DY}\) :
\(\mathrm{n}=29 ;\)
\(\mathrm{M}=2\) :
GOSUB 41000:
IF \(\quad \mathrm{DY}=\mathrm{N}\) THEN \(\mathrm{ND}=28\)
REM--CLEAR MONTH
30100 30110
GOSUB 41000:
\(W=0\)
FOR \(\mathrm{D}=1\) TO ND \(\mathrm{MD}(\mathrm{W}, \mathrm{DY})=\mathrm{D}:\) \(\mathrm{Y}=\mathrm{DY}+1:\)
IF \(\mathrm{DY}=7\) THEN
DY \(=0\) :
\(W=W+1\) :
IF \(W=5\) THEN
```


NEXT D

```
30300
31000
31010
31020
31030
31120
```

31200
4-7

```
REM===ПHTFLT THE MDNTH HEADEFS
REM--FILL IN THE TITLE (MONTH)
    M$=MN$(M):
    FOR N=1 TO L:
    ASC(MID$(M$,N,1))-A
    NEXT N
    REM--FILL IN THE YEAR
    YO=Y
    FOR N=13 TO 10 STEP - -1
        YO=INT (YO)/10:
        T(N)=INT ((YO-INT (YO))*10+0.5):
    NEXT N
    REM--DUTFUT THE MONTH AND YEAR
    FOR F=L TO 21 STEF S
        L$="":
        FOR N=1 TO L.:
        L. $=LL$+MID$(LT$(T(N)),P,5)+" ":
    NEXT N
    L#L.5FT$(L\$+E$,56):
    FOR N=10 TO 13:
        L$=L$+" "+MID$(NM$(T(N)),P,S):
        NEXT N
        g0SUE 36000
    NEXT F
    GOSUE 36000
    RETURN
    REM==NIAF:Y SEFPAFATIGF:
    L$=LEFFT$(B$,7)+"
        L $=L TO 4",
        LC&=
    gOSUE 36000
    RETURN
    REM===DIAF:Y
    g0sue 31000:
    GOSUE
    G08UB 36000
    gOSUB 32,000
        FOR F=-4 TO 26 sTEN . 
            REM--OETAIN THE DAY OF THE WEE
            F P=-4 DR F=26 THEN
                L$=L.EFT$(Bq,7)+V&:
            gOTO 34140
            $ =MID$(LT$ (WK (DY)),P,5)+" "+V$
            REM-\cdotsDATES WHICH FALL ON THAT DAY
            FOR W=0 TO 4
            IF P}=-4\mathrm{ ANO MD(W, DY)<>0 THEN
                L$=L.$+RIGHT$(E$+STR$(MD (W,DY)),13)+V$:
                    GOTO 34180
            L&=L$+RI万HT$(Eq,13)+V$
            NEXY W
            g0sub 36000
        NEXT P
            G0SUE 32000
    NEXT DY
    REM--TRATLER
    L.$=S$:
    GOSUB 36000
    GOSUE
    RETURN:
```


Programming Tips

Disk Show Data

```
10 sotelana
```



```
30 i \(1+52=1=1\) trienca
```



```
50 steta事: ifa来=" "thermait.158, 1 :poke158, 0
```



```
65 ifat="h"thensosukiore
70 ifas="s"arncup=3thers=s=+504
80 ifa丰="r"thens=0
90 for \(j=0\) tos : next
```



```
180 orint"g end of file": satalgex40
1004 r丰=chr-丰(13): aren15.8. 15 : roke59468. 14
```



```
1020 print"दGFrasram \(w i 11\) read and list on Ecreen or"ro"gorinter the cantents";
1030 print" of a secutential or"roc"grelative file on disk."
1040 print"EGThis wi 11 show what was interided to ke"r-韦"Eorinted on the file";
1050 print" was actually printed"re"there by the FET.
1060 sasubscxa
```



```
1090 print"g SPFCE will helt listins .
1100 orint" \(\mathrm{g} \boldsymbol{5}\) will E law down listins
1110 print"氖 \(n\) will akort \(\leq\) low \(1 i \leq t i m e\)
1120 print"空 \(e\) uill abort orostram
1130 print"gh will suspend listins":printtaki 9 " and displass this mase
1140 print"grato the mane file promot
1158 orint" 2 RETURH will akart
1160 print."g d \(\quad \mathrm{gill}\) list directories
```



```
1180 print":
```



```
2010 if+1 1象=" "thenstasuk4000: stoto10040
2015 ifflof="h"trenscasub1070: sotcenge
```



```
2040 apenke, po
```



```
3060 print"g": poke216.22: orint"zresPFiE to cortirue"
3010 seta丰: ifaç" "tren3010
3020 return
```



```
4010 return
```



```
10018 iferis="E0" thermeturn
16020 iferis="E2"thenc lase2
```



```
10040 c lasero:c lase2: ifa象="e"orf lo=". "trienc lase15: end
110 ab stasub306a: sata1180
63999 scratch"disk show data": dsave"disk shoul data"
```


C
 commodore COMPUTER

BRING TO YOU, NOW ON CASSETTE AND DISK GAMES OF THRILLS \& SKILL FOR ALL THE FAMILY

NEW PROGRAMS
Best of Arcade brings together the three most popular Petpack games, Invaders, Cosmic Jailbreak and Cosmiads. These old favourites have been MPD 121 to 80 -column machines also

Best of Treasure Trove gives you twenty of the best games from the Treasure Trove series, including four arcade-type games, Night Drive, Car Race, Breakout and Money Table! There are simulation games, brainteasers and more, making this package the best value ever in games! MPD 122 BEST OF TREASURE TROVE $£ 22.50$ - DISK PACK
Assembler Tutorial is an extremely well thought out cassette-based package which teaches Assembly Language programming. Now for the first time, you can sit at your computer and learn at your own speed with this self contained course combining lessons with hands-on practice! MP 124 ASSEMBLER TUTORIAL $\quad 550.00$
Resident Assembler for all PETs
With excellent documentation and examples.
MP119RAMP $\mathbf{E 2 2 . 5 0}$
Disk Packs available in either 8050 -D8 format o $3040 / 4040$ - D4 format. Please state D8 or D4 when ordering

PUB GAMES
This latest disk package brings you five totally new games, never before. seen on a PET screen! The programs will all run on 80-column machines also!
DISASTEROIDS - Your mission - pilot your spaceship through the treacherous asteroid belt using your lasers to blast as many asteroids as possible. The PET version of the famous arcade game!
STELLAR WARS - Your spaceship is being pursued by the fighter ships of the evil Empire. You must take control of the ship's laser cannon. Get the fighters in your sights and blast away. The future of the universe depends on your skill and accuracy.
WARI - You are the captain of the British torpedo boat. You must steer your ship through the minefield to destroy the four shore bases. Unfortunminefield again to rearm. STAR FIGHT - The Alien Inva that we still rule the waves
cannon to blast their ships out of the coming again! Control your laser cannon to blast their ships out of the sky and destroy their missiles and DEPTH CHARGE - Your mission - are essential.
submarines. They are armed with mines which and destroy the enemy you. You must control the position of your ship and fire your depth charges to destroy as many subs and mines as possible without being hit. MPD 123 PUB GAMES 22.50 - DISK PACK
These games are avillable separt:- orincassette args-ig-onch!

MANUFACTURED AND DISTRIBUTED BY AUDIOGENIC LTD. AVAILABLE FROM GOOD DEALERS, OR DIRECT FROM:

AUDIOGENIC, P.O. BOX ${ }^{\circ} 88$, READING, BERKS.
Tel: (0734) 586334

Basic Programs

Cursor Positioning on the Pet

One of the most popular（？）and easiest ways to position the cursor in a particular position on the PET screen and displaying a message at that posi－ tion is as follows：－

1．16 PRINT＂gexemernen TFEく12）
＂HESSAGE＂
which will appear as shown below：－

> meミミBミt

Another method which I favoured for a long time was to initialise two strings－cr\＄（CURSOR RIGHT）and cd\＄（CURSOR DOWN）to 39 cursor rights and 24 cursor downs respectively．


``` ：HE KT
```


$36 \mathrm{CIF}=\mathrm{CIF}+$＂ काजी

48 FRIHT LEFTまくCD\＆：12）LEFT央 （CFE，$\%$＂MESGAGE＂
which would do the same as number 1 ．

The positioning of the message on the screen could be changed by varying the numbers 12 and 8 in left $(\mathrm{cd} \$, 12)$ and left $(\mathrm{cr} \$, 8)$.

3．The third way is to use the memory locations which hold the row position and column position of the cursor－ 216 and 198 respectively．

Thus 10 PRIHT＂：G＂：POKE21E．12：POKE 198．8：FRINT＂MESEFGE
would give similar results as the previous example．

Both the last two examples could be incorporated in a sub－routine as follows：－

```
10 CRF=< 3G CURSOR RIGHTS `
```


3 月丰＝＂MESEAGE＂：$R=12: 1=8$
46 Gasur zeag
5
E． 6 \qquad


```
F**":RETURH
    arnd simi lar ly for the poke exaum le.
```

One other method is to use a short machine code program which uses the built in ROM routines of the PET．
a．To evaluate the position of the cursor
b．Position the cursor on the screen and then printing the string．

I use this routine now and extend it to blank out portions of the screen as an extra facility．The routine is relocatable and in fact I tuck it behind a REM statement at the beginning of the program． More about that later．

The SYNTAX of the routine is
sys（n），r，c，1：Printas
where $n=$ entry point of machine code $r=$ row which cursor is to be positioned
c $=$ column where cursor is to be positioned

I＝O（zero）for the print facility or any value less than 256 for the blank function．
The routine is shown as assembled in the se－ cond cassette buffer（sys826 to call）
a）as a HEX dump
b）in assembler for those with this facility

Basic Programs

Hex dump of mic code prosiredi

