Gsommosores
 COMPUINCSeptember 198e £1.00 international

LIGHT PEN
 VIC
 LIGHT PEN
 DAMS PRICE ONLY

$$
817.35+\text { rat }
$$

FOR PET
12' SCREEN

VICMON

THE ULTIMATE PROGRAMING AID FOR THE VIC
Ful! machine code package with:

Assembler, Dissassembler,
Fill, Re-locate, Identify, Exchange, Compare, Printing, Dissassembler etc., etc.
Needs DAMS RAM/ROM board or similar

RAM 'N ROM

 BOARD3K RAM
In Hires area.
Also space for VICAID and VICMON programming aids.

BUY THE 3K RAM 'N ROM BOARD WITH VICAID AND VICMON WITH MACHINE CODE MANUAL (WORTH £5.00) FROM MOS TECHNOLOGY FOR ONLY £67.85 + VAT AND GET A FREE VIC LIGHT PEN (WORTH £17.35) VIC REFERENCE GUIDE R.R.P. £14.95 DAMS PRICE $£ 14.50$

VIC STARTER KIT

VIC 20
C2N Cassette Deck, 10 Blank Cassettes,
User Manual, Vic Programmers Reference Guide, 1 Joystick.
Worth £238.30 ONLY 214.00 +VAT
(VAT INCL. PRICE = £244.62)
OR VIC 20
With free 3K RAM pack or
Super Cartridge Game ONLY

DAMS BUSINESS COMPUTERS LTD.
Gores Road, Kirkby Industrial Estate, Kirkby, Liverpool L33 7UA.
Telephone: 051-548 7111 (20 lines)

Contents

Editorial

Editor

Pete Gerrard
Advertising Manager
Peter Chandler: tel 01-439 3537

Editorial Assistant

Fiona McCormick

Production

Three's Company
Managing Editor
Nick Hampshire

Commodore Computing is published 10 times per year by Nick Hampshire Publications. It is not in any way connected with
Commodore Business Machines U.K. Ltd.

Typesetting by
Centrepoint Typesetters Ltd, London
Printed by Edwin Snell printers,
Yeovil, England.
If you would like to contribute to Commodore Computing, please send articles or programs to:-

Commodore Computing
193 Wardour Street
London WC2

We will pay 10 pounds for each program printed, and 20 pounds for each article published, which should be approximately 1,000 words long.

To the best of our knowledge, there are some half a dozen specialist Commodore magazines around the world, five of which are written in the English language. Of these, two come from America, and are produced by the company themselves. Power/Play, a quarterly, is aimed very much at the Vic end of the market, and concentrates (as its name suggests) very heavily on the games side of Vic.

Commodore The Microcomputer Magazine is a bi-monthly publication, covering the whole range of Commodore equipment, but to be quite frank the level of content over the entire magazine is quite low, with only a couple of articles worthy of serious technical consideration.

The Australian magazine is again an in-house publication, which seems to rely very heavily on all the rest of the magazines for its actual content, although to be fair it does spread itself over the complete spectrum of Pets and Vics available.

The fifth one, apart from ourselves of course, is a Canadian publication called The Transactor, recently taken over by Canadian Micro Distributors: it too used to be in-house. This one is to be taken very seriously, and has an extremely good technical content level. You may have seen some material from Transactor reproduced here and elsewhere.

This brings me to the heart of the matter: reproduction of material from other Commodore magazines. I am not averse to doing this, because although we get issued magazines free of charge, the vast majority of you will not even be seeing them. As some of the material is so good, it is only fair to bring it to your attention.

Obviously we will limit the amount of duplicated material, but where it's of sufficient interest it is useful for as many people to see it as possible. People keep re-inventing the wheel: there's no reason for you to have to do so.

Dear Sirs,
It seems that there is a distinct lack of programs in certain areas as far as Commodore Pets are concerned. I wonder if you can assist further by recommending a good source of available software - for instructional learning purposes

- games, and if possible technical applications in architecture/building. If you could assist me I would be very grateful.
Yours faithfully
J. Randall

Woking
Dear Mr. Randall,
There are a number of suppliers of the kind of software you require. On the instructional learning side, probably your best bet would be a company called ESM, who produce a wide range of such software. They can be reached on 0945-63444.

Games, well everyone's producing games at the moment. Two companies it would be worth calling are Audiogenic (0734-586334) and Supersoft (01-861 1166), both of whom produce a large number of games for the Pet.

Technical Applications in architecture/building are obviously a different kettle of fish, but three companies to contact, all of which produce software in this area, are Claremont Controls
(0669-21081), Computer and Design Services Ltd. (0202-697341) and the Technical Software Centre (0234-750102).

We hope the above is of assistance to you.

Dear Sirs,
I am a newcomer to computing, having recently purchased a Vic 20. Any information on learning and reference books would be appreciated.

Thanking you in anticipation.

Yours faithfully

Mrs. Bunney
Fareham

Dear Mrs. Bunney,

The Vic 20 'suffers' from an almost overwhelming number of books and instructional aids at present, some of them good, some of them dreadful. Surprisingly, in view of their
track record in this area, a couple of the best items about at the moment come from Commodore. Their book the Vic Programmers Reference guide deserves an investigation, as it covers an awful lot of ground from assuming no prior knowledge of the machine.

On the software front, and aimed more at the beginner, is An Introduction To Basic part 1, with the promise of part 2 to come sometime. This consists of a cassette and a voluminous manual, which is extremely well written. Both of these should be available from any Commodore dealer.

On a more general front, you could do worse than go into your local W.H. Smiths and have a browse in their computer books section. They sell quite a few now, and one of them should attract your attention.

Dear Sirs,

Please find enclosed remittance for 12.50 pounds, for one years subscription to Commodore Computing.

If you have run an article previously on how to assign the function keys on the Vic 20, could you please forward a copy of that article if possible.
Thanking You
Thomas Gallivan
Tralee

Dear Thomas,

Thanks for the cheque: magazines will be winging their way to you!

We haven't published an article on assigning function keys, but here goes.

Basically, there is not a lot that can be done on the standard Vic. Before serious assignment can start taking place you're going to need something like the Super Expander or another analogous cartridge. However, we can detect which one is being pressed, and by seeing if the Commodore logo key or the shift key is pressed as well, we have a number of different options available to us.

Memory location 203 returns a certain value if the shift key is placed, and location 653 has the following values: -0 if shift not pressed, 1 if pressed, 2 if the logo key is pressed, and 3 if both the shift and the logo key are pressed.

The following program will tell you which key is pressed.
$10 A=P E E K$ (203)
$15 B=P E E K$ (653)
$20 K=0$
25 IF $A=39$ THEN
K=1:GOTO 50
30 IF $A=47$ THEN
$K=3$:GOTO 50
35 IF $A=55$ THEN
$K=5$:GOTO 50
40 IF $A=63$ THEN
K=7:GOTO 50
45 GOTO 10
50 IF $B \quad 1$ THEN $B=0$
$55 K=K+B$
60 PRINT "FUNCTION KEY"
";K;" PRESSED"
65 GOTO 10

Dear Sirs,

I have two 32 K Pets series 2000 and 3000 , interfaced to Centronics 701 and 703 printers respectively, the former at home for programming purposes - my interest being exclusively business.
All my programmes are stand alone, being cassette based, which can be a nuisance at times, where for instance a debtor changes his address. With backup tapes this can take an hour or more to save and verify.
I have held my hand as to discs - especially as Commodore don't enjoy a good reputation in some quarters here - for I want to be able to access any part at random within five seconds at most.
Can you advise on hard disks?
Yours faithfully
William Nesbitt
Foxrock

Dear Mr. Nesbitt,
I can quite understand you desire to become disk-based: when you eventually take the plunge you'll wonder how you ever managed without!

I don't really share your concern over the Commodore disk drives: I've been using an 8050 for a long time now, and no discernable problems have arisen as yet. You say you require an access time of 'at most' five seconds. Bearing in mind that this is the average delay time for a CLOSE and OPEN file loop, you should be able to get at any record in less than a second.

The major hard disk unit on
the market at present comes from Mator Systems Ltd. They do a 22 Megabyte unit, at 3,695 pounds, a 30 megabyte unit at 4,095 pounds, and a tape backup system (which takes approximately 45 minutes to backup a 22 meg. system) at 1,895 pounds.

Personally, I feel an 8050 would be adequate for your purposes, but if you want to contact Mator, their number is 0273-720451.

Dear Sirs,

Please could you advise on whether there is a simple way of preventing a program on a PET 4032 from being listed or amended by the operator.
We have an application at work where this is necessary. With a CP/M based machine the instruction 'SAVE . . .P' will prevent the program from being listed when loaded.
Yours faithfully
Alan Mason
Leicester

Dear Alan,

Unfortunately there is no simple way to prevent a program being listed or amended. Any method that you try and implement can usually be got around very easily, so we can't really come up with an answer. If any readers have any bright ideas, we'd be delighted to hear from you.
Meanwhile, two suggestions to be going on with. One is to buy Raeto West's Programming the Pet/CBM, which has a couple of pages devoted to discussions on a Basic command which he calls UNLIST: this performs precisely the function you're interested in, were it possible to perform the command satisfactorily.

The other is to buy one of the number of compilers around at the moment, and present your operator with a compiled version of the program. This, when listed, will simply display one line number with one SYS call: unlistable and unalterable.

New Product News

So many companies are producing books on the Pet and/or Vic these days that it's almost impossible to know where to start. Still, there are a number of major distributors who have made new contributions lately, so perhaps we can point you in the right direction with those.

John Wiley and Sons Ltd.

Their latest catalogue covers a whole host of general books on computing, but have quite a collection of specific Commodore interest. Again, these are mainly introductory guides to programming in Basic, but many other sections are covered as well.

They have also a large selection of software items as well, including a version of the famous Sargon chess program, a guide to general mathematics, a book on Pet-aided design of active filters, and so on. Worth checking out, and they can be reached on 0243-784531.

Osborne/McGraw-Hill

They are in really the same position as John Wiley, in that they have an awful lot of books on general computing topics, and a variety of specifics. Worthy of mention is the Hands-onBasic with a Pet, an introduction to Basic programming on the Pet (and hence the Vic as well), which is a very well put-together book, and extremely useful for the beginner to programming.

Amongst the others is a Fun and Games book, a collection of programs previously published (or should I say taped) by the well-known cassette magazine Cursor. It makes a change from the usual run of the mill games book in that all the programs are superbly legible (and what's more they work!). We take a more detailed look at this one in our book reviews section this month.

Many others are done by Osborne/McGrawHill. Possibly the best one is the Pet/CBM Personal Computer Guide, written by Adam Osborne with Carroll Donahue. For a while Commodore themselves where shipping out this book with every Pet delivered, so highly did they think of it. A very comprehensive guide for the newcomer to the Pet, convering all the major peripherals on the way.

Further information on Osborne/McGraw-Hill can be obtained by ringing 0628-23431.

Prentice-Hall and Gower Press

These last two companies are similar to our first two, in that amongst the general plethora of books they publish, there are a number devoted to the Pet and/or Vic. Both are worth giving a ring: Prentice-Hall are on 0442-58531, and Gower are
on 0252-331551.

Other Suppliers

Of course, these are not the only book publishers currently producing books on the Commodore range of equipment. If any of you others are out there, drop the editor a line, and we'll take it from there.

Prestel

A lot has been written in the computer press and elsewhere about the rapidly expanding world of Prestel, unfortunately usually accompanied by the rapidly expanding cost of Prestel. A company down in Bristol (Avon Office Services, on 0272-502008) have now produced a low-cost adaptor for any television and microcomputer, which brings access to Prestel that much easier and cheaper.

Known as Tandata, this product will interface to the Pet, allowing it to store, review and process Prestel and other viewdata pages on and offline. Plus, of course, you also have access to the standard Prestel character set, giving you an 80×24 display, 8 colour display, with (amongst other wonders) double height graphic characters.

INSTALLATION SERVICE

Experience is often very valuable when installing your new Commodore System. Mistakes are frequently very costly and waste valuable time.
ONE DAY SERVICE
For a fee of $£ 85$ per day plus expenses a member of staff will help you overcome early difficulties and set you on a suitable path to a successful computerisation.

FULL INSTALLATION SERVICE

This is tailored to your requirements. We can supply extra operations staff, or technical advisors. Extra equipment can be useful if an installation is required by a certain date. As full Commodore Systems Distributors we have experience you will probably need.

MAINTENANCE

Most of the system breakdowns are not hardware faults, but consist of lack of understanding of programs or faults based upon unwise practices. Our staff are trained to assist with system problems, and they are capable of finding the best possible solutions. Maintenance staff will visit your site, diagnose your difficulty and if necessary replace any components needed.

For information concerning this service please contact Brian Homewood or Robert Jones.

PEACH DATA SERVICES LTD.
COMPUTER SERVICE TO BUSINESS
5 HORNINGLOW STREET, BURTON-ON-TRENT, STAFFS. BURTON (0283) 44968

New Product News

The unit comes complete with all the necessary gumph to connect it up, but British Telecom make their presence felt making it essential that you contact them for installation of a Prestel jack socket.

Very Important Products

A team of people down in the new 'area to be in' Milton Keynes, have come up with a tremendous graphics display system, which like the aforementioned Prestel adaptor will work with any microcomputer currently available, although of course our interest centres on the Pet.