```
RERITY.
C*
    PC IRQ SR GE: KR 'TR EP
; ETGG E455 34 33 38 36 FG
. : g33& 4E EA 4E 98 48 za FE FE
. g342 20 I| CE BE IIG 26 F5 EE
- E34A 2E IH CO E6 CE 2G PF EG
: 0352 26 F5 TDE 2G I4 CB BA FG
```



```
.: 6362 FA ES A& ES AF E& E& FF
.: [3EG FF FF FF FF FF FF FF FF
*
REFIM.
```


M/C Code behind REM statements

```
The PET Basic Interpreter ignores REM statements and anything behind them. Thus numbers can be placed in the memory locations between the REM statement and the zero byte which denotes the end of line.
```

The best position to place the M / C code is at the beginning of the program as the program can be edited without the entry point of the M/C code being moved by the PET when the operator is editing the program.

For example if the programmer wants to add a line in the middle of a program the PET moves all lines following the added line up in memory to make room for the additional line. Thus all memory locations of lines above the added line will have been changed. Similarly if a line is edited the PET moves the basic program up or down in memory to compensate for additions or deletions. Also line number links are also changed.

If the M / C code segment is placed at the beginning of the program say at line $\$ 0$ then subsequent editing or additions to the program will not change the M/C code segment - providing there are no zero bytes within the code - which the PET will interpret as end of basic line and play havoc with the complete program. If zero bytes are inevitable then the M/C code will have to be typed in when the program is completed and fully debugged.

The following explains how to locate the cursor positioning routine behind a REM statement at line $\$ 0$.

Terbe in the fallawins shart prostan lime \#e with 47 :-

1 F $=$ ="TEST"
2 ङ'S1@31, 18, 2g, G:FRIHTF
3 FGRI $=1$ TO2GG: HEXT : REM IELFIT LOGF
4 FGRI=32TEETO33TET: FOKEI, E5
5 HEXT: REM FILL GCREEH WITH 'H'

Haw tribe in
$s=s=4$ (fallowed krs a return)

The followins should appear - don't worry too much if the second line
is not exactly as below-

```
c:*
oc ira sr ac xr yr so
kreg
```

The flashins cursor should be next to the dot. Wow type in

 \$0460 should be dismlaned as follows:

The $8 f$ is the hex rewresentation of FEM. The 2 follomins is the hex value of the swace followins the REM statement. The $2 a$ s represent the Stars 〈w and it is in place of these we are scims to twoe the MrC cacle.

Usins the up cursor - ntral key position the cursor ower the first za arid type in the hex numbers as shown be low. IOH'T FGRGET at the enid of each black of hex mumers aress return'.

Basic Programs

-
-

When all the riex rumbers have been tyroed in check them cerefully and when satisfied tyou ' x ' to bririst you back to kasic.

The listins of this porastash should lack like the fallowins :

6 REM HRUHHPRIHT\#H PCOS GPFEHILEFT SHIMREHGME FCOS GFFEHILEFTEMIMRSC:

1 F $\$=$ "TEST"

3 FGRI=1TO2GE:HENT: EEM IELAT' LONP
4 FGRI=32PESTOSSTET: PQKEI.ES
5 HEXT:REM FILL GREEEH MITH 'F'
E FORI=1TGEG氏: $\mathrm{HE}: T$
? STS1日31. 18.20.2ES : REM ELAHKS FORTIOH GF GCREEH REAT'
How sewe the rarasman fjust iri case you hewe made a mistabe im
tweiris in the hex rumkersy arid then Futt the masorson.
I hame the ideas in the artic:le will promate same interest in
experimentims with the varigus routimes arid wi.h prove af some use.

MASTER -
 a new concept

MASTER is a totally new concept - a complete package for program and system development. MASTER adds 85 new commands to Camodore Basic IV, so that you can speedily and efficiently develop your own reliable software, whatever the application. With MASTER your programs can be up and running in double-quick time, and will out-perform standard Basic IV programs every time. One MASTER cormand can replace whole paragraphs of Basic code. With MASTER, projects that would have been non-starters can be tackled with ease. Add MASTER to your Pet - and let your Pet amaze you!

ISAM DISK FILES

MASTER has 17 commands to give keyed-access to your disk data. Data can be retrieved/added/deleted/updated fram your files by ASCII key (up to 30 bytes long). You can read forwards or backwards through your files by key, starting anywhere. Or for extra fast access, you can read your files in creation order, even faster than reading a standard sequential file! For on-line data entry, file indexes can be updated optionally in batch mode. Up to 10 MASTER files can be opened at once, with no space restrictions except disk capacity. You can mix MASTER files with standard DOS files.

SCREEN GENERATOR

MASTER has 20 commands to give you camplete control of the screen and keyboard input. Input/output can be done through screen zones, which may be formatted, eg for numerics/alpha/dates. Screen layouts (with zones) can be saved and loaded fram disk, or can be swopped around within memory with the paging system. Windows can be declared, with full scrolling capabilities.

REPORT GENERATOR

MASTER has 10 cammands to give you camplete control of your printer output through report formats. Each report format can contain up to 128 output zones, which can be preformatted as required. Report formats can be saved and loaded fram disk.

BASIC ENHANCEMENTS

MASTER has 18 commands of Basic enhancement including autanatic date control - 20 place decimal precision arithmetic - data packing/unpacking to save space on disk - direct block access to disk - variable transfer to/from buffers - searching within strings - string conversion upper to lower, lower to upper case - GOIO and GOSUB with variables as line numbers - program scroll up and down - and a NOLIST feature to protect your programs fram unauthorised listing.

BASIC ENHANCEMENIS (96K only)

MASTER has 17 extra commands in 96K mode (CEM 8096 or CBM 8032 upgraded or with CP/MAKER) including the "Toolkit" type commands AUIO, DELETE, RENUmber (all or part of program), DUMP, ERROR, FIND, TRACE/OFF (shows whole program line at top of screen). All of these except AUIO and ERROR can be included in programs. In addition there is CALL for calling your machine-code routines (while passing up to 15 parameters), FETCH for loading machine-code from disk (without disturbing Basic pointers), PLOT and RESET for medium resolution
screen plotting (scale 50 by 150), PRINT USING for formatted output to screen or printer, IF ... THEN... ELSE ... for compact conditional programming, STOP KEY enable/disable, and HARDCOPY to dump the screen to printer (margin can be defined).

MEMORY MANAGEMENT (96K only)

MASTER gives total control fram Basic over the 64 K expansion memory. 26 K is reserved for variables, which are maintained even while you edit or load programs. Up to 15 programs can be held simultaneously in the 46 K program area, and you can switch from one to another autamatically, or use GOTO or GOSUB and return to your main program.

HARDWARE SUPPORTED

MASTER is written in 6502 machine code and supports the CEM 8032, CEM 8032 with CEM 64 K Expansion Memory or CP/MAKER, and CBM 8096, with CEM 4040 and CEM 8050 disks. MASTER is supplied with a comprehensive User Reference Manual, Quick Reference Guide, Diskette with demonstration programs, and a "dongle" which can be attached to either cassette port. Our support service is FREE, so we try to ensure that our documentation is as good as possible - so you don't need to bother us!

$$
\text { PM } 96
$$

PM96 for the CBM 8096 contains the Memory Management and 96 K Basic Enhancements of MASTER, as a separate package, which includes a User Reference Manual, Quick Reference Guide, Diskette with demo programs, and Support Ram for the front (UDIl) Expansion Ram slot.

Price List

MASTER Development System . $£ 300.00$
PM96 Basic Enhancement/Memory Management £99.50
KRAM Keyed Disk Aocess (state which disk) £86.95 COMMAND-O (Basic IV) (state which Pet) £59.95 DISK-O-PRO (Basic II) £59.95 SPACPMAKER 4-Ram adaptor (not 8096) £29.95
PRONTO-PET hard/soft reset (Basic II) £9.99

SPECIAL OFFERS

VISICALC 96K RRP $£ 180.00$, less $£ 35.00$....... £145.00 VISICALC 32K RRP $£ 159.00$, less $£ 30.00$....... €129.00 WORDPRO IV/V+ RRP $£ 395.00$, less $£ 98.75$........ $£ 296.25$
WORDPRO III+ RRP $£ 275.00$, less $£ 68.75$........ $£ 206.25$
WORDPRO IIt RRP $£ 140.00$, less $£ 35.00$....... £105.00

ORDERING INFORMATION

Orders can be made by post, telephone or Prestel. ADD 15\% VAT TO QUOTED PRICES. For same-day service, telephone 01-546-7256; we accept cheque/PO and ACCESS or BARCJAYCARD. (For over-the-counter sales please see your nearest Commodore Dealer). For Mail-order, write to our address below, or to aur FREEPOST address (no stamp required) which is: Calco Software, FREEPOST, Kingston-upon-Thames, Surrey KT2 7BR. [Ref AD5

Basic Programs

The four function keys on the right hand side of the VIC are probably the most neglected part of the whole computer．Relegated to＇PRESS F1 TO START THE GAME＇，and dismissed with less than a page of text and a simple basic program by both the VIC REVEALED and the PROGRAMMERS REFERENCE GUIDE，the only way to use them as true definable function keys has been to spend $£ 35$ on one of Commodore＇s utility cartridges．

That is until now！
Using a simple 160 byte routine which sits at the top of BASIC memory，you can assign a separate function up to 8 characters long to each of the 8 keys．

This routine，which is loaded by a BASIC pro－ gram，becomes part of the IRQ（Interrupt Re－ Quest）vector．This interrupt is the one which the processor calls 60 times a second to update the jiffy clock；scan the keyboard and check the RUN／STOP key．

Enter the program below and SAVE it before you RUN it！When the program has finished，it NEWs itself．

Now type RUN and press RETURN．All being well，the screen should clear and the messages ＂FUNCTION KEYS DEFINED＂and＂READY．＂ should appear，along with the cursor．If you get the message＂DATA ERROR＂，then you have made a mistake entering the data statements in lines 10－120．CHECK THEM CAREFULLY！

Assuming that you have entered the program
correctly，pressing the function keys should give you the following functions：

F1	LIST + CHRS（13）
F2	GOSUB
F3	RUN + CHRS（13）
F4	PRINT
F5	GOTO
F6	CHRS）
F7	LOAD
F8	RETURN + CHRS（13）

If you wish to change any of these functions， simply alter the DATA statements in lines 300－310．To eliminate the need to press carriage return，you can add one by simply entering＇＇at the appropriate point（s）．

For eaxmple：if you wish to LIST the program whenever a key is pressed，change the ap－ propriate DATA statement to＂LIST＂．

The function keys can be cleared by pressing RUN／STOP and RESTORE together．To re－enable the keys，enter＇SYS 7520＇．
1 －You can only have up to 8 characters max－ imum per key．To enter longer commands use the abbreviations（such as P SHIFT 0 for POKE） listed in the manual，or allot parts to individual keys．
2 －To change a function，the program must be reloaded．

Finally，to disable the RUN／STOP key while the function keys are in operation，change the last three numbers in line 120 to $194,234,170$


```
REM沙 *
3 REM察 DEFINE KEYS 米
4 REM**
5 REM** BY DAVE TONG *
6 REM桊
REM洣
8 REM畨
```



```
,167,128,141,20,3,169,2
(0)
, DATA 133,55,96,160,64,169,0,133
40 DATA 191,29,136,206,250,96,234,2,34
5 0 ~ D A T A ~ 7 2 , 1 3 8 , 7 2 , 1 5 2 , 7 2 , 1 6 5 , 1 9 7 , 1 9 7
60 DATA 251,240,44,133,251,41,39,201
70 DATA 39,208,36,24,165,251,42,41
8 0 \text { DATA 240,172,141,2,240,3,24,105}
90 DATA 8,105,126,133,252,169,29,1:33
100 DATA 253,160,0,177,252,153,115, 2
110 DRTA 200,192,8,208,246,132,198,104
120 DRTA 168,104,170,104,76,191,234,170
199 REM - LORD MACHINE CODE ROU"INES
200 POKE 55,96:POKE56,29:CLR:Z=0:F0R }X=0\mathrm{ TO 95
210 READ Y:Z=Z+Y:POKE 7520+X,Y:NEX 
220.IF Z@ 12270 THEN FRINT"DFTA E NOR! RE-ENTER":STOP
230 34S (7520):SYS (7539).
235 REM S'TS 7520 ACTIVARES THE KEYS
236 REM SYS 7539 ERASES THE FUNCTIONS
240 FOR }x=1\mathrm{ TO 8:RERD N*
250 L=LEN(N$):IF L>S THEN FRINTX;N% PRINT"S CHARACTERS MAXIMUM:":STOF
260 FOR %=1 TO L:P=ASC(MID事険,%,I`:IF P=95 THEN F=13
27@ PNKE 7607+%+R放:R:NFXT %:NEXT
280 PRINT"JFUNCTION KEYS DEFINED." : LR:NEW
298 REM FUT YOUR OWN FUNCTIONS HERE < MRXIMUM & CHRRFCTERS!
299 REM FOR CRRRIRGE RETURN ENTER '%'
300 DRTA "LIST&", "GOSUB", "RUN&", "PRINT"
310 DATA "GOTO", "CHR$(", "LORD", "RETJRN4"
```


READY.

```
100 REM FET EEHELUX
110 FEM EXCHAHGE
120 REM HETHERLRHIS
130 FOKES6879, 8:POKES6G6,240
```



```
FRESS FH'' KE'' TO STOF"
150 60T0190
```



```
"男": NEXT
```



```
180 FORI=1TO10:GETH*:MEKT
```



```
: READ;*
```



```
230 F*(0,1)=7:F%(0,0)=1 F%(1,1)=7:F%(1,0)=6
240 F%(2,1)=7:F%(2,0)=11:P%(3,1)=7:F%(3,0)=16
250 F%(4,1)=16:P%(4,0)=1:F%(5,1)=16:F%(5,0)=6
260 P%(6,1)=16:P%(G,G)=11:P%(7,1)=16:P%(7,0)=16
```



```
#"
11!
```



```
370 F=INT(RHD(1)*S):FRINTMID*&&%,F+1,1);:GOGUB160
300 [ETAま:IFF&`""THEH4GU
390 g0T0370
400 FRINT""贵" : :POKES6S79,27 : END
```

CHARRCTER BUILDIHG EMEFUISES

```
10G REM FET EENELUX
110 FEM EXCHHHGE
120 REM NETHERLFHIS
130 FOKESES79, 42:PRINT"MM CHARHOTERGENERATOR 串" POKEOOD,G
140 FOKE56,PEEK(56)-2:RUN150
150 CS=25G*PEEK(52)+FEEK(51)
160 FORI=CSTOLS+511:POKEI, PEEKGI+S2T6S-CS):HERT
170 PRINT"M1FUHJEQ" : PRIUT"RUH" :FOKE19G,3:POKEG31:13:POKEG32, 13:FOKEGS3,
13:EHI
104 S=7600:CL=22
190 CS=25G%FEEK(52)+FEEKC51)
200 [R=日:LH=1000+FEEK(900):F=12:BG=1:BR=1
210 FOKES6E79,42
220 DEFFHF(X%=S+FACL+C:REM SOREEN FOKE LOUHTION
230 IEFFHBCN%=BR+C:REH SCREEN FOKE URLUE FOR GHARRCTER
240 GOTOEOD
```


Basic Programs

```
250
    FRIHT""ym"m
```



```
270 FRIHT"浰":=0:C=0
200 Z=F|H(G)
2O0 IFF=OTHENSSO
3OG TFZ=ZLTHEMGQU
3U FOKECL, IL ZL=Z:IL=FEEKCZL`
320 POKEz+30720,0
OB FOKEZ+30;20,g:GETH* :IFH:=" THENBOQ
340 POKEZ+30720.1
SE REP CURGOR CONTROL OFTIOHS
```



```
370 TFF*="郎H4LC=7THENC=6:GOTOLEQ
```



```
400 TFAt="|"THENC=C-1 : GOTOEGQ
410 IFA末="多FHDR=7THEHE=0:GOTOEEQ
```



```
430 TFA士="J"GHDE=6THENR=7:GOTOEEQ
440 IFH束="7"THEFR=R-1:GOTOLED
450 IFAs="%"THEH270
460 IFF=1THENSEO
470 REM DEFIHE NEN CHARFICTER OFTIOHS
480 IFH:="+"THEFHOOKEZ, 81:GOTOE80
490 IFA = ="-"THEHFOKEZ:46:GOTO280
500 IFA = ="="THEN700
510 IFH:="#"THEH266
520 IFA末="R"THENGOQ
530 IFA末="E"THENT904
5 4 0 ~ G 0 T 0 2 0 4 ~
5 5 0 ~ R E M ~ R E V I E M ~ O H A R H C T E R ~ S E T ~ O F T I O H S ~
500 CR=FHECO)
570 IFA*="H"THEHFOKESE869, 240:GOTOES0
500 IFA*="E"THEHFOKES6S69,240:F=0:GOTOT50
500 g0T02B0
604 FOKES6869,255:F=4:C=G:ZL=FHHCO):IL=32
```



```
:F=1
620
FRINT" !"+CHR$(34)+"#क%%"":PRINT"(9%+,-.":PRINT"012S4567":FRINT"
89:<=>"
```



```
660 FRINTGFC(10);"嵲 DUIT員"
670 10=FEEK<8S400)
680 G0T0200
6 9 0 ~ R E M ~ U P I A T E ~ C H A R H C T E R ~ D A T A ~ I H ~ T A E L E ~
```



```
710 SM=SM-2$I#&PEEK&FHFCO)=S1? NESTC
T2Q FOKEX+R,SM:FRIHTSFC(B);SM:NENTR
730 R=0:C=0:G0T0260
740 REM EDIT CHARACTER FROM TAELE
```



```
760 0=46:T='%2: IFTY255THENO=81:''T'T-256
7O FOKEZ, Q:NEKTC, R:R=0:C=G:GOSUESSO:GOTOESO
7BO REM EASIC STATEMENTS TO DEFIHE OHARHOTER
```


How to make the best home computerin the world even better.

Peripherals to turn a powerful computer into a super-computer for the professional.

With VIC, you have the finest home computer money can buy. And the more you use it, the more you will ask it to do.

Pretty soon, you'll want to extend VIC's vast potential to the full; and there is a wide range of VIC peripherals to help you do it.

Disk drives, disk-based software, a printer, cassette unit, joysticks, paddles-with these, VIC computing becomes total computing: giving you true professional power and capability.

We describe the major units here.

VIC PRINTER

 like all VIC peripherals, offers a very high specification at a very competitive price.

It will print programs, letters, business data, graphic displays and so on.

Its main features include: 80 characters per line \cdot Tractor feed dot matrix $\cdot 30$ characters per second print speed \cdot Full alphanumerics and graphic printing • Double-size character capability • All cables and leads.

VIC FLOPPY DISK UNIT

The VIC single-drive Disk Unit provides a fast, accurate and efficient means of storing and retrieving data and programs.

Together with the Printer, it transforms the VIC 20 into the ideal system for the small businessman or serious computer programmer.

Features include: 174,848 bytes capacity Uses soft-sectored standard $51 / 4^{\prime \prime}$ single density floppy disks • Direct interface to VIC Direct compatibility with Printer Intelligent system independent of VIC.
(VIC RAM not required to run it).

EXPANSION MEMORY CARTRIDGES

Special plug-in cartridges are available to expand VIC's memory. $3 \mathrm{~K}, 8 \mathrm{~K}$ and 16 K RAM packs plug directly into the computer.

A Memory Expansion Board is also available
 to develop VIC's capabilities to the maximum.

For full details of VIC 20, its peripherals and software, and a list of your local dealers, contact: The Commodore Information Centre, 675 Ajax Avenue, Slough, Berkshire, SL14BG. Tel: Slough 79292.

(= commodore VIC 20

The best home computer in the world.

Basic Programs