Known as Micro Design (although they like to call themselves The Solution People), the VIP system connects your microcomputer up to a television set, to give you a resolution display area of 512 by 512 pixels. On screen at any time you can have up to 15 colours selected from a 'palette' of 4,096 different colours (bet you didn't even know there were than many!).

Using the Picaso software package, you have ready access to over 500 subroutines for extremely powerful and fast 2 or 3 dimensional picture manipulation. The accompanying illustrations should give you some idea of the capabilities given to you: I'm only sorry they're just in black and white.

Some of the Picasso commands are very interesting. For example, 'Explod', which displays the individual elements of a picture gradually moving apart. There are also a large number of rotational algorithm provided as well, turning your Pet into a picture-based word processor of tremendous power.

Already at home in a number of scientific and industrial area, VIP is quite a revolution in terms of graphics capabilities. The cost of VIP itself is around 2,900 pounds, and by the time you've done all the IEEE interfacing and all the other connecting up necessary, the complete system should still cost you well under 10,000 pounds. For further details contact 0908663655.

Like Blood to a Vampire

3D Digital Design and Development have developed a combined hardware and software package to help make routine blood analysis a lot easier.

Using the tried and trusted Coulter Blood Analyser linked up to a Pet, the system handles all the administration, label writing, result and statistical checking necessary in work of this sort.

Along with the relatively low-cost Commodore dot matrix printer, the whole system is very good value for all the tedium it takes out of this normal-
ly boring task. If you're interested, your contact is Dr. Mills, on 01-387 7388.

Flexirom

As we all know, all that RAM in your Pet or Vic is lost when the machine is powered off. Even the usual alternative EPROMs, which can quite happily maintain all the information when turned off, require erasing and re-programming by a (usually) expensive Eprom programmer, even if just one byte is being modified. So, Clever Computer Controls (who thinks of these names?) have come up with the answer.

Calling their system Flexirom, it is essentially programmed like normal RAM, but can be switched to ROM mode so as to retain data when the power is removed. It uses a 4 K CMOS RAM board, complete with Ni-Cad battery, and is supplied with a 24 way DIP to DIP ribbon cable which connects into any of the usual spare sockets in the internals of your machine.

A simple 'at a stroke' operation converts all your coded RAM into ROM, and this ROM can be subsequently very easily altered without having to resort to the old Eprom programmer. At only 39.50 pounds, this is a veritable bargain.

For more information ring 022770644.

From Floppy to Hard

Mator Systems Ltd. (0273-720451) have just released an advanced version of their hard disk unit for the Pet. The Shark, as it's known, has a specially developed 'Chichester' controller, enabling access of the high storage capacities of Winchester disks. Using hard disks, Mator now have a 22 megabyte and a 30 megabyte disk system available.

It operates as far as the Pet is concerned as a 'souped-up' 8050, using all the usual commands. Thus, programs written for the 8050 will work on these new drives, provided all the relevant data is copied over of course.

Unlike the earlier Commodore disk units, you do not require extra add-ons to work in a multistation environment: they can be simply chained together.

Also available from Mator is a backup system for the hard disk, known as the Sharkive. This is a tape streaming device, incorporating 300XL and 600A quarter inch removable magnetic tape cartridges. Connecting directly up to the Shark drive, a backup of a full 22 megabyte disk takes approximately 45 minutes, including full read-write checking.

Pricing starts at 1,895 for the backup unit, 3,695 for the 22 meg. device and 4,095 for the 30 meg. one.

Compared to the price of the existing Commodore 1 megabyte disk unit, these prices are relatively low, and deserve looking into by anyone with a serious computing requirement.

Testing Technology

Usually the most testing technology comes
from reading all the blurb that is sent in as press releases, but at least Engineering Laboratory Equipment Ltd. (0442-50221) have some useful and interesting products to announce. All to do with monitoring scientific and engineering equipment, the heart of the matter is something called Dataface System 3, which links the Pet to the outside world in a 'unique' manner.

Space forbids me expanding on this one, but if you're interested I would certainly give them a call for further information. They also have a range of programs available to consolidate the Dataface: direct shearing, transducer calibration are just two of the ones available.

Superscript

We mentioned in last months Club News section, the story concerning Superscript, the $£ 35$ Wordprocessor from ICPUG. At the time there was a court case pending, which meant that temporarily Superscript was taken off the market.

However, all appears now to have been resolved and the company called Precision Software are now marketing the product in the U.K. A Mr Turner, on 01-330 7166, has all the details. At present they are talking about a selling price of around $£ 240$: if you read the Club News section last month you will know what my opinion of this is!

It is interesting to note that Commodore have taken on the rights for Superscript for all of their new machines (Commodore 64, etc.), I wonder what difference colour and sound will make to a Wordprocessor!

Next month we will be bringing you a detailed review of this package.

Club News

Of all the independent user groups around the country, the one which enjoys the most privileged position is possibly the Berkshire group, based at Slough College of Higher Education. After all, Commodore Business Machines is situated only just around the corner, and in an industry were good working relationships are important, it's quite nice to know that the company you are in many ways dependant on can be visited at a moments notice.

Brian Jones is the man in charge of affairs there at present, and any further information you require can be gleaned by either writing to him at the Department of Maths and Computing, Slough College of Higher Education, Wellington Street, Slough, Berkshire, or giving him a ring on Slough (STD Code 0753) 34585 extension 81.

Locale Served

As you might ascertain from the name of the group, they cover the whole of the Berkshire area. One wonders if the future King of England ever pops in to visit them on user nights? After all, Buckingham Palace does possess at least one Commodore system!

So basically, anyone who is in and around the Slough area is more than welcome to come along to the meetings, details of which can be gleaned from Brian on the aforementioned number. For that matter, one assumes that they wouldn't be too offended if people came from further afield as well.

Potted History

The group was the first new one to be founded after the Vic was beginning to get off the ground in this country, and thus they have a fair sprinkling of Vic users in the group. An estimate puts the figure at around $25 \%-30 \%$, although interestingly enough it's probably nearer to a $50 / 50$ split on actual club nights.

There are no plans at present to form a separate Vic users group, as the interests of all seem to be well enough served as the set-up stands at the moment. Long term of course this may well change, as Vic and its derivatives become more and more well established, but we can only wait and see.

Meetings of the group are generally held on a monthly basis during term times: outside of this, there are not meetings going on. The location is usually the college itself, although they have spread their wings as far afield as their sister college at Langley, Crane Packing on the Slough Trading Estate, and are currently looking for a more permanent meeting place. We'll keep you
updated on the position here.

Club Nights

Their meetings follow the usual run of things, but with being so close to Commodore they do tend to have the special surprise guest appearance. For instance, at their last meeting of the summer term, as well as the traditional club 'questions, answers, news and views' session, a couple of the college's own students currently on release work at Commodore came in to demonstrate Simplicalc and VicWriter.

As well as those, Martin Maynard of Audiogenic popped in to give a talk on marketing and distributing software in this country, and some of the problems involved (not surprising, in view of his recent encounters with Arfon). Also, they were treated to a demonstration of PetSpeed, the basic compiler that's causing so much fuss at the moment.

Recently, John Collins of Commodore came along to chat about the new machines coming up later this year and early next, and other people from the company have come along from time to time as well.

This 'privileged position' was shown well a couple of months ago when, just after the Pet Show, they were able to borrow a copy of the promotional video Commodore were using to show off the new equipment, so that all the people who couldn't get to the Show, or who missed it when they were there, had a chance to at least see the machines.

Other Activities

Aside from user group activities, the college also gets involved in other projects as well. Held at the college recently was the South East Study Group for Teachers in Further Education, which featured a number of demonstrations on Commodore equipment.

So, an active group based down in Slough, who are doing a lot of good work on behalf of Commodore, and who are providing a valuable service for both newcomers and old hands at the personal computing game.

If you'd like your club featured in a future issue of Commodore computing, please get in touch with the editor of the magazine.

MICROSCRIPT Word processing made simple!

YOU DON'T HAVE TO BE A WIZARD TO USE MICROSCRIPT

Whether you're a secretary, businessman, author, or journalist - MicroScript can help you. From a single page letter to volume mailings, from one page reviews to complete books - MicroScript is simple to use yet rich in facilities.

MicroScript has the largest text memory capacity of any word processor for the Commodore 8000 series computers - even though it's probably the longest program ever written for the 8032 and 8096. Sounds incredible doesn't it?

Here's how we do it: MicroScript is the first in a
new generation of business software, supplied not on a floppy disk but burned into banks of microchips. What this means is that instead of using the memory that's already there, MicroScript adds 46 k of ROM and $2 k$ of RAM to your computer. It even doubles the ROM expansion capability.

What does all this mean for you, the user? It means that you're investing in the latest technology. It means that you're buying the Rolls-Royce of word processors. Most of all it means that you're investing a little money to save a lot of time. Simple, isn't it!

Education

Educational Workshops

Last month we gave a rundown on just some of the suppliers of educational software and hardware add-ons for both the Pet and Vic range of computers. However, there is another way of receiving software material, and moreover a way that is free of charge. This can be done by joining Commodore's Educational Workshop scheme.

For those of you who are not familiar with the inner workings of the scheme, this month we'll take a look at how it works, what precisely it does, and most importantly how you can go about joining it.

What is a Workshop

Basically an educational workshop, as defined by Commodore, is any educational establishment, be it a school, college, university or whatever, that either owns or has access to any number of Pets and/or Vics, and is prepared to assist others in the school or outside of it. Quite what form that assistance takes is up to the individual place concerned, but most commonly places will have open nights, or more formal training sessions, whereby newcomers to the microcomputing arena can see the kind of work that's being done, and how they could benefit as well.

So, if you belong to an educational establishment, and are prepared to assist others in this kind of manner, you're part of the way there.

However, there's more to being an educational workshop than just helping out other people.

Public Domain Software

Commodore have put an awful lot of software into the public domain i.e. people can make a copy of the disk (or tape) without fear of infringing manufacturers copyright, and then pass that copy onto others who might benefit from its use.

Where does this software come from? Much of it of late has been arriving from schools and colleges in Canada, and making its way via various devious routes into this country and the hands of Nick Green at Commodore. Quite why so much should come from there is a mystery, but nonetheless it arrives here.

Needless to say there are contributions from other sources as well, and the U.K. is by no means least in the list of suppliers of such material. Many of the programs will have already been used in an educational environment,
although probably an equally large number will simply be demonstration or half finished programs that never saw the light of day.

Perfect Software?

Now Commodore themselves are the first to admit that this software is far from perfect. This is not the point: the point is that this software exists, and whether you use it as is, or more usually modify it for your own uses, it will save many an invaluable hour in the planning and development stage of educational programming.

This is one of the major benefits of being in the scheme. Commodore distribute all this software free of charge, and you can then make as many copies as you like for your own internal use. Thus you will be receiving literally hundreds of programs at no cost to you: an important factor where traditionally cost-conscious schools are concerned.

What the Scheme Does

Essentially the above: to assist in helping others, and to promote and distribute public domain software. There have been in the past, and no doubt will be again in the future, a number of special offers to establishments in the scheme. Discount on software buying, or hardware buying, are just two examples that spring to mind.

How do I join

There are no hard and fast rules about how a college or school goes about becoming a member. The number of Pets and/or Vics owned by existing members can and does range from one to over fifty, so number of machines is clearly not a premium. Similarly, not everyone can, or has the facilities to, offer help and advice to outsiders.

Consequently the final decision must rest with Commodore themselves. Clearly if you have a few computers, and can give assistance to others, it will be of help in the final evaluation, but none of this is of necessity a pre-requisite.

Although the man in charge of Commodore in education is Nick Green, your initial contact at the company should be with Jean Frost, at the traditional address of 675 Ajax Avenue, Trading Estate, Slough, Berkshire. Write and tell her that you're interested in the scheme, and require further details, and all the necessary information will be sent off to you.

If you join, it will cost you nothing, and I'm sure you will not regret the decision.

More on the world of computers and education next month.

PET HARD DISKS

The Small Systems HARDBOX acts as an intelligent controller for up to Corvus Winchester drives.

- PET DOS 1 and 2 compatibility
- Multi user capability on Corvus Drives
- 16 Megabyte max file size
- 65535 max records per relative file
- Over 2000 files on 5 MB drive

Price.

PET MINI-WINI

The MW-1000 Mini-Winchester is a compact desk-top unit that just plugs into the PET - gives you up to 12 Mb of hard disk storage under CP/M or PET DOS or both!!
At the flick of a switch, this amazing unit allows you to have:-

- The whole disk under CP/M (plus 60 K of RAM and Z80)
The whole disk under PET DOS
- Half of the disk under PET DOS and half under CP/M!!
No changes to the PET or ROMS are required - just plug in and go
3 Mb .
£2538
6Mb. £2837

Prices include CP/M Utilities, 60 K RAM and Z80.

PET CP/M

SOFTBOX and CP/M SOFTWARE
SOFTBOX allows the PET to run the worids most popular operating system for micros. Operates with PET floppies and/or a Hard disk system.
Comprehensive range of CP/M software available ask for our Catalogue. standard)

IEEE-488

IEEE-488 SERIAL INTERFACE
TYPE C.
IEEE-488 SERIAL INTERFACE
TYPE B300. £186
40 char input buffer
IEEE-488 ADDRESSABLE PARALLEL INTERFACE TYPE A100
TYPE G.P.I. AP MICROPROCESSOR BASED
IEEE-488 BI DIRECTIONAL INTERFACE £275 K input buffer standard 59 K max
TV/VIDEO MONITOR INTERFACES
RS 232C TO 20mA CURRENT LOOP ADAPTER.
£17.50
PETSPEED
Optimising Basic Compiler £240

DEVELOPMENT TOOLS

S10/CP/M

8048 family in circuit emulator $£ 550$
8748 programmer. $£ 395$
Prom emulator.. £295
Range of cross assemblers for most popular micros.
8048 BASIC compiler................................ £ 195
COMPLETE PET and HP-85 SYSTEMS
"Give me one good reason whylshould buy aVIC 20 home computer."

C commodoreVIC 20 The best home computer in the word.

Languages

COMAL Part Three

Over the last couple of months we've presented two articles by Brian Grainger, on the use and implementation of Comal for the Commodore range of micros. No-one has yet done a Vic version, and to be honest I can't see any point in anyone producing such a version. Twenty two columns are not ideal for showing a structured language at its best. Still, you never know. This month, John Collins of Commodore's Technical department, fills us in on a few more facts and figures.

First of all, some basic (sorry!) information about the language Comal 80. Last Spring Commodore placed an implementation for its hardware (4032 and 8032) in the public domain throughout the world. The language was originally developed, principally by Borge Christensen, at the Danish State Teacher Training College in the mid-seventies. The name comes from COMmon ALgorithmic language.

The intention was to combine the simplicity of Basic with the algorithmic structure of Pascal: initially Basic was kept as a subset of Comal. In 1980 a working group defined an improved version, Comal 80, which no longer maintains Basic as a subset. It is now the first language taught to all Danish schoolchildren, and is the ideal first language for use in secondary education and at the top of primary education.

Commodore Version

Commodore's Comal 80 v.00. 11 includes the full Comal nucleus as defined by the working group, plus some of the recommended extensions. The disk contains both a unified version, allowing only 4.75 K for a Comal program, and a split version, allowing 15 K . It is this version which has been distributed (on a 4040 disk and with a single version of a brief manual) to all of the Commodore educational workshops that had been appointed at the time.

Anyone can take a disk along to a meeting of their local workshop (details from Jean Frost on Slough 74111) and copy the Comal disk. Arrangements for obtaining a copy of the manual vary from workshop to workshop, but do remember that photocopying is seldom free. As there is one file on the disk which is 106 blocks long, the utility program supplies with your disk unit 'Copy 2040-8050' cannot be used to transfer Comal onto an 8050 disk: Jim Butterfield's 'Copy/All' (available through most
regional ICPUG groups) has to be used instead.

New Enhancements

Brian Grainger, author of our last two articles, has modified Comal to work with cassettes, and also to work on the 3032. This version is available through the Independent Commodore Products Users Group. ICPUG members (subscription 7.50 pounds per annum to Jack Cohen, ICPUG Membership secretary, 30 Branchester Road, Newbury Park, Ilford, Essex, IG2 7EP) can obtain it by sending a blank disk or cassette (as required) together with payment for return postage to Bob Wood, ICPUG Software Librarian, 13 Bowland Crescent, Ward Green, Barnsley, South Yorkshire, S70 5JP.

JKL software in Denmark have enhanced Commodore's Comal 80 to rev. 1.01 which includes all the recommended extensions, and has been described by Borge Christensen as far and away the best implementation of Comal on any machine. A soft-loaded version for the 8096 is in the public domain worldwide: it comes on an 8050 disk, and allows 38 K for a Comal program.

Copies can be obtained by sending a blank disk with payment for return postage to the Comal User Group, c/o North London Hobby Computer Club, Polytechnic of North London, Holloway Road, London N7 8DB.

To use this extended Comal in any model other than the 8096 an add-in hardware board is required. This works with any Pet from the 8 K 2001 (but with new ROMs) up to the 8032, enabling the Pet to power up into Comal (but with Basic still available). Further details are available from Instrutek A/S, Christiansholsgade, DK-8700 Horsens, Denmark (tel. 0104556111 OO).

End user price of this board is 495 dollars: contact Instrutek for U.K. pricing, and a 1-off dealer discount of 15%. They also have available an extension board providing high resolution graphics (512 by 256 pixels) from within Comal. The price of this is a further 495 dollars.

Documentation

Commodore's original Comal manual is available by taking a copy via a software workshop. A new version including the extensions now exists, but it is only being issued to workshops in response to specific requests since Len Lindsay, founder of the USA Comal User Group, has written what will surely be the standard Comal manual, published by Reston (a subsidiary of Prentice-Hall International) and distributed via U.K. bookshops.

As well as this there are a number of books on

Comal which are now making their appearance.
The first of these is Structured Programming with Comal, by Roy Atherton, which we took a look at last month: it costs 6.90 pounds in paperback, from Ellis Horwood Ltd. Borge Christensen's own Comal Tutorial book (10 pounds in hardback) is now also available from Ellis Horwood Ltd.

Another little number which would be worth investigating by anyone remotely interested in Comal is the Comal Bulletin. It boasts an impressive editorial line-up, starting with Roy Atherton as senior editor, and amongst the consultant editors are Borge Christensen, John Collins (had to give you a plug John!), Len Lindsay, et al. Articles have and will include The World of Comal, The History of Programming Languages, Keeping Control of Long Programs, Comal Standards, Comal Structures, and many more.

Subscription to this bi-monthly publication is 10 pounds in the U.K., and 13.50 pounds overseas, and it is again available from EllisHorwood Ltd., at Market Cross House, Cooper Street, Chichester, West Sussex, PO19 1EB.

User Groups

As well as Len Lindsay's group in the States, details of which appear in his quarter page advertisement in every issue of Commodore Computing, there is now a UK Comal User Group. They meet from 7 to 9 pm on the first and third Wednesday of each month (but during Polytechnic term time only) in Islington Community Computer Centre at the Polytechnic of North London.

Anyone with queries on Comal is quite welcome to contact the Polytechnic, by writing to:-
Barry Miles,
Comal User Group,
c/o North Longon Hobby Computer Club
Polytechnic of North London
Holloway Road
London N7 8DB
We'll be back next month with more news on views. If there's any particular aspect of Comal you'd like to see attacked here, please get in touch with the editor, and we'll see what can be done.

COMMODORE PET COLOUR GRAPHICS PROCESSOR

- $640(\mathrm{H}) 288(\mathrm{Y}) \times 3$ planes

8 colours, double-buffered screen
16 bits microprocessor (intel 8088)
192 kbytes of dual-ported display memory standard graphic functions
program in PET Basic

14in. COLOUR MONITOR

- high resolution
- RPG inputs

AVAILABLE NOW

Colour Graphics Processor: $£ 599+$ VAT
High Resolution 14in Colour Monitor: $£ 620+$ VAT

Enquiries and Demonstration invited
CAPITAL COMPUTER SYSTEMS
32 Windmill Street (Off Tottenham Ct. Road)
London W1P 1HH
01-636 3863 (3 lines)

PINEWOOD COMPUTERS

announce
the launch of
the 64 K EXPANSION BOARD for 8032 PETs
Yes. We couldn't wait for the others so we have launched our own 64 K Memory Expansion board to upgrade the 8032 PET to a full 96 K . Silicon Office and other 96 K programs are now possible on a 32 K PET with our board. It is of U.K. design and manufacture and comes complete with full fitting instructions.

Our price $\quad £ 350$

Other new PET enhancements include:
EPSON/PET INTERFACE CARD
RRP $\mathbf{1 9 0}$
For all MX printers. Our board gives 40 column PETs uppercase and graphics and 80 column PETs both upper and lowercase without the need of switches or any software routine.
RICOH RP1600 INTERFACE CARD
RRP $£ 115$
Our board gives 40 column PETs uppercase and 80 column PETs both upper and lowercase without any restrictions.
Add $£ 10$ delivery plus VAT to above prices.
To place your order send your remittance for the required amount to:

PINEWOOD COMPUTERS
Mail Order Dept.,
17 Adelphi Crescent, Hayes Park, Hayes, Middx or telephone 01-841 1507
DEALER ENQUIRIES WELCOME

Microcomputers

A Beginner's Guide

This month we start a brand new feature in the magazine, aimed exclusively at the businessman and the world of microcomputers.

Each month we'll be looking at the various aspects of computers in business, not only as a guide to the newcomer, but also intended for the more experienced user who is perhaps trying to increase the potential of his or her system.

We'll round off each article with a brief look at any new developments in this field in the software, hardware and also book areas.

Where do I begin?

This must be the most commonly asked question by the businessman who wishes to increase the efficiency of his office. (At the extreme risk of offending all womens libbers, I'll continue to use the term 'his' from now on. Please take it to mean both sexes, I can't keep writing 'his or her' all the time!). There is an enormous number of computers on the market, each one seemingly backed up by a dazzling array of software and various users guides. Truly, where do you begin?

We are not a general magazine, we are solely covering the Commodore range of machinery, so our choice is made significantly easier from the outset. We will only categorise various job needs into one or more of the Commodore computers. After all, for every micro currently available, there will be, somewhere along the line, a Commodore machine that will be reasonably analogous. Consequently, we will consider everything from that company's viewpoint.

The first thing that must be decided is, what do you want the computer to do? That is as hard for you to decide as it is for the salesman to answer the question "Well, I know it's a computer, but what precisely do they do?'" The oft-quoted answer "Anything you want them to, sir" is insufficient for our needs, just as perhaps your idea of "I want it to do my accounts" is for the salesman. They say forewarned is forearmed: this is what you must do.

Define Your Terms

As in any argument, you must first of all define your terms. Take a look around your office, and try and assess precisely what you want doing. Perhaps you perform a lot of mailouts that you personalise because you think it will impress your clients. It certainly will, but it will not impress the
secretary if it means typing out virtually the same letter one hundred times. Thus you will need some kind of word processor, but this is not enough.

There are many word processing packages available at present, ranging from the extremely basic to the very sophisticated. For the purpose of a plain mail-out, a fairly simple word processor would suffice, but you may want to do more. A common event is to install a package and then discover that you want it to do an awful lot on top of what you actually bought it to do. It is no use then saying "Oh if only I'd spent another 50 pounds and bought a decent package'". Thus, you ought to consider what other common office procedures could be handled by a word processor, and go armed with that information as well.

Obviously, word processing is not the only kind of office or business procedure that could be computerised. Other common examples include the inevitable accountancy, stock control, payroll, and so on, but don't forget that there are many other problems that you may be encountering that could easily be solved by the introduction of an appropriate data base system.

For example, for a long time people used to bemoan the fact that there was not set program for estate agents, forgetting that a good data base could quite easily cope with questions such as 'give me all the three bedroom houses in Croydon currently selling for under 33,000 pounds that have a garden gnome next to the goldfish pond', or whatever. Many office practises can be tackled in this way.

As we stated earlier, make sure you know what you want before entering the showroom.

Close Encounters of the Salesman Kind

When you enter the showroom, be sure to be armed with a series of questions that you will not be sidetracked from. In other words, do not go in there with the intention of purchasing a payroll for 100 employees, and come out with a Pacman machine to keep 100 employees deliriously happy.

There is no doubt about it, a salesman is paid to be a salesman, and if you're hovering between purchasing or not, he will be perfectly capable of pushing you into a buying situation. 'Ah yes sir, if you purchase this program AS WELL, you'll be able to ...'". This is not the reason you walked into the shop: you want to tackle specific problem areas, and not wander off into some great debate about the merits of any particular company's product.

Make no mistake, I am not decrying salesmen. Rather, keep your wits about you: it's your money after all, it's only his commission.

Get to the Point

You know what you want, and it's up to you to convince the other person THAT you know what you want. "I want a program (or programs) that perform the following functions', and make sure you see the programs in action before going any further.

It is a common practise, and regettably quite a deplorable one, that many packages have their own demonstration programs ready written, and when performing to that demonstration can appear to be perfectly adequate for your purpose. Do not ask to see (or be pushed into seeing) a demonstration using someone else's data: if you want a computer to look after your stock control, for instance, go armed with data of your own.

After all, it's your data the program will be handling, not someone else's. Certainly, give realistic figures, at the same time looking ahead to what your future requirements might be, but the message has to be: it's your office, it's your money, so get the system you want and not the
one the salesman wants you to have.

Summary

When purchasing a computer system to perform whatever function, remember that you are the one who is going to have to use it. If not personally, you will certainly be held responsible for any shortcomings that might expose themselves as time goes by. Don't worry that you're taking up too much of someone else's time: that's what they're paid for.

Next Month

These pages have only featured a general guide on purchasing your first system. Over the months ahead we'll be exploring in greater detail more specific application areas, and covering the usual (and perhaps not so usual) office practises that can quite easily be computerised, saving you not only time, but more importantly money.

New Hardware

You'll no doubt have read about the plethora of new machinery that Commodore have committed for release in the coming months. The news on this is very promising: a recent visit to

'Oh, I Don't Mind the $\$ 800,000$ Price. But is that the Only Colour it Comes In?'

Microcomputers

Commodore left this author convinced that for once they have got it right, and that the announced new products will actually appear on time.