```
FRINT"RUN "
820 FOKE900, FEEK(900)+1:FOKE198,9:FORI=0TOS:FOKEI+631.13:HENT EHI
```



```
840 FRINTSFC(F);"旪啰 HID DOT"
850 FRINTSFC(P);"田異ERAGE"
860 FRINTSFC(F);"柤堌UFINTE"
870 FRINTSFPCP);"昨贯 REVIEW"
860 FRINTSPC(F);"暞 QUIT"
890 RETURN
```

```
CIRCLE DENO - UTC 20
```



```
15 POKES6863,253:POKES68G7. PEEKGSGGGTOR12G
20 FOKESS,0:FOKESG,19:POKES1,0:POKE52, 19:QLR:G=5276S:T=5120
25 FORI=0TOLSS易+7:FOKEI+T, PEEK I+S) NENT GOTOS5
```



```
35 Q=FEEK(F) IFQC12BTHEN45
```



```
45 CH=CH+1:S=5120+4127+CH) S:T=5120+0.6
50 FORI=0TOT:POKES+I, FEEKCT+I):HENT:Q=12T+CH:POKEF,Q:GOTO4Q
55 FORT=1TOQ2:FOKETGOU+22WI S3:HENT
60 FOKET600+11%22.107
65 FORI=1TO21:POKETESG+11:Q22+I, 64 :HEXT
```



```
75 X=C0S(Z)*FI+90:T=SIH(Z)&RT禺1.7+98:GOSUES0:NEXT
G0 GETAS: IFAN=":THEHBQ
85 POKES6879,27:PRINT"TR" : POKESES69,240
```

HIRES FLOTTIHG
 FOKE36867，PEEK（36 867）OR128
15 FOKES5， $0: F O K E 56,19: F O K E 51,0: P O K E 52,19: C L R: S=92768: T=5120$

35 IFHま＝＂F＂THEN70
40 B0T025

RETURN

$60 \mathrm{CH}=\mathrm{CH}+1: S=5120+(127+\mathrm{CH}) \mathrm{BB}: T=5120+0 * \mathrm{~B}: \mathrm{FORI}=0 \mathrm{TOF}: \mathrm{POKES}+\mathrm{I}, \mathrm{FEEK}(T+\mathrm{I})$
： $\mathrm{HE} \times \mathrm{T}$
$65 \mathrm{Q}=12 \mathrm{P}+\mathrm{CH}: \mathrm{FOKEF}, \mathrm{Q}: \mathrm{GOTOS5}$

IATA15，23．19
75 FORI $=1$ TO21：FOKEP680＋11象22＋1． 64 ：NEKT

：HEXT ：HEXT ：GOTO2S

Basic Programs

```
15G LH=2G:FEM 采**** LEHGTH OF FEDUIFED TITLE = 2G LETTEFG
16区 FRINT"MIOE TITLE - `誰":
170 GOSUE420
1804 HF=$=Lま
190 FEM
201 REM
```



```
240 LH=7:FEM 粎:* IHFUT LEHGTH = F FIGUFESE
```



```
20日 GOSUE420
276 L0=%'HL(Lま)
```



```
290 REM
304 REM
```



```
34日 PRIHT"smEDTETRE";
```



```
360 L=5:I=1:H=LG:GOGUESG:FRIHT"1 DECINFL FLFOE "HN
```



```
304 L=E:I=4:H=LE:GOSUES50:FRINT"4 IECIFAL FLFOES "H:$
304 REM
4 0 6 \mathrm { EEM }
4 1 0 ~ E H I I ~
```



```
43日 人末="":L韦="": FH=区
440 GETA末专:IFHA<=1GTHEH476
450 I=256*FEEK(197)+FEEK(196)+FEEK<198)
```



```
476 IFH:=""THEHAH=FAF+1:GOTO446
```



```
506 [0T0446
```



```
5 2 0 ~ I F L E H ( L \& ) = 0 T H E H 4 4 0 1 0
506 FRINT" "
5 4 0 ~ R E T U R H
5 5 0 ~ R E M
```



```
G40 RETUFH
FEFII'.
```


Turn your Commodore into a full time Profit Centre The New SCRIPTA II works all day long~
 As a Data Terminal, producing perfect letters and reports from your

 favourite wordprocessor or impeccable invoices and statements from your trusty business system.During non-computing periods, SCRIPTA II reverts to the finest electronic typewriter. Depending upon your mood, you can choose any one of 20 Whisper-disk daisy typewheels which are available in 10, 12, 15 and proportional pitch. Numerous fonts can be selected. Classic Gothic or Modern Pica for business, Fine Italic for those intimate little personal messages, Cubic for the chic replies, or Lecturer - the large character - for prompting you during speeches or sermons!

An optional tractor or sheet feeder can be easily fitted or removed at any time to handle all types of documents, forms or letter heads.

SCRIPTA II is a true dual purpose peripheral produced by Europe's largest office equipment supplier - it is not a typewriter modified by some electronic wizard! The product is eligible for an annually renewable on-site Service Contract carried out by the Manufacturer, including all parts and labour. A rare thing these days!

Just plug the SCRIPTA II into the mains and connect your data cable to its input port. Wordcraft, Word-Pro, Silicon Office, The Manager - in fact most software currently available for your Commodore machine, is readily configurable.

Should you require further convincing that SCRIPTA II is the ONLY terminal for your system, contact your Dealer, or write, ring or call Sole U.K. Distributor -

SUPERMON for the VIC

Introduction

No machine language monitor is provided in the VIC ROMs. Serious users find themselves in the same position as the first generation (BASIC 1.0) of PET users. Since only a commercial product, VICMON, is available, the need for a publicdomain utility seemed a worthwhile project.

Jim Butterfield has already developed TINYMON1, which may be found in the June issue of Commodore Computing. This offers the equivalent to the Commodore TIM monitor.

We've already been accustomed to the benefits inherent in Supermon, Extramon and Micromon for the PET/CBM. Herewith my adaptation of Suprmon for the VIC.

While we are on the subject of Jim Butterfield, I once again offer my thanks for his many contributions to the PET/CBM/VIC community. His splendid work and the donation of same to the public domain is quite remarkable. We often fail to acknowledge how rich is our store of knowledge because of this gentleman.

Features

Like its predecessors, VIC-20 SUPERMON loads and self-relocates to the top of VIC memory, regardless of the memory configuration installed. It was designed to fit in less than 2 K , and I surrendered the "single-step" mode to accomplish this goal.

Make no mistake, there's a lot of time to be invested to reproduce the code of this program.

I've copied Jim's technique of "absolute-load" files with VIC-20 SUPERMON. This means that if you SAVE memory with the monitor, the VIC won't relocate it on you when you come to reLOAD the code.
'Jim said that the PET would ignore such files, but my utility called VICLOAD covers that shortcoming.

Procedure

Apart from the investment of time, you don't really need to be familiar with machine-launguage to enter the program. One of Supermon's benefits is its value for beginners in ML programming.

You'll need a PET/CBM with Upgrade (BASIC 2.0) or BASIC 4.0 ROM installed. Start with a freshly powered-up machine. Enter the ML monitor by typing 'SYS4' and hitting 'RETURN'.

There are 20 screens of information to be entered before you're done. Each requires the same procedure. Only the first (line entry) is
slightly different:

1. Immediately after the ".", type the range of memory to be displayed, like so:
.M 00280028 RETURN
One line of hexadecimal digits is shown on the screen.
2. Move the cursor back to this line and type over the digits with the values:

$\therefore 00280104$ DF OD DF OD DF OD RETURN

Don't forget to hit the 'RETURN' key at the end of each line, or else the new values won't be remembered.

Now type in the starting and ending addresses for each of the 20 screens to be changed. For example, the first would be:

$$
\text { .M } 04000478 \text { RETURN }
$$

Copy the values shown in the accompanying "hex dump" for each block shown. Type right over the existing values, (which will probably show as "AA" on your screen). Do your best to double-check before proceding with the next block.

Repeat until the block from \$OD80 to \$ODF8 is done. Now exit the monitor, with:
. X RETURN
NOW SAVE AND VERIFY THE PROGRAM. Do not pass "GO", do not collect $\$ 200 \ldots$ do this first!

Checking

Because of the 2000+ entries you've made, the chance for error is high. Several "immediate-" or "Calculator- Mode" statements are provided to verify your work.

These statements do a "check-sum" on the total program, each multiple of 5 -screens (4 check-sums), and each "line" of 8 -entries.

Enter the statements shown, with no line numbers please! On hitting 'RETURN', the total will be shown immediately below.

If your first one shows "283370", then it's probably perfect. Go to the head of the class, and start using VIC-20 SUPERMON.

Otherwise, work your way through the next four, noting which are correct. Each of these totals are a composite of 80 lines of entry, (or 5 -screens, as we put them in).

For any incorrect block from above, there is a
corresponding statement to type. This will give the individual totals for each line of entry. Mark the lines that are different. You will now have to re-enter the ML monitor and make the necessary corrections. ReSAVE this version and re-do the checksum until it's correct.

Operation

Disconnect your cassette recorder (power off the PET first, please). Reconnect to the VIC, turn everything on, LOAD VIC-20 SUPERMON and RUN it.

You should be greeted with the so-called "Register Display", as on the PET/CBM. Unless it's a B \& W display, you'll see several usages of VIC colour.

Any entries you make will be in blue, while the VIC ..variously displays red for register headings or errors, purple for normal addresses, black for memory bytes and green for disassembly mnemonics or "next" addresses when assembling code.

Since we are dealing with a 22 -character wide screen, the disassembly consumes two lines. The

$\therefore 0600$ A5 00002034 FA 00 A5
.: 0608012034 FA 0020 B2 F8
.: 0610002081 F8 00 F0 5720
.: 0618 BB FA 0020 7C FA 0090
.: 0620 2E 20 6C FA 0020 BB FA
.: 062800207 CFA 00902320
.: 0630 6C FA 002070 F7 F0 3C
$\therefore 0638$ A6 26 D0 38 A5 C3 C5 C1
.: 0640 A5 C4 E5 C2 90 2E AO 3A
.: 064820 BB F8 0020 2D FA 00
.: 06502081 F8 00 F0 E0 4C FC
.: 0658 FA 0020 7C FA 009003
.: 06602078 F8 0020 B2 F8 00
.: 0668 FO 0520 7C FA 0090 EB
.: 0670 A9 0585 1D 20 bB FA 00
.: 067820 9C F8 00 D0 F8 4C 44
mnemonics are pushed to the right on the second line. More locations would have fit, but I chose to keep the actual "bytes" display. This of course permits you to change them, and causes an automatic redisplay of the same range of addresses.

The goal of "under $2 \mathrm{~K}^{\prime}$ " was met (by 3 bytes), but the single-step had to be sacrificed. Someone else may re-work Micromon for VIC, but its 4 K size is of no use to the " 3583 BYTES FREE" crowd.

In Closing

'If I use this half as much as Supermon for PET, it will have been worth the adaptation effort. Without Supermon 1.0 (for Original ROM), this would not have been feasible. A deep bow towards 14 Brooklyn Avenue, Toronto.

David A. Hook
58 Steel Street
BARRIE,
Ontario
L4M 2E9
(705) 726-8126
.: 0500 A9 802090 FF 580000
.: 0508 D8 68850568850468 .: 0510850368850268 AA 68 .: 0518 A8 38 8A E9 02850198 .: 0520 E9 0000850000 BA 86 .: 05280620 CE F8 00 A2 42 A9 .0530 2A 2043 FA 00 A9 52 DO .: 0538 1B A9 1F 20 D2 FF A9 00 .: 0540008526 A2 OD A9 2E 20 .054843 FA 0020 BB FA 00 C9 .: 0550 2E F0 F9 C9 20 F0 F5 A2 .: 0558 OE DD BB FF 00 DO OC 8A .: 0560 OA AA BD CB FF 0048 BD .: 0568 CA FF 004860 CA 10 EC .: 0570 4C FC FA 00 A5 C1 8501 .: 0578 A5 C2 $850000 \quad 60$ A9 05
.: 0680 F8 0020 CF FF C9 OD F0 .: 0688 OC C9 20 DO D1 20 7C FA .: $0690009003 \quad 2078$ F8 00 A6 .: 069806 9A 78 A5 000048 A5
. 06 A 00148 A5 0248 A5 03 A6
.: 06A8 04 A4 054078 A6 06 9A
.$\quad 06 \mathrm{BO}$ 6C 02 CO AO 0184 BA 84
$\begin{array}{lllllllll}. & 06 B 8 & \text { B9 } & 88 & 84 & \text { B7 } & 84 & 90 & 84 \\ 93\end{array}$
. 06 CO A9 4085 BB A9 0285 BC
.$\quad 06 \mathrm{C} 820 \mathrm{CF}$ FF C9 20 F0 F9 C9
.: 06D0 OD FO 37 C9 22 D0 3420
.: 06D8 CF FF C9 22 FO OF C9 0D
.: 06E0 F0 2891 BB E6 B7 C8 C0
. 06E8 10 F0 20 DO EA 20 CF FF
. 06 FO C9 OD F0 16 C9 2C D0 DD
.: 06F8 20 8B FA 0029 OF F0 EA

```
.: 0700 C9 03 F0 E6 85 BA 20 CF
.: 0708 FF C9 OD 60 4C FC FA 00
::0710 20 8F F9 00 D0 F8 20 4F
.: 0718 F5 20 4C FA 00 A5 90 29
.: 0720 10 D0 EC 4C 44 F8 00 20
.: 0728 8F F9 00 C9 2C D0 E2 20
.: 0730 7C FA 00 20 6C FA 00 20
.: 0738 CF FF C9 2C D0 D5 20 7C
.: 0740 FA 00 A5 C1 85 AE A5 C2
.: 0748 85 AF 20 6C FA 00 20 CF
.: 0750 FF C9 OD D0 C0 20 82 F6
.: 0758 4C 44 F8 00 A5 C2 20 34
.: 0760 FA 00 A5 C1 48 4A 4A 4A
.: 0768 4A 20 63 FA 00 AA 68 29
.: 0770 OF 20 63 FA 00 48 8A 20
.: }0778\mathrm{ D2 FF 68 4C D2 FF }205
```

.: 0880 C1 85 1E 98 E5 C2 A8 05
$\therefore 0888 \quad 1 \mathrm{E} 6020$ E3 FA $00 \quad 20$ 6C
.: 0890 FA 0020 F4 FA 0020 1A
.: 0898 FB 0020 F4 FA 002031
\therefore : 08AO FB $0020 \quad 6 \mathrm{C}$ FA $00 \quad 9015$
.: 08A8 A6 26 D0 6420 2A FB 00
.: 08B0 $90 \quad 5 \mathrm{~F}$ A1 C1 $81 \mathrm{C} 3 \quad 20 \quad 13$
.: 08B8 FB 0020 D3 F8 00 D0 EB
.: 08C0 202 A FB 0018 A5 1 E 65
.: $08 \mathrm{C} 8 \quad \mathrm{C} 3 \quad 85 \mathrm{C} 3 \quad 98 \quad 65 \quad$ C4 $85 \quad$ C4
.: 08D0 20 1A FB 00 A6 26 D0 3D
$\therefore \quad 08 \mathrm{D} 8$ A1 C1 81 C3 20 2A FB 00
.: 08E0 BO 3420 C 7 FA 0020 CA
.: 08E8 FA 004 C 7 F FB 0020 E3
.: 08FO FA 0020 6C FA 0020 F4
.: 08F8 FA 0020 6C FA 0020 BB
.: 0780 FA 00 2C 2D 9130 F8 60
.: 07882070 F7 D0 08 A9 0385
.: 0790 9A A9 000085996009
.: 079830 C9 3A 9002690660
.: 07A0 A2 02 B5 C0 48 B5 C2 95
.: 07A8 C0 6895 C 2 CA D0 F3 60
.: 07B0 20 8B FA 00900285 C2
.: 07B8 20 8B FA 00900285 C1
.: 07C0 60 A9 000085 2A 20 BB
.: 07C8 FA 00 C9 20 D0 0920 BB
.: 07D0 FA 00 C9 20 DO OE 1860
.: 07D8 20 B2 FA 00 0A 0A 0A 0A
.: 07E0 85 2A 20 BB FA 0020 B2
.: 07E8 FA 0005 2A 3860 C9 3A
.: 07F0 9002690829 OF 6020
.: 07F8 CF FF C9 OD D0 F8 6868
.: 0900 FA 0020 8B FA 009014
.: $0908 \quad 85$ 1D A6 26 D0 $1120 \quad 31$
$\therefore 0910$ FB 0090 OC A5 1D 81 C1
.0091820 D3 F8 00 DO EE 4C FC
.: 0920 FA 00 4C 44 F8 0020 E3
$\therefore 0928$ FA 0020 6C FA 0020 F4
$\therefore 0930$ FA 0020 6C FA 0020 BB
$\therefore 0938$ FA 00 A2 000020 BB FA
.: 094000 C9 27 D0 1420 BB FA
.: 094800 9D 1002 E8 20 CF FF
.: 0950 C9 OD F0 22 E0 20 D0 F1
.: 0958 FO 1C 8E 0000012092
$\therefore 0960$ FA 0090 C6 9D 1002 E8
. 096820 CF FF C9 OD F0 0920
.: 0970 8B FA 0090 B6 EO 20 D0
$\therefore 0978$ EC 86 1C 20 CE F8 00 A2

COMMODORE SYSTEMS DISTRIBUTORS

QWERTY COMPUTER SERUICES

20 WURCESTER RGRD, NEWTUN HRLL, DURHAM Tel. (0385) 67045

ROM 'N’ RAM

is a 4 K ROM/EPROM/RAM emulator, use the write signal to convert the CMOS RAM into ROM. No need to have MULTI-ROM switchboards just save the contents of the programme/security ROM onto disk/cassette for each ROM which occupies the socket, from then on use ROM ' N ' RAM e.g.

1. Switch into RAM mode
2. Load ROM contents from disk/cassette
3. Switch into ROM mode
4. Run programme

Of course there is no limit to the number of times ROM ' N ' RAM can be used.

Quantity	Excl VAT	Inc. VAT
	£35	£40.25
2-4	£33	£37.95
5 plus	£30	£34.50
Battery backup	$\begin{gathered} \text { EXTRA } \\ £ 6 \end{gathered}$	£6.90

HI-RESOLUTION GRAPHICS

A high resolution graphics board that gives a $64,000 \operatorname{dot}(320 \times 200)$ resolution. Versions available for any dynamic ram Pet, BASIC 2,3,4, FAT T 40 \& 80 columns. No soldering or track cutting required, supplied complete with fast GRAPHIX software in ROM and full fitting \& operating instructions. $£ 149.00$

SUPER ROM-SELECTOR

A high quality printed circuit board giving 64 K of utility ROM space, software selectable!!! Allows $16 \times 4 \mathrm{~K}$ ROMs/EPROMs to reside in the expansion area of your PET. One 'POKE' enables any two ROMs at a time. Suitable for bankswitched software.
675.00

PET UPGRADES

WHILE-U-WAIT service! (Dynamic ram pets only).
Memory expansion:
8K-32K.. . $£ 59.90$

8K-16K... 538.26
40 column (12 in VDU only) to 80 column conversion.
$40-80$ column...
. 489.00
$40-80$ column switchable (two machines in one!)............................. $£ 105.00$
Full keyboard functions: i.e. TAB, ESC, REPEAT, SCROLL up/down, define WINDOW. lowercase/graphics mode and DELETE from/to cursor. All
available in direct or program mode.

REPAIRS AND SERVICING

Fast and efficient repairs to all Commodore computers at reasonable prices. WHILE-U-WAIT service whenever possible.
Please add VAT to the prices shown at the current rate.
Telephone Mick Bignell for more details at:

MICROSERVE

7 Clydesdale Close,
Borehamwood, Herts. WD6 2SD.
Tel: 01-953 8385