The main machine as far as we are concerned is of course the Commodore 720, and to a less extent the 510 series. Clearly both of these are aimed at the top end of the market, with main emphasis on the 720. This is determined to win back the position that they were possibly losing to Sirius (and others), and stands an extremely good chance of doing so.

The software planned for this is aimed fairly and squarely at the business end of things. As we mention elsewhere, some five companies have 720s at the moment: one of them, MMS in Bedford, are developing an integrated accountancy package to run on the beast, and if it lives up to the reputatin of the Microfacts 82 system, will certainly prove a welcome member of what is bound to be a fairly large software family.

The 8000 machines of course keep rolling on, with plenty of existing products to keep them going, which brings us nicely to . . .

New Software

Not too much to report here, as not too many new business software packages have appeared lately: rather it's the old favourites staying in the game. However, keep an eye out for Swedish firm Datatronic, who are bringing out increasing numbers of packages, with the emphasis going more and more towards the business side.

New Books

The best buy at present appears to be a book called 'Business System Buyer's Guide', published by Osborne/McGraw-Hill at a price of 5.95 pounds, and written by Adam Osborne with Steven Cook.

Although this book is aimed at microcomputers and first time buyers in general, it does give a wealth of useful information about pitfalls to avoid, and practises to use when deliberating over which system to buy. So, although we know the computer make we want, we do not know which particular model or package to go with it, so this is certainly a book worth exploring. It contains much useful information.

How to buy a payroll program...
 First, go to your CBM/PET dealer and ask to see at least two different payrolls. Second, make sure that one of those you see is the LANDSOFT 'PAYROLL PLUS'.
 We are serious when we say you

 should see more than one. That way you are more likely to find the one most suited to your needs. However good PAYROLL PLUS is, there are certain things it won't do that other payrolls will and vice versa.Why do we say that you should insist that PAYROLL PLUS is among those you should see? Because it is so elegant in operation and so extremely easy to use. If you want a payroll that needs an expert 'computer person' to operate it, or if you enjoy spending hours trying to decipher an operating manual then PAYROLL PLUS is definitely NOT for you. You would find it too quick and easy to master.

So don't make the mistake of

LandSoft.
28 Sheen Lane,
London SW14 8LW.
Telephone: 01-399 2476/7
SUPERIOR PROGRAMS FOR THE CBM/PET MICROCOMPUTER

HP's NEW LOW COST COLOUR PLOTTER

- FAST PLOTTING
- HIGH RESOLUTION
- HIGH QUALITY
- MULTICOLOUR
- A4

MAIN DISTRIBUTOR

- COMMODORECOMPATIBLE
- APPLECOMPATIBLE NATION-WIDE SERVICE
- UNDER £1060
- RS 232 AND HP1B INTERFACES

Software Review

Microfacts82

Many microcomputers find their homes in the business environment, fulfilling a wide variety of tasks. One of the most common practises is in accountancy, where many man-hours can be saved by judicious use of hardware and software. This month we take a look at one of the major accountancy packages on the market at the moment, namely Microfact82, from MMS in Bedford.

Facts ' n ' Figures

Microfact82 is a fully integrated sales, purchase, nominal and VAT ledger system, retailing at 1,000 pounds plus VAT, and will run on the 8032/8096 with an 8050 disk drive, and a variety of printers. It is in fact an update to their earlier Microfact80 package.

Although their sales handout states that all updates and maintenance are provided free, with no time limit, the dealer hand out states "We shall supply the up-date free of charge, but we have no objection if you wish to charge the user". If you are a user, you ought to have an objection if anyone attempts to charge you!

As a quick footnote, MMS also provide two other packages which link into this main one. These are Microfact82 Sales Invoicing, which links into the Sales Ledger part of the main program (and has the facility to link into the sales, nominal and VAT ledgers), and costs 250 pounds plus VAT.

The other program is the Microfact 82 Stock System, which like the Sales Invoicing, is compiled, and links into everything else. It gives you the facility to prepare an invoice, update the sales ledger and stock records simultaneously, and finally interface to the nominal ledger. Quite impressive, at 500 pounds plus VAT.

Further Improvements

The original Microfacts was introduced in early 1981 for the 3000 series of machines, and when the 8000 appeared later that year, many changes were made to the existing programs to take advantage of the new facilities now offered them. Chief amongst these changes was the use of compiled programs, which speeded up execution considerably, and a complete revision of the menu structure, giving much faster access to the independent routines.

Capacity

The total number of records available using an

8050 disk system averages out at 10,000. However, this is made up of sales accounts, purchase accounts and nominal accounts, along with outstanding sales and purchase transactions and period nominal transactions. The former take 2.5 records per account and the latter 1 record per transaction. Thus any combination, depending on company activity, can be calculated from the above figures.

Security

There are a number of built in security checks, to avoid unlawful tampering with your company data. For instance, all nominal ledger reports can be protected by a 4 digit password number. In addition to this, there is an extra password number included, which allows access (provided you know what you're doing) to the password change routine.

Program Operation

The programs are extremely easy to use, and unlike most accountancy systems do not require hundreds of disks to be swopped continually. Microfacts uses just two disks, but of course it is desirable to have backup copies made at fairly frequent intervals. There's no point in computerising your accountancy, only for someone to come along and accidentally wipe out your data.

To do this from within Microfacts would be rather difficult, if not impossible. However, there's always the risk of accidental erasure from exposure to magnetic fields or whatever.

The documentation as a whole is quite good, but as most of the instructions for use can be displayed on the screen, there is no need to keep constantly referring to 'War and Peace' as is the case with a number of other packages. The users guide is very good: it covers everything in a pretty straightforward manner. I am by no means a professional accountant, but it was all simple enough to understand.

Setting Up

Obviously a great deal of time will be spent initially entering all your previously man-recorded data. Logically enough, the user yill have to exercise a fair amount of caution here, as one slipup could eventually prove disasterous. However, there is a lot of checking of data inputted by Microfacts, field lengths are displayed, all necessary instructions are shown on the screen, and so on, so there should be no great problems encountered here. As a whole, the package is user friendly in this, and other, aspects.

Ledger Control

Having set up the company account, of which up to five can be stored per disk depending on overall volume, ledger controls then have to be implemented. This is done by specifying company name (up to a maximum of five), ledger number (five sales or purchase ledgers per company), ledger name and type (whether sales or purchase), and finally nominal ledger control account numbers.

If the ledgers are to be linked, then the program will automatically create the relevant control accounts in the nominal ledger and provide the relevant account descriptions.

Having gone through this systems control procedure, the individual accounts are then set up. This is done quite simply by returning to the main menu and selecting the appropriate option, and one then follows normal accountancy practise, with no deviations to accommodate the computer.

Once you're set up and ready to go, starting up every day is a straightforward procedure. Various printer options are supported, which have to be specified at the commencement of any run. The paper to go with this can either be standard 11"
by $9.5^{\prime \prime}$, or specially printed sales invoices, sales ledger statements and purchase ledger remittance advices.

Samples of these can be obtained from any Microfacts dealer. Alternatively you can always have your own personalised paper printed, but this does tend to be on the expensive side.

Various standards for data entry, both alpha and numeric, are adhered to throughout: again, once the user is familiar with these, no problems should be presented in the day-to-day entering of information.

Period End Routines

Having taken the obligatory security copies of the master disks, in case of disaster, the daybook file is then run out, which automatically updates the nominal and VAT aspect of any transactions. This can in fact be done at any time, but is preferably only done at the end of the period.

Cash book, petty cash book, wages etc. are entered as self balancing journals, followed by a printing of the trial balance until one gets it right. The period nominal ledger transaction report follows, without which the period end routines cannot be run.

Finally the period nominal journal report (and sales and purchase reports if necessary) follow, before the actual period end routine. This removes all fully settled transactions from the sales and purchase ledgers, and clears the period nominal ledger transaction file, whilst modifying the nominal ledger account balances brought forward.

Conclusion

It would be impossible here to go through thoroughly everything which is implemented in this package, otherwise there would be nothing else in the entire magazine! Suffice it to say that it covers everything desired of an integrated accountancy package, with links to stock control et al. as optional extras.

It is not cheap: no package of this nature and scope can ever hope to be so. For the price you pay, you are getting a very good deal.

To sum up, one of the best and most thorough accountancy packages on the market at present. Ring up Shane Barnes of MMS (0234-40601) to find out who your nearest appointed Microfact82 dealer is, and get them to take you through its paces. If accountancy problems are clogging up your company, or even if things are going fairly well, you will not be disappointed, and you may well find yourself saving both time and money. After all, isn't this what accountancy is all about?

Hardware Review

PD Digital Plotter

Last month we featured a review of the HP7470A plotter from Hewlett Packard. Coming in at over 1,000 pounds, it nonetheless proved to be an attractive buy for the kind of use it would get put to. Can a graphic plotter at less than 600 pounds prove equally attractive?
J.J. Lloyd, down in Southampton, have been in business for around 20 years now, and have been producing analogue recorders for the last 12 of those. As well as these, their main areas are in tensile testing equipment, and educational equipment.

Already well-established as one of the largest European supplier of analogue recorders, they have now come out with a low cost digital plotter (a spin-off from earlier work) for the Pet. Incidentally, this is their first entry into the printer/plotter market.

Places of Use

As with most plotters, the main use of the PD4 would be to provide graphical representation in a fairly clear way, that could not otherwise be obtained on the more traditional printers available. Thus, anywhere where the Pet is being used to accept and analyse data in fact. Such fields as maths, physics, engineering, R. and D., architecture, and so on.

First Appearance

The machine is of attractive design, with a number of exterior controls for use in local mode: one of these toggles you from remote to local. Of the others, two are for use in defining the zero point for the X and Y axes, one is a pause facility whilst plotting (and unlike the HP one, this works properly! i.e. it does start off in the same place as it left off), one resets the axes after you've finished re-definition, and the final one is a simple lift and put down the pen.

Linked up to the Pet by a direct IEEE connection, the plotter will work with any of the 3000,4000 or 8000 series machines. Interestingly enough, the software to drive the beast comes in ROM form, which adds a number of commands to the existing Basic interpreter, performs straight line interpolation and allows character generation.
The idea of putting the software in ROM is a good one, as it means that the Pet can still continue to operate as a normal machine, but access to the new commands is but a SYS call
away. To get back into normal mode, there is a Kill command to disconnect the package.

Initial setting up of the plotter is explained clearly and precisely in the manual provided, and the manual as a whole is more than adequate even for someone who has never used such a device before.

After going through the procedure of getting all the cables linked up, the ROM installed and the package implemented, you're ready to go.

Commands Implemented

Fifteen extra commands are added to the Basic interpreter.
Whilst this is not comparable to the two million with the HP machine, it is enough to produce reasonable output, as the accompanying illustrations show. All the now-to-be-expected commands are there, such as move pen, draw (both of these in absolute or relative), print various strings, specify size of characters, draw axes, home, and so on.

Six additional error messages are also added to the command set.

A couple of special commands deserve extra mention. The first of these is rotate character, which can be done through 0,90, 180 or 270 degrees. This is particularly useful for such functions as plotting graphs, labelling axes, and so on. Like all the other commands, it has to be reset before proceeding further, otherwise some very peculiar results can occur!

The other interesting one is for producting
special graphics characters: a set of four are already implemented as soon as you set the system up.
One idiosyncrasy with mixing with Basic must be mentioned here: when using an IF . . . THEN statement, if the THEN is to be followed by a plotting command, it must be followed by a colon. Thus, we have IF . . .THEN: !DR etc.

Detailed Useage

If for some reason you wish to change the device number of the plotter (as supplied it is device number seven), the manual gives you the details of how to do this. Thus you can go from any device number in the range zero through to thirty: obviously you'd have to be fairly careful if you had a number of other devices on the bus.

If you're interested in this kind of thing, the manual goes into a fair amount of detail about how data is transmitted and received, a brief rundown on how the IEEE standard works in conjuction with the plotter, and so on. It's good to see this kind of thing included, bearing in mind the sort of fields it is likely to be used in.

Sample Programs

Whether J.J. Instruments supply sample software on disk or tape is up to how you charm the salesman. We were certainly provided with such material, and I should imagine they would have no objections to supplying you. Certainly a number of programs are included at the back of the manual.

Vectors are drawn in either absolute or relative mode: absolute relates to the origin, wherever you've defined that to be, and relative refers to the last pen position. Commands can also be stacked, so as to save repeating the new Basic command all the time. When using these new commands, one must always use variables rather than absolute addresses, so these must be defined before attempting to do anything.

Plotting Statements

For instance, the statement $X=10: Y=20:!D R, X, Y$ would be acceptable, but not !DR,10,20. This in reality is of benefit, as it makes error checking of programs that much easier.

All of the variables you define refer to millimetre measurements, using an overall scale plotting area of 250 millimetres in the Y axis, and 180 in the X. The actual resolution of the plotter is 0.044 millimetres in the X direction, and 0.061 in the Y .

The sample programs provided cover such
topics as drawing curves, printing of various special characters, axes, circles, and onto such esoteric subjects as Lissajous figures, Polygons, and Histograms. Given the basic information gleaned from this, it is easy enough to get heavily involved in your own plotting routines.

Technical Information

Some of this we'll have given you already, but one or two other salient points. The plotter will accept copy up to a size of 297×210 millimetres, but will only plot on a 250×180 grid. Plotting speed is, naturally enough, dependent on the speed of the Pet, but with pen raised it races along in the Y axis direction at a rate of 600 millimetres per second (or 1.34 miles per hour, if you want to impress your friends).