```
```

.: 0800 4C 44 F8 00 A2 02 2C A2

```
```

.: 0800 4C 44 F8 00 A2 02 2C A2
\therefore0808 00 00 B4 C1 D0 08 B4 C2
\therefore0808 00 00 B4 C1 D0 08 B4 C2
\therefore0810 D0 02 E6 26 D6 C2 D6 C1
\therefore0810 D0 02 E6 26 D6 C2 D6 C1
\therefore0818 60 20 BB FA 00 C9 20 F0
\therefore0818 60 20 BB FA 00 C9 20 F0
.: 0820 F9 60 A9 00 00 8D 00 00
.: 0820 F9 60 A9 00 00 8D 00 00
\therefore0828 01 20 DB FA 00 20 92 FA
\therefore0828 01 20 DB FA 00 20 92 FA
.: 0830 00 20 7F FA 00 90 09 60
.: 0830 00 20 7F FA 00 90 09 60
\therefore0838 20 BB FA 00 20 7C FA 00
\therefore0838 20 BB FA 00 20 7C FA 00
\therefore0840 B0 DE A6 06 9A A9 1C 20
\therefore0840 B0 DE A6 06 9A A9 1C 20
.: 0848 D2 FF A9 3F 20 D2 FF 4C
.: 0848 D2 FF A9 3F 20 D2 FF 4C
\therefore0850 44 F8 00 20 CB F8 00 CA
\therefore0850 44 F8 00 20 CB F8 00 CA
.: 0858 D0 FA 60 E6 C3 D0 02 E6
.: 0858 D0 FA 60 E6 C3 D0 02 E6
.: 0860 C4 60 A2 02 B5 C0 48 B5
.: 0860 C4 60 A2 02 B5 C0 48 B5
.: 0868 27 95 CO 68 95 27 CA DO
.: 0868 27 95 CO 68 95 27 CA DO
.: 0870 F3 60 A5 28 A4 29 4C 35
.: 0870 F3 60 A5 28 A4 29 4C 35
\therefore0878 FB 00 A5 C3 A4 C4 38 E5