The pens are the usual plotter fibre tipped ones, and by judicious use of the pause facility, multicolour plots can easily be performed. Both pen and paper can be obtained without any major problems.

Physically, it weighs in at approximately 9 kilograms, with dimensions of $360 \times 445 \times$ 125 millimetres. All in all quite a compact little unit, and certainly transportable.

Conclusion

There are quite a few plotters putting in appearances for the Pet these days, with more and more coming on the market all the time. Consequently for a first time buyer in this field, the decision as to which to choose is becoming ever more and more difficult: rather like a first time computer buyer, there is an increasingly large array to choose from.

Certainly, price will (as ever) be a major consideration here J.J. Instruments cannot be faulted. At just under 600 pounds it represents an attractive buy.

Ease of use must again be a major selling point. Whilst the J.J. one has nothing like the range of commands that the HP plotter we featured last month has, those that are there are probably sufficient for most purposes, and are as easy to use as it is to write a Basic program to print out the numbers one to ten. The HP7470A is easy to use as well, but rather like the difference between Basic and machine code, I feel the PD4 is a more comfortable introduction for the beginner.

All in all, the plotter (given the price) represents good value for money, and is definitely worth comparison with plotter retailing at twice the price.

For further information contact Dave Sawyer of J.J. Lloyd Instruments on 048 95-4221.

Book Review

Pet Fun and Games

The book has something for every games fan, action games, puzzles, games of risk, strategy, chance and fun, so no one who buys this book loses out.

Compiled by Ron Jefferies and Glen Fisher from programs sent in to the American cassette magazine Cursor over the last three years. Thirtyone games (and fourteen of the best programmers!) have been chosen, and they are all highly enjoyable either for their fun value, skill, creativity or even education value.

The contents are listed out at the beginning of the book in sections for the different types of games, and each game has a few words on what it does so you know what you have in store if you play it!

Although distributed in England it was written in America and one or two problems that might arise if you have certain Commodore Machines should be stated.

Mixing Business with Pleasure

In America Commodore marketed the CBM Business machine for the business man and the PET for the general market. On the CBM there are no graphic signs on the keyboard although the graphics are still there.

The book tells you how to get into graphics mode clearly and precisely, by using the POKE 59468,14 (12) method, but unfortunately if you have an 8000 series machine or a CBM using this program and run it your graphics will appear disjointed, although this does not stop you playing the game it does spoil the interesting graphics.

Introduction

The introduction is short and to the point, no messing about here with long words or waffle. The importance of any graphic symbols that appear in the listings is described in the introduction, i.e. every symbol reproduced in a listing is meant to represent one of the existing Commodore graphic symbols. As not every make of Commodore machine has these symbols represented on the keyboard legend, and even if they have some of them take a lot of finding, this is a useful convention for publishers to adopt.

One problem I have often come across is that of trying to read badly typed or even worse badly written programs! I cannot fault this book where the typing of programs is concerned. The typeface they use is large and very clear, one
could not make a mistake through poorly typed listings. The printing itself is also very clear and remains so throughout the book, thus making the tedious chore of typing in a listing almost enjoyable!

Conclusion

A very good and enjoyable book, I cannot fault it. It is easy to understand with no complicated wording for the beginner. It is well typed and printed and at $£ 7.50$ it is reasonably priced for the young games player (Fathers, guard your wallets!). Available in this country from Osborne/McGraw/Hill, on 0628-23431.

Hands-On Basic with a PET

Hands-on Basic with a PET is just the book for all those of you who know nothing about programming the PET computer but want to learn. Although the books starts you off with a simple and straightforward introduction to the PET, it is very comprehensive and by the end you will have a thorough knowledge of how to program, as well as all the other subjects the book covers.

The author Mr Herbert D Peckham starts off by telling us the origin of the language Basic: no real bearing on what you will actually learn, but nonetheless quite interesting to know, and a useful background reference point.

The table of contents is well set out with good headings and simple sub-headings: the index supplements this admirably by providing clear and precise reference to material contained in the book. A quick look at these contents gives you a pretty good idea of the amount of ground covered here: from REM to Random, and stopping off at many places en route.

Overall Layout

Each chapter is neatly laid out, with questions and listings NOT squashed together but spaced out for ease of reading. An important point to notice is that the listings have not been re-typed especially for the book, thus causing more chance of errors, but instead the author has taken already tried and tested listings and printed them straight in 'as is'. A wise move, as there is nothing more annoying, whether you are in a classroom situation or at home, than typing in a listing only
to find that somewhere you have typed it in wrongly, and even more aggravating when you discover that it is not your fault in the first place.

The book has been broken up with diagrams and humourous quotes for assistance in remembering the fundamentals, and very quickly changes the easy terms that it substitutes in the early stages for the correct computer terms that you will have to use when working with computers.

Structured Programming

When the author does begin to delve more deeply into programming he attempts to teach a structured programming method, rather than the thud and blunder style currently employed by so many other computer books on the market.

Hands-On Basic with a Pet uses many examples, quizzes and tests throughout its content, giving the various answers at the back if you feel like cheating. Therefore, the best way for the learner to use the book is in conjunction with the PET itself, rather than just wading through it and trying to learn programming that way. An old Chinese proverb seems very much the basis for Mr. Peckham's philosophy:-

MIDLANDS
 COMMODORE PET SERVICE CENTRE
 Phone Anne on 021-772 8181 about our
 1. WORKSHOP \& FIELD REPAIRS
 2. BUSINESS SOFTWARE 3. STATIONERY \& SUPPLIES
 2. BUSINESS SOFTWARE 3. STATIONERY \& SUPPLIES

I am told and I forget
I see and I learn
I do and I understand.

SUMMARY

A very good book, I would recommend it for computer courses within schools and colleges. It is clearly and concisely written for teaching students who know nothing about the PET Computer, but wish to learn without the teacher having to juggle between five or six different books.

At $£ 11.95$ the book is fairly priced both for schools and colleges and for the home user.

McGraw-Hill (UK) Ltd do sell direct to the public as well as through mail order, at the following address:-

Marketing Services Dept
McGraw-Hill Book Co (UK) Ltd
FREEPOST
Maidenhead
Berkshire SL6 2QL
Their books should also be available through any good book shop.

Guest Expert

Dave Scott looks at Cursor Positioning Routines

After having programmed in a BASIC with many more extensions, structured constructs, and easy file handling commands, you might easily become frustrated writing code in Commodore BASIC. Of course, when working on the larger machines that support those types of BASICs, you don't ever get a feeling or understanding of how the operating system really works. One of the nice features about the PET is that you can actually look at the operating system, change certain parts of it to fit your own needs, and use some of the ROM routines to interface with your own programming.

One of the features I missed most was the ability to move the cursor to an X, Y location on the screen and print a message there. After a few attempts to position the cursor using POKEs to address 198 (position of cursor on above line) and 219 (line where cursor lives), I decided to write my own routine.

The routine is written in machine language and sits at the top of RAM, so that it can be used by any BASIC program that is loaded. The routine is entered via a SYS 32256, and your BASIC program must pass certain parameters as in the format:
sys $32256, y, x$,' 'your message should appear here"

Where " y " is any line number between 0 and 24 (25 lines), and " x " is any column position between 0 and 79 (80 columns). If the format is not as that listed above, or your X, Y coordinates are not in the correct range, the routine will break with a "syntax error".

I have provided both a BASIC poke program that readjusts the top of memory in order to secure the routine and pokes in the appropriate code for the routine, and the actual source assembly listing for those of you who have an interest or wish to make changes.

Since it may be awkward to run the poker program everytime, you may wish to run it once, then break into the monitor and do a machine language "save" to save it in program format (for subsequent "dloads"). In this case, I have also provided a loader program which first readjusts the top of memory pointers and the start of variable pointers (according to your largest program module in your application), then loads in the "program" version of the routine, and finally loads in your first application program, in this case, the "master menu".

This program will also work on 40 column PETs if you change the value " 80 " on line 200 of the BASIC poker program to " 40 ".

DO YOU PLOT GRAPHS?

This is the affordable answer. The new Hewlett Packard 7470A two pen graph plotter connects directly to your Commodore Pet (no interface required).

For full graphic output of Graphs, Pie Charts, Histograms, Overhead Transparencies, also with full Digitising facilities.

Supplied complete with cable, programming manual and sample program listing at:
$\mathbf{1 9 9 9}$ + V.A.T.
10 days approval against official orders.
For further information or a demonstration contact:

> C.S.E. (Computers)
> 12 Wokingham Road Reading, Berks.
> Tel: Reading (0734) 61492

P.S. Also available for Apple.

Guest Expert

KINGSLEY COMPUTERS LTD. 132 Desborough Road HIGH WYCOMBE, BUCKS HP112PU

CBM BUSINESS SYSTEMS

VIC HOME COMPUTERS

COMPUTER ACCESSORIES AND SUPPLIES

AGENTS FOR CBM APPROVED PRODUCTS

COMMODORE SERVICE CENTRE

00103	$7 ¢ 43$	2076	00	prtmsg	jsr ctirgot	；get current char
00104	7846	c9 2c			cma \＃44	is it＝＂．＂
00105	7648	fo 03			beq pirti	；yes，frint msg
00106		4c t． 2	78		jMFPerr	；no print syntas
00107	7 e 4 d			；		－error
00108	7e4d	2070	00	pret 1	jsr chirget	；get mext char
00109	7 C 50	c9 22			cmpr \＃34	；check for quotes
00110	7052	f0 03			beq prt2	；yes，go print
00111	7654	$4 \mathrm{c} \quad \mathrm{b} 2$	78	；${ }^{\text {a }}$	jmp err	；no pirint syntax error
00113	7057	2070	00	pirt2	jsr chrget	；get next char
00114	7 Pa	c9 22			cmF \＃34	；check for quotes
00115	7 fc	fo 03			tiea pirtend	；yes，done
00116	7 c	c9 00			CMP \＃0	；end of line？？
00117	7 e 60	fo 50			bea err	；yes，firint
00118	7862			；		－syntax error
00119	7662	20 d2	ff		jsr outcher	；
00120	7665	$4 \mathrm{C} \quad 57$	$7 e$		jmp pret2	；get next char
00121	7e68			；		
00122	7e69	60		pritend	rts	；done
00123	7669			；		
00124	7669					
00125	7×69			；$* * *$＊	get value of y 米	
00126	7669					
00127	$7 e 69$			，		
00128	7069	fo 47		gety	tieq err	；invalid char
00129	7e6t	bo 45			bics err	；print syntax error
00130	7e6d	20 c 3	7		jsr aschex	；conver \＃to hiex
00131	7 Cl 70	ad f5	7＊		lda temp	；temp＝converted val
00132	$7 e 73$	c9 19			cmpu \＃25	；is y＜25
00133	7 Cl 75	bo 3bi			bes err	－no
00134	7e77	3 d f3	7		sta ycoord	；store y coordinat
00135	7e7a	60			rts	
00136	7e7t			；		
00137	7e7b			；＊＊＊＊＊＊＊		
00138	$7 \mathrm{7b}$				move cursor to line y \quad 半关穴	
00139	7e7b					
00140	7e7b					
00141	7e7b	sef3	7	posy	1dx ycoord	；cursor down using
00142	7e7e	a9 13			lda H19	；ycoord as counter
00143	$7 e 80$	20 d 2	$f f$		jsr outcher	；home cursor
00144	$7 e 83$	e0 00			cps \＃0	；is $y=0$ ？
00145	7 7e85	fo 08			beq posyen	；yes，done
00146	$7 e 87$	3911			lda \＃17	； 19 ＝home
00147	7689	20 d 2	ff	posyl	jsr outctir	； 17 ＝cursor down
00148	7 esc	c ${ }^{\text {a }}$			dex	
00149	7 esd	do fa			bine posyl	
00150	$7 e 8 f$	60		posyen		；done
00151	$7 \mathrm{eq0}$			；		
00152	7 790			；$* * * * * * *$		
00153	7890			；$\%$ \％$\%$ \％	get value of $x \quad y$ \％x^{*}	
00154	7 7e90			；$* * * * * *$		
00155	7 P 90			，		
00156	7 e 90	$f 020$		getx	tueq err	；invalid char
00157	7892	6018			bics err	
00158	$7 \mathrm{7e94}$	20 c 3	$7 e$		jsr aschiex	；convert x to liex
00159	7897	3 d 55	7e		lda temp	；temp＝converted val
00160	$7 \mathrm{7e9}$	c9 50			Cmp \＃80	；is $x>80 ?$ ？
00161	789 c	t．0 14			tics err	；yes
00162	7 eqe	8 d f 4	78		sta xcoord	；store in xcoord
00163	7 cal	60			rts	；
00164	$7 \mathrm{7ea}$			；		
00165	7 ea			；$* * * * * *$		
00166	7ea2			；＊＊＊＊	move cursor to $\%$ \％＊＊＊	
00167	7 7ea			；＊＊＊＊＊＊		
00168	7 ¢ 2			；		
00169	7 ec 2	ae f4	$7 e$	pos\％	ldx xcoord	；cursor to column x
00170	$7 \mathrm{7ea5}$	e0 00			cp\％\＃0	；if $x=0$ ．done
00171	7 7ea	f0 08			bea prosken	；if not，
00172	7 7ea9	391 d			lda \＃29	；use xcoord as
00173	7 eat	20 d 2	ff	pos 01	jsr outctir	；counter
00174	7eae	c a			dex	－ $29=$ cursor－
00175	7 eaf	d0 fa			bue pos 01	
00176	7 eb 1	60		prosken	rts	

[^0]
Applications

'"Specialist Data Logging'"

Many industrial and research plants, and processes, must be monitored carefully, either for statistical information gathering or to warn of a malfunction in the system.

The programmable logic controllers normally used for these tasks are now being supplemented by the addition of a microcomputer. Woking computer and data logging specialists PPM Limited (Tel. 04867 80111) have developed a number of units designed for industrial data acquisition based on modified Commodore PETs.

PPM obtained one of the first PETs in the U.K. in 1977 for evaluation, and on the basis of their trials became Commodore agents, supplying around 1,000 PETs in the time since.

Their other interest in the PET lay in the fact that it used an IEEE interface for operation of its peripherals:
"It was the first low cost IEEE bus controlled micro-computer, and it revolutionised control monitoring, making data logging systems available to a much wider group of users.
"And as the cost of labour has risen, and the price of hardware dropped, the number of potential users has continued to rise.
"It makes sense to monitor processes automatically now, as it is by far the most cost effective method," PPM Director Roger Connel, explained.

The PET had the further advantage of being readily fitted with an RS232 interface, so PPM set about developing the PET into a controloriented micro-computer.

This took two forms - a more or less standard looking PET, and a special 'industrial' rack system for use in factories.

Important modifications to the standard PET included the full implementation of the IEEE interface to suit control equipment; provision for the holding of programmes on EPROM as an option to floppy disc; and the designing of a programme which would load automatically when the unit was switched on.

The result is a system which to be as cost effective as possible takes standard PET peripherals - floppy disc drive and printers - and can be adapted to suit most industrial and research monitoring applications by varying the inputs, or by fitting appropriate test equipment.

The 'standard' model is intended for use in clean dust-free places while the rack system is for use on the factory floor where is could be
subjected to considerable abuse in a harsh environment. In extreme conditions it can be fitted in a completely sealed cabinet.
It is in this sort of situation that the 'Autoload' facility is particularly useful. Starting the monitoring process is a simple matter of turning a key. This switches the assembly on and loads the programme on the PET, which continues to run unattended for as long as the power supply is on. If there is a break in power supply and the unit is turned off, it will automatically load as soon as power is restored.

The rack system is designed to be used with a plug-in keyboard, which is the engineeringoriented 4032 keyboard, even though the system uses the 8032 PET.

Use of the plu-in keyboard ensures that the programme is not subject to accidental change.

PPM will fit, as an option, a 20 mA current loop to enable the PETs to be operated at a considerable distance from the data logging points, which may be scattered throughout a factory complex.

Sold under the name 'Compuscan', PPM data logging equipment has been installed in many different companies in the past few years. Applications include the testing of gas turbines, automobile engines, automatic testing of cables, strain testing of roads and bridges, quality control applications like life testing of batteries, environmental monitoring in research laboratories, using the PPM series 8000 or 8100 scanners. These are versatile measuring and controlling systems which can accept many different types of input, digital or analogue.

Each scanner has up to 100 channels and as each PET can operate with a number of scanners it is possible to process a very great amount of information - and the PET in its turn, can be interfaced with a main-frame computer as part of a wide-ranging local network.

A specific production line application of the use of PETs and the series 8100 scanner which PPM have installed is on a coffee packing production line. This set-up both counts the number of jars, and weighs the contents via electronic scales. Jars which are outside of control limits may be diverted, and the PETs print out a record of the maximum and minimum weights plus the average weight over a specified number of jars.

Many of the programmes written by PPM for their special applications (and there are no off-
the-shelf programmes for real time control applications) are very long, using up to 90 K of memory, and as the PETs have only 32 K , they were among the first companies in the U.K. to use 'overlaying' techniques with PETs.

There are a number of other programmes for PPM PET-based systems - the Compucal Series 1 to 4 for instrument calibration and Compucal 5 for oscilloscope calibration, using appropriate test equipment for the purpose, along with the PET computer, disc drive and dot matrix printer.

The Compucal series are designed to simplify calibration techniques and give automatic printout of test results with a wide range of instruments.

The oscilloscope programme also prints out results and it operates with oscilloscopes up to 500 MHz band width.
Compucal is simple to use, and because it stores previous test results 1 n floppy disc, these are available for comparison as required.

Many of PPM's installations are concerned with temperature control, environmental conditions, process monitoring or test procedures on everything from a nuclear power station to an electrical appliance for the home, so their

'I Think a Simple Error Message Would Suffice.'
systems are demonstrably adaptable and take the Commodore PET a long way from its usual applications as a desk-top computer concerned with working out the payroll. It too is adaptable.

Sound and Vision

Song Data for Instrument Synthesis

Probably the best way to get an idea of the information your PET needs to play music is to look at a coded song. The illustration attached to this article does just that.

Users who already have the system, can, of course, examine any song they have, in a similar fashion. They can also experiment with the parameters of instructions, specifically the F6 and F1 commands, to see what they hear. There may be a discrepancy in the starting address of the song data. I have a program with debugging extensions; my song data begins at \$OFOO. The older version begins at $\$ O E O O$. There is no way to describe the available commands as precisely as it has been done in a book. If you have never looked at a coded song, I'd recommend you do it with the manual on hand.

I have placed signposts on the code to help you see what commands are used and what they do. All commands are of the \$Ex and \$Fx type. You can see them in the first two sections of the code. In the third section, the flagged bytes mark the beginning of a musical "event" which loosely corresponds to a note. Note that these are excerpts. They do show several notes, as well as some of the structure of the song, but there is no continuity in the listing.

The music program was written in machine code by Dr. Frank Covitz. The program intercepts your instructions (mostly Ex and Fx commands followed by their parameters). It issues an error message if they don't make sense, or goes on to create instruments and play a song, if they do.

Just as in BASIC, precise syntax has to be observed. The syntax is described in the book. It consists mostly of how many parameters a command is to contain and what information is to be put into those parameters.

The code the user needs to enter consists of three major groups of communication:

1. decide what sort of sounds you would like to hear
2. build instruments and decide on how to play the song
3. provide the score to be performed by the PET.

The score itself is the simplest thing to enter. Music, its notes and durations are transcribed into numbers. That's section 3 in the illustration. Coding is easy, once you enter a measure of two of music, it's just tedious. Mistakes are costly, as room may need to be opened up or closed. Supermon or Extramon are handy; the "human
interface," in the form of an editor, will be very helpful, indeed, when it's written.
The second major group is fun to write and is easy to do. That's part 1 in the illustration. It's the key to the whole system. It creates a base of numerous waveforms for each harmonic. You can copy the F5 instructions from the book, from songs you already have or you can invent your own by tranferring coordinates of your graph into the F5 command. Needless to say, if you have a way to analyze sounds, you can synthesize them back by entering a larger amount of data into the F5 parameters than shown here. That's apparently what Frank Covitz does when he synthesizes real sounds (wolf, oink-oink, bang!, no listen . . . dripping water, flutes, trombones and a genuine (?) 17th century harpsichord).

Finally, section 2 completes the requirements for a coded song. It consists of two parts.

The first part builds sound configurations (loosely called "instruments") from the waves calculated in section 1 . This is where most of the fun is and most experiments can be performed. There is no limit to a variety of sounds you can create from a finite set of waves. You do it by varying the last three bytes of the F6 command, with the largest and most interesting impact achieved by variations in the third byte from the end. This byte controls the variable speed at which waves are scanned during sounding of a note. F6 command used after the F5 command is the powerhouse of the program. This is where you achieve the distinct sounds of the instruments, or families of instruments, you plan to use. It's really worthwhile to spend some time fooling around with the F6 command in the already coded song and listening to results. I can't think of a better way to learn the system.

The second part tells the interpreter the structure of the song. It includes addresses of the pieces, the order in which they are to be played, etc. as well as how to play a segment: its tempo, pitch offsets from the coded values, instrument assignments to voices, and stereo voice assignments (if you have two DACs). This information can be given once and will then be used for the entire song. Alternatively, it can be given for each piece or a group of song segments. It's your ballgame. You divide the song into meaningful segments based on the musical needs you detect (sound characteristics, timing changes, special dynamic changes, etc.) and you tell the PET how to play each segment.

* STRIKE NOW !!!! *

UPDATE YOUR 8032 TO AN 8096

with $64 k$ of dynamic RAM arranged in $4 \times 16 k$ banks. The board is totally compatible with CBM 8096 memory boards and includes these impressive features :-

* Screen I/O peek through as on 8096.
* On board regulator for power supply.
* Straight forward simple installation.
* Sockets for up to 16 k of EPROM.
* On board socket for processor.
* Board comes complete with user documentation.

Price £289.80

including VAT packing and postage

Please send your cheque payable to Typecraft Systems (Derby) Ltd., to 128 Derby Road, Long Eaton, Nottingham. NG10 4ER. Enquiries welcome - telephone 0607669324

T.A.L. COMPUTER DIVISION

AN INTELLIGENT CHIP

D.O.S. commands as per Universal Wedge program, and a sequential file reader.
?INTELLIGENT CHIP? Yes. The same chip will work in $\$ 9000, \$ \mathrm{~A} 000$ and $\$$ B000 locations with Pet Basic 2 and up.

£20 C.W.O.
11 High Street, Leighton Buzzard, Beds. Tel: (0525) 372114

STOP PRESS: Amateur radio operators. R.T.T.Y. plug-in module for Pets and Vics. S.A.E. for further details.

"Instant Rom" ROM/EPROM EMULATORS contain CMOS RAM with internal battery backup. When the power is switched off, data is retained for up to 10 years.
In the PET, a 4 K INSTANT ROM can be fitted in the $\$ 9000$ or $\$ A 000$ socket. Machine-code (and Basic) programs can be stored, and are available at switch-on.
INSTANT ROM saves time. It can be used for long periods; when the program is finally "bug-free", an EPROM can be programmed.
4K INSTANT ROM (ROM socket replacement)................................... 56.00 2K INSTANT ROM (character generator replacement)................................. 39.00 Adaptor GA1 (essential for PET users)... 6.00

"G-ROM E"

G-ROM E is a 4 K EPROM which will Auto-run, at switch-on, any Basic or Machine-Code program stored in INSTANT ROM. Basic programs can be Machine-Code program stored in INSTANT ROM. Basic programs can be
stored with a few quick key-strokes. No skill is needed. Programs can now stored with a few quick key-strokes. No skill is needed. Programs can now
be run without a tape or disk unit, and can be changed without cost to the be run without a tape or disk unit,
user. Diagnostic aids are included.
user. Diagnostic aids are included
G-ROM E (specify type of PET
£ 25.00
Postage ($£ 1.00$) and VAT are extra. Leaflets are available
"INSTANT ROM" and "PETCLOCK" are COMMODORE APPROVED PRODUCTS.
GREENWICH INSTRUMENTS LIMITED, 22 BARDSLEY LANE, GREENWICH, LONDON SE10 9RF, UK. Tel: 01-853 0868. Telex: 896691. Attn. GIL

Sound and Vision

8032 Control Characters

This table is a summary of the 8032 screen control functions. The ESC/RVS characters will display as lower/upper case or upper case/graphics, depending on which mode you're in. POKE59468, X (where $X=12$ for graphics, 14 for lower case) still changes modes without changing the gap between the lines. Notice that complimentary functions differ by 128 using CHR\$). See the Commodore BASIC 4.0 manual for details on functions.

Control Function	CHR\$ (value)	ESC/RVS char.
BELL	7	g
GRAPHICS	142	shift n
TEXT	14	n
SCROLL DOWN	153	shift y
SCROLL UP	25	y
SET BOTTOM	143	shift o
SET TOP	15	0
INSERT LINE	149	shift u
DELETE LINE	21	u
ERASE BEGIN	150	shift v
ERASE END	22	v
SET/CLR TAB	137	shift i
TAB	9	i

The above describes the special 80 column screen control functions. The functions can be activated two ways; by using CHR\$ (and the appropriate value or, preferably, by placing the
appropriate character in reverse field within quotes. This is done by entering quote mode, hitting 'ESC', then 'RVS' and the character. For example, to do a Scroll Down enter quote mode and type 'ESC', 'RVS', shift \& ' Y ' and RETURN. 'ESC' takes you out of quote mode. If you wish to continue with more characters following the Scroll Down you'll have to do an OFF/RVS, another quote and DELete the quote. This is comparable to the cursor control characters but not quite so automatic.

Although you could use the CHR\$ (values, the ESC/RVS method saves bytes and will eventually become much more legible. After all, when was the last time you used a CHR\$ (17) to do a cursor right. (or is it a cursor up? . . . or is 17 delete? . . . no, I think it's cursor down... I'd better check . . . hmm).

There is still another way to activate these functions without using PRINT. This is directly from the keyboard. But you say "There is no key on the keyboard assigned to do scroll down or set top...". By pressing certain combinations simultaneously, the keyboard value that is passed to the operating system will be the CHR\$ value that activates the function. Many combinations do the same functions. I've listed only the easiest ones to remember.