```
```

\therefore0878 FB 00 A5 C3 A4 C4 38 E5

```
```

.: 09800000 A0 0000 B1 C1 DD .: 09881002 D0 OC C8 E8 E4 1C .: 0990 DO F3 20 2D FA 0020 CB $\therefore 0998$ F8 0020 D3 F8 00 A6 26
.: 09A0 DO 922031 FB 00 BO DD
. 09 A 84 C 44 F 80020 E 3 FA 00
. 09 BO 8520 A5 C2 8521 A9 08
.: 09B8 A2 $0000 \quad 85 \quad 27 \quad 86 \quad 28$ A9
.: 09C0 9320 D2 FF A9 OB 85 1D
$\therefore 09 \mathrm{C} 82067$ FC 0020 D1 FC 00
.: 09D0 85 C1 84 C2 C6 1D D0 F2
\therefore 09D8 A9 91 AA 2043 FA 004 C
$\therefore 09 \mathrm{E} 044 \mathrm{~F} 800 \mathrm{~A} 02 \mathrm{C} 20 \mathrm{BB}$ F8
. 09 E 80020 CB F8 0020 2D FA
. 09F0 0020 CB F8 00 A2 0000
.: 09F8 A1 C1 20 E0 FC 0048 A9
.: OA00 9020 D2 FF 2026 FD 00
. 0A08 A9 1E 20 D2 FF 6820 3C
.: 0A10 FD 00 A2 06 EO 03 DO 12
.: 0A18 A4 1F F0 0E A5 2A C9 E8
\therefore OA20 B1 C1 B0 1C 20 C9 FC 00
.: 0A28 88 DO F2 06 2A 90 OE BD
\therefore OA30 2E FF 0020 A6 FD 00 BD
$\therefore 0 \mathrm{~A} 3834 \mathrm{FF} 00 \mathrm{FO} 0320 \mathrm{~A} 6 \mathrm{FD}$
.$\quad 0 A 4000$ CA DO D5 6020 D4 FC
. 0A48 00 AA E8 D0 01 C8 9820
$\therefore \quad 0 \mathrm{~A} 50 \mathrm{C} 9$ FC 00 8A 86 1C 2034
. $0 \mathrm{~A} 58 \mathrm{FA} 00 \mathrm{~A} 61 \mathrm{C} 60 \mathrm{A5} 1 \mathrm{~F} 38$
. 0 A60 A4 C2 AA $100188 \quad 65$ C1
. 0 A68 9001 C8 60 A8 4A 90 OB
\therefore 0A70 4A B0 17 C9 22 F0 1329

.: OB80 C9 OD F0 1E C9 20 F0 F5
.: 0B88 20 D4 FE 00 B0 OF 20 9F
\therefore 0B90 FA 00 A4 C1 84 C2 85 C1
$\therefore 0 B 98$ A9 30 9D 1002 E8 9D 10
\therefore OBAO 02 E8 DO DB 8628 A2 00
\therefore OBA8 008626 F0 04 E6 26 F0
.: OBBO 75 A2 000086 1D A5 26
\therefore 0BB8 20 E0 FC 00 A6 2A 8629
.: OBCO AA BC 3B FF 00 BD 7B FF
\therefore 0BC8 00.20 BD FE 00 D0 E3 A2
.: OBDO 06 E0 03 DO 19 A4 1 F F0
.: 0BD8 15 A5 2A C9 E8 A9 30 B0
.: OBEO 2120 C3 FE 00 DO CC 20
.: OBE8 C5 FE 00 DO C7 88 DO EB
.: OBFO 06 2A 90 OB BC 34 FF 00
.: OBF8 BD 2E FF 0020 BD FE 00
. 0 A 8000 B 004 4A 4A 4A 4A 29
.: 0A88 0F D0 04 A0 80 A9 0000
$\therefore 0 A 90$ AA BD 21 FF 0085 2A 29
$\therefore \quad 0 \mathrm{~A} 98 \quad 03851 \mathrm{~F} 98 \quad 298 \mathrm{~F}$ AA 98
.: 0AAO A0 03 E0 8A FO OB 4A 90
$\therefore \quad 0 A A 8084 \mathrm{~A} 4 \mathrm{~A} 092088$ D0 FA
. OAB0 C8 88 D0 F2 60 B1 C1 20
\therefore 0AB8 C9 FC 00 A2 0120 0C FB
\therefore OAC0 00 C4 1F C8 90 F1 A2 03
$\therefore 0$ AC8 C4 2790 F2 60 A8 B9 3B
\therefore OADO FF 008528 B9 7B FF 00
. 0AD8 8529 A9 0000 A0 0506
.: OAEO 292628 2A 88 D0 F8 69
. 0AE8 3F 20 D2 FF CA D0 EC 4C
$\therefore \quad 0 \mathrm{AFO}$ CB F8 0020 E3 FA 0020
\therefore 0AF8 6C FA 0020 F4 FA 0020
.: OC00 D0 B5 CA D0 D1 F0 OA 20
$\therefore 0 \mathrm{C} 08 \mathrm{BC}$ FE 00 DO AB 20 BC FE
.$: 0 C 1000$ D0 A6 A5 28 C5 1D D0
$\therefore 0 \mathrm{C} 18$ A0 20 6C FA 00 A4 1F F0
.: 0C20 2B A5 29 C9 9D D0 1D 20
.: OC28 31 FB 0090 0A 98 DO 04
.: 0C30 A6 1E 10 OA 4C FC FA 00
.: OC38 C8 D0 FA A6 1E 10 F6 CA
$\therefore 0 C 40$ CA 8A A4 1F D0 03 B9 C2
.: $0 C 48000091$ C1 88 D0 F8 A5
.: OC50 2691 C1 20 D1 FC 0085
.: 0C58 C1 84 C2 A0 4120 BB F8
.: 0C60 0020 CB F8 00 A9 1E 20
.: 0C68 D2 FF 20 2D FA 0020 CB
.: 0C70 F8 00 A9 1F 20 D2 FF 4C
$\therefore \quad 0 \mathrm{C} 78$ B1 FD 00 A8 20 C3 FE 00
.: OB00 6C FA 00 A9 09 A2 0000
.: OB08 $85 \quad 27 \quad 86 \quad 28 \quad 20$ CE F8 $\quad 00$
.: 0B10 $20 \quad 6 \mathrm{~F}$ FC 0020 D1 FC 00

\therefore OB2O 052031 FB 00 BO E9 4C
. 0 OB28 44 F8 0020 E3 FA 00 A9
\therefore OB30 0385 1D 20 BB FA 0020
. 0 B38 9C F8 00 D0 F8 A5 2085
.: 0B40 C1 A5 2185 C2 4C 47 FC
.: 0B48 00 C5 28 F0 0320 D 2 FF
.: 0B50 6020 E3 FA 0020 6C FA
.: 0B58 00 8E 1102 A2 0320 DB
.: 0B60 FA 0048 CA DO F9 A2 03
.: 0B68 6838 E9 3F A0 05 4A 6E
.: OB70 1102 6E $10 \quad 0288$ D0 F6
. OB78 CA DO ED A2 0220 CF FF
.: OC80 DO 1198 FO OE 86 1C A6
.: 0C88 1D DD 100208 E8 86 1D
.$\quad 0 C 90$ A6 1C $28 \quad 60$ C9 $30 \quad 90 \quad 03$
. $0 \quad 0 \mathrm{C} 98 \quad$ C9 $47 \quad 60 \quad 38 \quad 60 \quad 400245$
.: OCAO 03 DO 084009302245
.: OCA8 33 DO 084009400245
.: OCBO 33 DO 084009400245
.: 0CB8 B3 DO 084009000022
.\quad OCCO 4433 DO 8C 44000011
\therefore OCC8 224433 DO 8 CC 44 9A 10
.: OCDO 224433 DO $08 \quad 400910$
.: 0CD8 224433 D0 08400962
.: OCEO $13 \begin{array}{llllllll}13 & 78 & \text { A9 } & 00 & 00 & 21 & 81 & 82\end{array}$
\therefore OCE 80000000059 4D 9192
$\begin{array}{llllllllll}: & \text { OCFO } & 86 & 4 \mathrm{~A} & 85 & 9 D & 2 \mathrm{C} & 29 & 2 \mathrm{C} & 23 \\ .: & \text { OCF8 } & 28 & 24 & 59 & 00 & 00 & 58 & 24 & 24\end{array}$
$\therefore \quad 0 \mathrm{DOO} \quad 00 \quad 001 \mathrm{C} 8 \mathrm{~A} \quad 1 \mathrm{C} \quad 23$ 5D 8B
.: 0D08 1B A1 9D 8A 1D 23 9D 8B
\therefore OD10 1D A1 $0000 \quad 2919$ AE 69
$\begin{array}{lllllllll}\therefore & 0 D 18 & \text { A8 } & 19 & 23 & 24 & 53 & 1 B & 23\end{array} 24$
$\therefore \quad 0 \mathrm{D} 20 \quad 5319$ A1 00001 A 5 B 5 B
\therefore OD28 A5 692424 AE AE A8 AD
$\begin{array}{llllllllllllll}\therefore & 0 D 30 & 29 & 00 & 00 & 7 C & 00 & 00 & 15 & 9 C\end{array}$
$\begin{array}{lllllllll}\therefore & 0 D 38 & 6 D & 9 C & A 5 & 69 & 29 & 53 & 84 \\ 13\end{array}$
. 0 D40 3411 AS 6923 AO D8 62
$\therefore \quad 0 D 48$ 5A $4826 \quad 6294885444$
$\therefore \quad 0 \mathrm{D} 50$ C8 546844 E8 940000
$\begin{array}{llllllllll}. \therefore & 0 D 58 & \text { B4 } & 08 & 84 & 74 & \text { B4 } & 28 & 6 E & 74\end{array}$
$\therefore \quad 0 \mathrm{D} 60$ F4 CC 4A 72 F2 A4 8A 00
.: 0 D68 00 AA A2 A2 $74 \quad 74 \quad 74 \quad 72$
$\begin{array}{lllllllll}\therefore & 0 D 70 & 44 & 68 & \text { B2 } & 32 & \text { B2 } & 00 & 00 \\ 22\end{array}$
$\begin{array}{lllllllll}\text {. }: ~ 0 D 78 ~ & 00 & 00 & 1 A & 1 A & 26 & 26 & 72 & 72\end{array}$
.: 0 D80 88 C8 C4 CA 26484444
$\therefore \quad 0 \mathrm{D} 88$ A2 C8 3A 3B 52 4D 4758
$\begin{array}{lllllll}\therefore & 0 D 90 & 4 C & 53 & 544648 & 44 & 50 \\ 2 C\end{array}$
.: OD98 41 4C F9 00 3F F9 00 DD
.: ODAO F8 0006 F9 0060 F9 00
.: 0DA8 87 F9 00 E9 F9 00 FD F9
\therefore ODBO 0040 FB 0094 FB 00 C 2
\therefore 0DB8 FB 0035 FC 00 5D FD 00
.: ODC0 8B FD 00 AD FD 0017 F8
-: ODC8 00 OD $20 \quad 20 \quad 20 \quad 5043 \quad 20$
.: ODDO $20 \begin{array}{llllll}53 & 52 & 20 & 41 & 43 & 20 \\ 58\end{array}$
\therefore ODD8 $52205952 \quad 20 \quad 5350$ AA
\therefore ODEO AA AA AA AA AA AA AA AA
. 0 DE8 AA AA AA AA AA AA AA AA
\therefore ODFO AA AA AA AA AA AA AA AA
$\therefore \quad 0 D F 8$ AA AA AA AA AA AA AA AA