CONTROL FUNCTION	KEY COMBINATION
TEXT	WHO KNOWS?!
GRAPHICS	BOTH SHIFT
SCROLL	
DOWN	LEFTSHIFT/TAB/I
SCROLL UP	PVS/TAB/I
SET BOTTOM	Shift/z/A/L
SET TOP	z/A/L
INSERT LINE	Shift/RVS/A/L
DELETE LINE	RVS/A/L
ERASE BEGIN	Shift/TAB/leftarrow/DEL
ERASE END	/TAB/leftarrow/DEL
SET/CLR TAB	Shift/TAB
TAB	TAB
The space beside TEXT is empty because it	
hasn't been found yet. If anyone does, please let me know.	
The window can also be POKEd to size. The pokes are:	
Screen TOP: 224,T where T $=0$ to 24	
BOTTOM: $225, \mathrm{~B}$ where $\mathrm{B}=\mathrm{T}$ to 24	
LEFT: $226, \mathrm{~L}$ where $\mathrm{L}=0$ to 79	
RIGHT: $213, \mathrm{R}$ where $\mathrm{R}=\mathrm{L}$ to 79	
I'm not sure what weird or interesting effects	
you can get by making TOP less than BOTTOM or	

Give your PET a home.... Buy it a PETDESK!

A Commodore approved product.

Specially designed to take any Commodore Pet system. Black leathercloth top and Black metal frame. Paper feed tray, top extension shelf. Concealed cables and 4 way 13 amp plug socket. Mounted on castors. Size $1470 \times 560 \times 675 \mathrm{~mm}$. Delivered flat packed.
Price $£ 189.50$ includes VAT and delivery. This offer available UK only. Cheques with order to: Tirith Ltd, Pear Tree House,
Woughton on the Green, Milton Keynes MK6 3BE. Telephone: (0908) 679528

EPSON TYPE 3 PRINTERS

Epson's superb Type 3 series replaces the Type 2 and offers:

* IMPROVED PERFORMANCE
* MANY NEW FEATURES
* LOWER PRICES

For free brochure and special Epson offer write to Datatech Ltd, stating your computer.

MINI DISKS - BIG SAVINGS

VERBATIM DATALIFE $5 \frac{1}{4}{ }^{\prime \prime}$
MD525 S/Sided 40 Track $£ 16.45$
MD550 D/Sided 40 Track $£ 22.45$
MD577 S/Sided 77 Track $£ 24.45$
MD557 D/Sided 77 Track $£ 32.45$
Prices are per ten pack, excluding VAT.
All disks are factory fresh, soft-sectored, hub reinforced and certified 100\% error-free.
Please include UK p\&p at 95p per pack, then add 15% VAT to total.
Send cheque/PO now to Datatech Ltd.

DATATECH LTD, DEPT CC, FREEPOST, ALTRINCHAM, CHESHIRE, WA15 OBR.

VACANCIES

ENGINEER

Computer Services Midlands is one of the Nation's leading Commodore dealers in both computer sales and software development. A requirement has now arisen for a further engineer to operate in the East Midlands area maintaining the hardware of our many Commodore users. Preference will be given to an experienced engineer familiar with the Commodore range but full training is available by means of both manufacturer's courses and our own engineering staff.
An attractive salary based upon previous experience is offered together with company car and the chance to join the planned expansion of a young exciting organisation. Ask for Mike Ward when writing or telephoning.

SOFTWARE DEVELOPMENT

Our business software is already regarded by many as the finest on the Commodore range and with new products being continually added our requirement for quality software personnel continues. These include both junior and senior programmers and a department manager responsible for the efficient running of the department. Excellent salaries are offered in all cases together with a company car for the most senior position.
Contact lain Caldwell or Peter Mart for further details.

GM Computer Services midlands

Computer Services Midlands Limited, First Floor,
Refuge Assurance House, Sutton New Road, Erdington, Birmingham. B23 6QX. Tel: 021-382 4171.

Programming Tips

Getting to Grips with Machine Code

Assembly Language

You may have thought that programming in machine language via the Monitor could really be a chore if you had to write a complete application. And you would have been correct, but at least we have a Monitor which conveniently allows us to type in a hex code at a certain memory location. Before our programming time, this wasn't possible. On early machines, programmers had 8 or 16 (or 32) toggle switches which could be set in one of two positions - on or off. To load an instruction, for instance a hex "60" (return), you would first have to set the eight toggle switches in the binary representation of 60, then push a "load" button to load the code into the machine. Our simple program from the last article might take an hour to load! But let's not dwell on the past, since higher level "english-like" languages have been developed for our use.

Assembly Language developed because even though sophisticated monitors and keyboards were developed, it still was a chore to remember and code in actual hex (or binary or octal) instructions, or look at a "hex dump" of a program and be able to see what the program did. (I do understand though, that programmers still exist who can do this at will, but they are kept chained inside the old ENIAC computer). For the same reasons that higher level languages such as BASIC began to replace Assembler programming, Assemblers were developed to replace actual Machine Language programming.

What is an Assembler? An Assembler is basically a program (which can be written in any language, even BASIC) that reads in a source file that contains lines of mnemonic instructions and "assembles" each mnemonic instruction into its Machine Language equivalent. The nice feature about Assembly Language is that instead of having to remember all of the various hex forms of an instruction, you only have to remember one mnemonic. For example, the instruction to "Load the Accumulator" can be represented by "A9" in the immediate mode, " $A D$ " in the absolute mode, "A5" in the zero page mode, and so on. In Assembly Language, the instruction is merely represented as "LDA" and the Assembler resolves which form the source line is representing. So you can see that writing in Assembly Language is much easier than handcoding in Machine Language, yet it yields the same benefits.

If you turn now to the listing of the program accompanying this article, you will first notice that it is broken down into four distinct columns. The first column represents a line number which is arbitrarily assigned for reference purposes; the next column is the actual starting memory location at which this line of code will be loaded; the next column contains the actual hex code generated for that line; and finally, the actual Assembly Language source text.
(If ever you should read about or come across a program written in Assembly Language that might be useful to you, and the author provides a listing such as the one with this article, then all you need do to implement it is to type in the code and assemble it. If you don't have an Assembler, then simply go into the Monitor and begin typing in the code as listed in the third column, starting at the memory locations listed in the second column. When finished, do a Machine language "save" and you will have a copy of the program).

Assembly Language Format

Without actually worrying about what exactly this program does, let's look at the program listing from a syntactical point of view. The first rule you will notice about this Assembler (Commodore's Assembler Development System) is that a comment line begins with a semicolon (;). In my listings, I generally put a lot of comments, and since there is no overhead associated with it, I feel it is a good practice for you to do as you develop an Assembly Language program.

The next portion of the program (lines 24-28) contains examples of the Assembly Language assignment statement. This statement allows you to assign a value to a variable (or label). If you precede the value with a "\$", then the Assembler assumes a hex value, otherwise it assumes decimal (this is true whenever referring to values throughout your programs). Hexidecimal is usually more convenient because most memory maps and other listings are in this format. By using the assignment statement (in the beginning of a program ONLY), you tell the Assembler to use the associated value every time it encounters that label in the program. For instance, line 30 assigns the hex value " 0070 " to the variable "chrget". If you look at the actual code that references this variable (line 47) you can see the purpose of the assignment statement is: 1) to make your program more meaningful and
easier to read; and 2) to make it easier to change (if the value for "chrget" changes in the future). In general, assignment statements are used to refer to the memory locations of routines (or subroutines) that are either part of the operating system (as in this case), or some of your own routines.
The next part of the program, lines $47-50$, is the main routine which basically executes three subroutines. Notice that instead of specifying an exact location to "jump to," I have used the labels that were defined in the beginning. The label "aschex" is not listed in the beginning of the routine because it is actually part of this program, at line 57. Notice that the Assembler generated the address of " 0344 " for this label because, as line 57 specifies, the memory location that the routine or label "aschex" would begin at is "0344."
As you can see by now, labels within an Assembly Language program work similarly to their counterparts in BASIC and other high level languages. So one obvious advantage Assembly Language has over Machine Language is the fact that all "jump to" and "branch to" (as in line 61) addresses can be resolved for you by the Assembler. The next part of the program, lines 57-82, is the actual routine which we will look at later in more detail.
The final part of the program at line 88 illustrates what is known as an Assembler directive. An Assembler directive is basically a command that tells the Assembler to perform some operation at "assemble time," but it is not a part of the actual program. In this Assembler, directives must be preceded by a period (.). The "byte" directive in line 88 tells the Assembler to set aside one memory location, and in this case, put a hex " 0 ' there. In this instance, the memory location used is "0371." Notice that all the code that references the label "answer" (lines 59, 71, $76,79,80$) contains the address "0371."

More Instructions to Work With

Let me first give you some background on the accompanying article. If you have already paged through this issue, you may have noticed another article which describes a routine that allows you to program the cursor directly from BASIC, using X, Y coordinates. For example, to move the cursor to line 15 and column 40, you could type "sys address, 15,40 ". The "sys" command cannot directly pass the parameters " 15 " and " 40 ", so one of the functions of the "sys routine" must be to accept these parameters.

Sound easy so far, right? Well yes, except that
when you code "sys address, 15,40 ", the number " 15 " is actually represented as two characters in memory - hex 31 (for "1") and hex 35 (for " 5 "). This is what is known as the ASCII character representation. If we want to be able to use the number " 15 " as some sort of counter (of the number of times to cursor down), then we must convert the ASCII representation of " 15 " to the actual numeric value. We will look here at the subroutine that does this.

Still sounds easy, Right? Yes, except that this explanation overlooks one thing - how do we pull the number " 1 " and the number " 5 " from our BASIC statement. Well I won't explain in detail how this works in this article, except to tell you that your PET/CBM already comes with a routine which will do this. This routine is referenced in my listing by the label "chrget", and when it is invoked (via the "jsr"), the next character or token from the current BASIC line will be loaded into the Accumulator. And the pointer to the current character will be incremented so that it now points at the next character in the line.

Now let's look at the program.

Programming Tips

Lines 47-50

This series of lines is the main routine of this program. When the "sys" command is encountered in your BASIC program or from immediate mode, control is passed to the routine starting at the memory address following the "sys." In this case, the address is 826 or hex 033a. The first thing the routine does is get the next character from the BASIC line. (The format for the "sys" parameter is: sys 826,x. When the routine is first entered, the character in the Accumulator is a ",".) This routine will then load the Accumulator with the first (and maybe the last, if it is a single-digit number) digit of the number.

Line 48 will then jump to the subroutine that converts the ASCII representation of the number to hexidecimal. Note that the first digit of the number is sitting in the Accumulator. We will explain the actual routine in a minute.

Line 49 will jump to the subroutine that gets the next character in the line. At this point, the

'How About Kicking Off With a Good, Old-Fashioned
Memory Dump?'
routine has already extracted the final digit (if there was a second digit) and converted the number passed by the "sys" command. Calling this subroutine and its parameters. We do this because the BASIC interpreter will resume its operation when the return in Line 50 is executed. The character in the Accumulator must, at this point, be the one following our "sys" command (perhaps a ":'").

Lines 57-59

This set of lines introduces us to three new instructions. The first instruction "sec" will "Set the Carry Flag." This is done because of the nature of the "sbc" or Subtract With Carry" instruction. The "sbc" instruction will subtract the value following it from the value in the Accumulator, placing the result in the Accumulator. If the resultant value is greater than or equal to 0 , then the Carry Flag will be set. If the result is less than 0 (i.e., if the value in the Accumulator was less than the value being subtracted), the Carry Flag is cleared. Because of the nature of binary arithmetic (two's complement form), it is required that the Carry Flag be set when subtracting single precision numbers. For a more detailed explanation of the Subtract instruction, refer to the MOS Programming Manual or some other suitable 6502 reference guide.

Getting back to our subtraction, remember that the Accumulator already contains the ASCII representation of the first digit (or "tens" column digit for a 2 -digit number). To find the actual numeric value of this digit, we must subtract the ASCII value of the character " 0 " from the ASCII value of the digit. The easiest way to do this is to use the immediate form of the Subtract instruction, which is represented by the " $=$ ". (As was mentioned before, the Assembler will assume a decimal value unless specified). For instance, the number " 2 " would be represented as " 50 " or in hex as " 32 ". By subtracting ASCII " 0 " which is actually " 48 " or in hex, " 30 ", you can see that the resultant value will be " 2 " $(50-48=2)$. So after preforming the instructions on Line 57 and 58, the Accumulator contains the actual numeric value of the first digit.

Line 59 introduces us to the "sta" or "Store the Accumulator in Memory" instruction. This command simply stores a copy of the value in the Accumulator at a certain memory location. This case illustrates the absolute form of the instruction in that the label following is an absolute location in memory. Remember that we defined the label "answer" at the very bottom of
the program, so the value will be placed at location hex 0371.

Lines 60-65

Line 60 first gets the next character from the line and stores it in the Accumulator. This character can be the second digit of the number, a comma (if it is a one-digit number), or some other BASIC token.

If the Carry Flag is not set (by routine "chrget") then we know that the character in the Accumulator is the ASCII representation of a number between 0 and 9. The "bcc" or "Branch on Carry Clear" instruction on Line 61 is another type of branch instruction that will branch to another point in the routine (in this case, "asc1", if the Carry is not set). If there is a second digit, this path will be followed.