```
T=0:FORJ=1024TO3550:T=T+PEEK (J) : NEXT :?T
    2 8 3 3 7 0
READY.
T=0:FORJ=1024TO1663:T=T+PEEK (J ) : NEXT : ?T
    6 8 6 3 1
READY.
T=0:FORJ=1664TO2303:T=T+PEEK (J) : NEXT:?T
    7 7 1 5 5
READY.
T=0:FORJ=2304TO2943:T=T+PEEK (J) :NEXT:?T
    74768
READY.
T=0:FORJ=2944TO3550:T=T+PEEK(J) :NEXT:?T
    6 2 8 1 6
```


M/C Programming

FORJ $=1024$ T01663STEP8:T=0 : FORK $=$ JTOJ +7 FORJ $=2304$ TO2943STEP8: $\mathrm{T}=0:$ FORK $=\mathrm{JTOJ}+7$ $: T=T+\operatorname{PEEK}(\mathrm{K}):$ NEXT: ?T, : NEXT
:T=T +PEEK (K) : NEXT: ?T, :NEXT

464	382	565	426	835	672	923	1265
474	451	472	587	901	916	859	881
447	538	579	481	937	901	1193	589
655	774	510	850	999	989	1179	1046
756	780	802	910	751	926	1013	943
886	853	801	784	1083	901	867	677
876	840	835	1383	986	880	1329	909
753	1190	1134	831	987	810	645	1103
816	803	753	883	964	892	874	1089
686	889	850	893	1059	981	941	1001
593	987	1415	1035	1215	995	837	792
1088	1079	1070	762	975	838	808	1052
1132	853	825	1193	517	684	863	825
639	1207	983	824	994	791	1284	911
975	1041	744	1408	977	1129	991	514
965	1082	1230	1139	858	1282	992	916
664	793	768	987	698	832	888	1283
905	617	1049	1218	822	994	666	1190
1192	794	1201	803	1117	977	995	577
858	1030	805	1036	1146	805	737	1305

FORJ $=1664 \mathrm{TO} 2303$ STEP8: $\mathrm{T}=0: \mathrm{FORK}=\mathrm{JTOJ}+7$: T=T + PEEK (K) : NEXT : ? T, : NEXT

FORJ $=2944$ TO3551STEP8: $\mathrm{T}=0: \mathrm{FORK}=\mathrm{JTOJ}+7$
$: T=T+\operatorname{PEEK}(K): N E X T: ? T$, NEXT

1196	1068	713	682	1202	880	1259	797
646	683	913	1191	997	924	645	891
1045	1417	835	1166	1239	1072	901	1054
1417	1224	1150	951	958	1437	698	965
1232	1143	991	953	1290	1295	1013	985
884	1103	796	1284	876	818	800	1318
1274	937	1277	835	1125	1095	1002	1211
902	770	638	1227	714	1027	1021	1079
876	912	714	660	959	671	726	655
1133	1388	894	893	443	475	475	502
659	919	708	825	500	552	739	458
854	963	1293	1340	600	457	662	540
762	930	658	8758	461	843	535	325
655	1270	1001	1419	848	1031	342	445
953	1082	878	1256	1180	934	836	810
1082	775	834	858	980	796	612	882
1104	837	968	1185	848	1368	577	956
806	963	982	916	859	1089	288	481

The new Seikosha GP-100VC graphics printer for around $£ 235$.

Offering big printer performance at a fraction of the cost, the latest addition to the famous range of Seikosha micro-printers is the 100 VC . The precise match for the VIC 20.

Featuring all the VIC 20 characters, symbols and graphics as standard, the Seikosha 100VC includes full graphics capability. It enables graphic, character and double width character modes to be intermixed on a single line as well as repeating graphics data, as you want, with a single command.

Many other advanced features, plus Seikosha's proven reliability and the nationwide support of DRG's distributor network make the 100VC the natural choice for the VC10 user.

DIMENSIONS:

Depth - $91 / 4^{\prime \prime}$ (234mm)
Width $-171 / 4^{\prime \prime}(420 \mathrm{~mm})$
Height - $51 / 4^{\prime \prime}$ (136 mm)
OPTIONS:
Interfacing for most other systems available on the GP100A model.

FEATURES INCLUDE:

- 80 col .30 cps .
- Dot Matrix unihammer action.
- 154 characters (inc graphics)
- VIC-20 8-BIT CODE
- Full graphics.
- Double width printing.
- Automatic printing
- Up to 10 " paper width.
- Original +2 copies.
- Tractor feed.
- Self testing.

Telephone the number below and we'll tell you where your nearest distributor is located. See the remarkable Seikosha GP10OVC in action
(Peripherals \& Supplies Division) 13/14 Lynx Crescent, Winterstoke Road, Weston-super-Mare, BS24 9DN. Tel: (0934) 416392.
THE FINEST WORLDWIDE SUPPORTED NATIONWIDE.

INLAE

The Interface System to suit your Micro

APPLE II/ITT 2020 CBM PET/VIC-20 HP-85 (IEEE-488)
 SUPERBRAIN SHARP MZ-80K/80B TRS-80

S-100 Computers or RS232C/V24 or 20 mA current loop

INLAB is a multi-channel modular Eurocard system housed in a 19" industrial rack with integral power supply, connectors, ribbon cable etc.

Units available include:-

- 16-, 8-, 4-channel analog multiplexers
- 12-bit A/D convertor (25, $\mu \mathrm{sec})$
- 13 -bit integrating A / D convertor
- 12-bit 4 channel D/A convertor
- 6 BCD digits opto-isolated inputs with full hand-shake
- 8-channel relay (or optoisolator) control unit
- Bidirectional RS232C/V24 + current loop with handshake
- Programmable stepper motor controller + power supply
- Real Time Clock/Calendar
- 8 Decade Universal Frequency/Period Counter. Fully programmable. (DC-10MHz)
- 8-channel programmable gain amplifier. Fully differential.

FULL HARDWARE \& SOFTWARE SUPPORT

Write/Telephone for a demonstration with your own computer.

[^3]'SIMPLY WRITE': the kind of word processor you didn't think you could afford. Some $£ 300$ programs have fewer facilities. Tape or disk; any printer; any 40 or 80 column PET. Needs 16K. Tape £40, disk £45.
'SIMPLY FILE' Records System (DBMS). Selects by any key. Prints alphabetical lists, mailing labels, columnar reports of all or selected records. Calculates between fields. Totals, averages columns. Works with 'Simply Write'. Fast, easy, robust and very, very versatile. Disk £65.
GOTTA PET? ADDA VIC! High resolution graphics, programmable characters, colour and sound for your PET/CBM system? All this PLUS a complete extra computer using your PET's disk drives, printer etc? Under £200 including VIC computer and our 'SIMPLY LINK' PET-VIC link system.

ADVERTISER'S INDEX

IF YOU HAVE ONE OF THESE...

AND YOU WOULD LIKE...

SILICON OFFICE DOES IT ALL

Add muscle to your 8032 with a memory expansion board and SILICON OFFICE and give yourself some elbow room. SILICON OFFICE is a leading software product for the Commodore 8096, that offers you the ability to create and control your application system(s) the way you want it.

The unique 'data base' facility in SILICON OFFICE has easy to use routines to draw record cards on the screen, insert and 'housekeep' your file information and then combine and analyse data from several files to produce complex reports designed to your needs. Simple but repetitive routines can be stored for subsequent execution. A powerful word processor is built in, available at all times, with the emphasis on ease of use for the average typist.

In fact SILICON OFFICE can be considered as a product offering three packages in one with communications complementing the data base and word processor. If you already own a Commodore 8032 this can be quickly upgraded to the latest technology microcomputer - add SILICON OFFICE and you will have a total and cost effective solution to your software needs for years to come and all of this for just over $£ 1000$. For more details contact your Commodore dealer or complete the coupon below.

PLEASE SEND ME MORE DETAILS ON SILICON OFFICE
Name
Position \qquad
Company \qquad
Address \qquad Telephone:

Send to: Bristol Software Factory, Kingsons House, Grove Avenue, Queen Square, Bristol BS1 4QY. Telephone 0272277135

- 64 K of RAM....20K of internal ROM
- Superb colour graphics and sound

Unbelievable SPRITE graphics
40 columns
16 colours

- Programable attack, decay, sustain, pitch, wave form, volume....practically a music synthesizer!
- CP/M capability as a plug-in option
- TV output

STACK also have available for the CBM 64...LIGHTPEN, RS232 INTERFACES, ANALOGUE JOYSTICK for SPRITE motion, MEMORY EXPANSION....
ORDER YOUR COMMODORE 64 NOW FROM STACK TO ENSURE EARLY DELIVERY

(shipping £6 plus VAT)

A single ROM for each Pet* in the system uses the Pets' own intelligences to organise the sharing of any CBM disc drive.
No external hardware required.
Uses standard Pet cabling
Works with most standard software including Súperscript, Comal, Pascal, etc.

- Compatible with TURBO ROM
- Many different files of the same or different types may be processed simultaneously or even shared.
- A screen message indicates if delays are encountered and original screen contents are restored entirely when bus is free.
for 4000,8000 series, any Basic 4 machine including upgrades.

A Neat System at a Neat Price!

Starter Set (2 Pets)
Extra Pets (ordered with above)
Later Additions ع81.00 ${ }_{\text {vat }}$ £27.00 ${ }_{\text {vat }}$ £36.00 ${ }_{\text {t vat }}$
Special ROM required for 9 " Pets $£ 19.00$

Hold the LIGHT PEN + like a normal pen, poin it at your TV screen and the pen tells your VIC-20 what it sees! Instead of pressing keys ouch the screen with your LIGHT PEN + and
move your man in CHESS, create LIFE, play OTHELLO, play GO. Point the pen at your man and move him to his new position. Many games are already available for the LIGHT You + and many more are being developed. You can write progams which allow you to read place images or words on the screen eren or From a long list on your screen use the e.g. PEN + to choose the facts and figures you want. The well-known game
CONCENTRATION is supplied on cassette tape FREE with every LIGHT PEN +

$$
\text { only } \underset{\text { FREE GAME SUPPLIED! }}{25} 00 \text { plus VAT }
$$

ANALOCUI JOYSIICK
ony $£ 13.00$ plus vat

LIGHT PENGAMES

Light Pen Go (colour and sound) The program allows two players to play this traditional and fascinating Oriental game placing, and removing pieces using the LIGHT

Light Pen Othello (colour and sound) A two-player game placing and reversing pieces in this high strategy game using the PEN +
Light Pen Draughts (colour and sound) The program allows two players to play ake, including kings and blocking of illegal moves. Requires a 3K RAM pack.
Light Pen Concentration (colour and sound) A two-player game in which a pack of cards over by the LIGHT PEN + in a search for pairs. Highest score wins.

Light Pen Life (colour and sound) In this cult game pieces are placed in the universe and grow or die like bacteria colonies displays.

Cassette based games for use with STACKS' Commodore Approved LIGHT PEN +
ony $£ 5.00$
each plus VAT
Programming the VIC-20? Why not write your ery own games! The ANALOGUE JOYS IOK will add another dimension to the games you write. It gives you full Joystick control in AN direction - and it fires too! Move your spaceship in a figure of eight or loop the loop - you are not restricted to up, down, right, left any longer!

Contact your local Commodore VIC dealer for details.

Stack Computer Services Limited, 290-298 Derby Road, Bootle, Merseyside. 051-933 5511. Telex: 627026.

[^0]: Commodore Computing International 193 Wardour Street, London W1

[^1]: 10 PRINT" BASIC 4 DISC APPEND"
 20 PRINT"THIS ROUTINE WILL ALLOW A SUBROUTINE"
 30 PRINT"SAVED AS A PROGRAM FILE ON DISC TO BE"
 40 PRINT"APPENDED TO A PROGRAM IN THE MEMORY"
 50 PRINT"N.B. THE SUBROUTINE MUST BEGIN WITH"
 60 PRINT"A LINE NUMBER GREATER THAN THE LAST"
 70 PRINT"IN THE MAIN PROGRAM
 80 PRINT"ACTIVATE WITH :-
 90 READI
 100 PRINT"SYS"I;CHR\$ (34)"FILE NAME"CHR\$(34)",8"
 110 FORJ=0TO 56: READ A:POKEI+J,A:NEXT
 120 REM THE ROUTINE IS FULLY RELOCATABLE
 130 REM THE START ADRESS IS IN LINE 1000
 1000 DATA 634
 1010 DATA $169,0,133,157,32,125,244$
 1020 DATA $169,96,133,211,164,209,208$
 1030 DATA $3,76,0,191,32,73,244$
 1040 DATA $32,165,244,32,210,240,165$
 1050 DATA $211,32,67,241,32,192,241$
 1060 DATA $32,192,241,56,165,42,233$
 1070 . DATA $2,133,251,165,43,233,0$
 1080 DATA $133,252,32,140,243,76,28$
 1090 DATA 244
 READY.

[^2]: \$1EE
 \$1EF
 \$1 $\rightarrow 1 \mathrm{EE} 6$
 $(\$ 09)$,
 $\$ 1 E 44$
 \$1E4F
 FCE10
 FEE

[^3]: 18/19 Warren Street
 London W1P 5DB Tel: 013877388