If the character is not a number between 0 and 9 , then we want to check to make sure it is a comma. Note that this check is up to you as a programmer (i.e., I have decided that one digit numbers must be followed by a comma). The "cmp" or "Compare the Accumulator with Memory" instruction on Line 63 compares the value now residing in the Accumulator with the immediate value of " 44 " (" 44 " is the ASCII representation of a comma). The " cmp^{\prime} " instruction actually subtracts the value in memory (in this case, the immediate value " 44 ") from the value in the Accumulator, but DOES NOT store the result anywhere. Depending on what the result of the operation was, one of three Status Flags will be set. The Negative Flag is set if the result is less than zero, the Carry Flag is set if the result is greater than or equal to zero, and the Zero Flag is set if the result is equal to zero.

The "beq" or "Branch on Result equal to Zero" instruction in Line 64 will cause a branch to the end of the routine, "ascend" (Line 82), if the present character is a comma. If this is the case, the "sys" command only passed a one-digit number. If the character is anything else, the routine will jump to a routine that prints "syntax error'". This is done on Line 65.

Line 67-69

If the character in the Accumulator is a number between 0 and 9 , indicating a second digit, then control continues at Line 67 . Lines 67 and 68 will again take the ASCII representation of the second digit, and subtract an ASCII " 0 " from it. The resultant value in the Accumulator will then be the actual numeric representation of the second digit.

We have now converted the two digits down to
their actual numeric forms. The first digit at this point is stored at the memory location labeled "answer" and the second digit is in the Accumulator. Now what? Well I now have to disturb the cobwebs of your mind by referring to some concepts that were taught in elementary school - those concerning the "tens" column and "units" column of numbers. To convert this number, we must first multiply the "tens" column by 10 , then add the "units" column to that answer.

But before going on to the instructions that do this, we first must save the second digit. I do this in Line 69 with the "pha" or "Push the Accumulator onto the Stack" instruction. What's a Stack? The easiest way to explain a stack is to use the analogy of a "plate stacker" used in many restaurants. As clean dishes are brought out, they are placed in the stacker. When a dish is needed, it is taken off the top and the stacker pushes upward. The idea is that the most recently placed dishes are the first to be taken off. The Stack in the PET/CBM works the same way. The values placed on the Stack are the first to be taken off. The only thing that you must be careful of is to make sure that values are taken off in the proper order.

Lines 70-77

How do we perform a multiplication? The way I've chosen here is a technique known as the "successive addition" method. In other words, we start with 0 and add 10 to the result of the previous addition successively for the number of times specified by the "tens" column digit. For example, if our first digit is " 3 ", we perform the operation, $0+10(1 \mathrm{st})+10(2 \mathrm{nd})+10(3 \mathrm{rd})$, which gives us 30 .

To implement this, we first perform the instruction "Ida" or "Load the Accumulator with the value in Memory" as in Line 70. Again we have the immediate form of the instruction which in this case loads the value " 0 " into the Accumulator. Next we load the X register with the value of the "tens" column to be used as the counter for the upcoming loop.

We next enter the loop which starts at Line 72 at label "asc2." First, we set up for an addition operation by performing a "clc" or "Clear the Carry Flag" instruction as on Line 72. This instruction resets the Carry Flag. We do this because the next instruction, the "adc" or "Add Memory to the Accumulator with Carry", will use the Carry Bit (if it is set) as part of the addition. In Line 73, we add the immediate value 10 to the contents of the Accumulator (which at this point

Programming Tips

is 0). The resultant value will be stored in the Accumulator. As in other operations, certain status flags will be set according to the outcome of the operation. For more information on this, refer to MOS Programming Manual.

Line 74 will decrement the "tens" column value which we initially stored in the X Register. This is done with the "dex" or "Decrement the X Register" instruction. Again, certain status flags will be set according to the outcome of the operation.
If the resultant value in the X Register after the "dex" instruction is performed is 0 , the branch instruction on Line 75 will not be executed. If the value is still greater than 0 , the loop will be entered again at Line 72. You will notice that the number of successive additions is controlled by the value of the X Register or the "tens" column digit. When we fall out of the loop at Line 75, the value in the Accumulator will be the final result of the successive additions. All we need to do now is add the "units" digit to the value in the Accumulator and the resultant value will be our converted number.

Line 76 stores the "tens" column calculation at location "answer." Note that we have already stored the first digit at this location in line 59, so this operation will overwrite that value. The reason for this is simple. If the number to convert was only a single digit, then the value in "answer" is the converted value when we branch to the end of the program in Line 64. If the number to convert is two digits, then the value in answer can be overwritten.

Remember that we originally stored the "units" digit on the Stack in Line 69. Now we need to pull it off, so we do this with the "pla" or "Pull top value off the Stack and place into the Accumulator" instruction. Remember that if you are not careful to pull values from the Stack in the order that they were placed there, you could get yourself in trouble. Notice also that the Stack is a handy place to store values.

Lines 78-82

At this point, we have the "tens" column calculation in location "answer" and the "units" column value in the Accumulator. All we have to do is add these two values together. Lines 78 and 79 do exactly that. After the calculation is performed, we store the result of the addition at storage location "answer", and finally return to the main routine at Line 82.

SUMMARY

To summarize, the program first gets the first
digit from our BASIC line (Line 47). Once it has done this, it jumps to the conversion routine (Line 48). This routine first converts the first digit (Lines 57-59) and stores it at "answer." Then it gets the next character from the BASIC line (Line 60) and checks to see if it is numeric (Line 61), or if it a comma (Line 63). If it is numeric, then it branches to the routine that gets the second digit and converts the number. If it is a comma, then we know it is only a one-digit number and so the routine branches to the end (Line 64). If it is neither of these types of characters, then "syntax error" will be printed (Line 65).

If it is a two-digit number then first we convert it to its actual numeric representation (Lines 67-68). Then we set up to perform our successive addition using the "tens" column digit as the counter (Lines 69-71), do the actual addition (Lines 72-74), add the "units" value to that result (Lines 76-79), and finally, store the converted number at location "answer" (Line 80).

And that's it. Easy, right?? Have fun and experiment!

If you should have any questions or comments, please write to me via the Editor.

C=commodore COMPUTER

BRING TO YOU, NOW ON CASSETTE AND DISK GAMES OF THRILLS \& SKILL FOR ALL THE FAMILY

NEW PROGRAMS

Best of Arcade brings together the three most popular Petpack games, Invaders. Cosmic Jailbreak and Cosmiads. These old favourites have been

组
Best of Treasure Trove gives you twenty of the best games from the Treasure Trove series, including four arcade-type games, Night Drive, Car teasers and more, making this package the best value ever in games! MPD 122 BEST OF TREASURE TROVE £22.50 - DISK PACK
Assembler Tutorial is an extremely well thought out cassette-based package which teaches Assembly Language programming. Now for the his self, you can sit at your computer and learn at your own speed MP 124 ASSEMBLER TUTORIAL 550.00
Resident Assembler for all PETs
With excellent documentation and examples MP119RAMP $£ 22.50$

Disk Packs available in either 8050 - D8 format or 3040/4040 - D4 format. Please state D8 or D4 when ordering
Prices include VAT and P\&P.

PUB GAMES

This latest disk package brings you five totally new games, never before seen on a PET screen! The programs will all run on 80 -column machines also!
ISASTEROIDS - Your mission - pilot your spaceship through the reacherous asteroid belt using your lasers to blast as many asteroids as ossible. The PET version of the famous arcade game!
STELLAR WARS - Your spaceship is being pursued by the fighter ships of the evil Empire. You must take control of the ship's laser cannon. Get the ighters in your sights and blast away. The future of the universe depends
WARI - You are the captain of the British torpedo boat. You must steer your ship through the minefield to destroy the four shore bases. Unfortunminetield ogain to rearm. Prove that we still minefield again to rearm. Prove that we stil rule the waves!
STAR FIGHT - The Alien Invaders are coming again! Control your laser cannon to blast their ships out of the sky and destroy their missiles and bombs. Accuracy and quick reflexes are essential.
DEPTH CHARGE - Your mission - seek out and destroy the enemy suomarines. They are armed with mines which they release to float up at to destroy as many subs and mines as possible without being hit. MPD 123 PUB GAMES 522.50 - DISK PACK These games are avallable separatoly on-Cassette anc6-99-each!

Interfacing

Pet to Teletype Interface

The interface described below was received from Lt. W. Hawes in Nova Scotia. Note: it will operate with 8 level TTY's but not 5 level machines.

Interface Description

The cct. shown in Fig. 1 is a modification of an interface that was originally built to output to a TTY from the PET Parallel User Port. The problem with the Parallel port was that software was required to be resident in memory in order to output data and LISTing of programs was not possible since the operating system has control during a LIST. Clearly the way to go was from the IEEE 488 Port.

The modification to output from the IEEE Port was based on a cct. by Prentice Orwell. Some of the features of my original cct, such as UART vice shift register and closk frequency from PET vice interface oscillator, were retained.

My cct. is as shown in Fig. 1. It uses a $+5 v$ and $-12 v$ (originally only a dual supply UART was immediately available) for both the UART and the

20mA current loop. The cct. could be further simplified to a single +5 v supply as shown in Fig. 2 by using a single supply UART such as the AVA - 1014A or equivalent. The 20 mA loop could then be constructed using spare inverters on the 4049's.

As stated above, hardware is reduced by omitting the interface oscillator. PET itself supplies the $1760 \mathrm{~Hz}(16 \times$ baud rate) UART clock frequency from CB2 on the parallel port.

Circuit Operation

Initialize: POKE 59467,16: POKE 59464,69: POKE 59466,51 (outputs 1760 Hz from CB2 to UART, tape I/O disabled)
Operate: OPEN 4,4: CMD 4 (Printer primary output device - enter from keyboard to LIST or include in program to be RUN)
Return to Screen: PRINT 4 (from keyboard or include in program)
System Recover: POKE 59467,0 (restores correct tape I/O)

Basic Programs

Weeny

Reference the Weeny Word Processor published in your April／May issue，the idea is to good to leave in that state（aren＇t they all！）． Herewith an extension to allow disk I／O，and two utilities to improve the printing aspect．The program assumes 8000 series－sorry，but the window facility is used to avoid messing up the screen with＇ready＇．etc（line 3000）．

The essential philosophy is retained，i．e． character by character processing in BASIC，and use of the screen editor to prepare text the 8032 is excellent for this－don＇t forget the TAB feature）．Instructions for the original carry over， i．e．use SHIFT and RETURN not just RETURN to move to the next screen line；leave line 1 blank for control；end the text with back arrow；to save／recall／print a screen page，home the cursor and enter＇run＇and the RETURN key．All control is strictly alternative technology level：disk files are overwritten automatically if they exist－no warning；no file－not－found check；etc．

When choosing＇edit＇the program drops into BASIC，using the window as indicated above．To edit，first key HOME twice to reset the window．

The two utilities provide better print facilities． One merges screen pages on disk into print pages；the other prints direct from disk instead of from the screen．Hence（typically）the three screen pages that make a print page can be merged and then printed in one go，instead of recalling to screen and then printing each of the three parts separately．To exit either of the utilities key RETURN on any prompt，or just STOP．
Lastly，the mystery of lines $14,15,17$ ．These will be plain sailing to owners of POWER（which should be all PET programmers）．With POWER on， SHIFT X deletes the current cursor line with scroll up，SHIFT Y creates a blank line with scroll down， SHIFT Z deletes to end of line from current cursor position．They are just three of the POWER keys／routines I use regularly，hence the strange line numbers．To use X, Y and Z in text key INST first．

Yours

[^1]Hot quite sombery wf

```
14 rem" "y=y
15 rem" " = = 
100 rem weeny word processor - pjh version
```



```
250 open4,8,4,"@"+c|&+":"+p&+",s,w"
300 get#3, as:ifas<>"S"
```



```
330 c lose4:c lose3:goto150
```



```
500 goto300
1000 print"Sureslave or Mos-int or Injecall or Mejolit",
```



```
1250 i+a$=" " " thengosub3808:end
1300 return (%):dopen#1, (p $) d(ual(col
2100 get#1,a未:s=st:orintas::ifs=0then2100
```



```
ready
```

```
100 rem weeny word processor - merge screen pages
1000 input"swestination Page Name";pa:input"suarive #";ds
110日 dopen# 1,(ps),d<val<ds)>,w:ifds=athenreturn
1200 dc lose# 1:goto1900
2000 input"JWNext Merge-Page Name +\\";p事:input"swirive #"; d;
2030 ifp&="$"then3000
2050 print" smMerging ":dopen#2,(ps),d(val(ds))
2100 get#2,a未:s=st:ifac<<>"\"thenprint#1,a未)
2150 ifs=0then2160
2200 dc lose#2:gotoz000
_ ready.
```

100 rem weens word processor- direct print from file
ie0 rem weeny word proc
150 gosub1009:goto2000

1300 input"30-age Name", pt:input" 300 rive "", di
2869 print" 3 rinting Fage": open4, 4 : dopen\#1, (ps), d(val (d \ddagger)

2150 its=9then 2190
dc lose\# 1 :c lose4 : soto 156
ready.

＇It Wants a Squirt of Oil on that Squeaky Door Hinge Back There．＇

Basic Programs


```
SPACEMAR PART 1 : VICZe
```

100 POKE36879,27:PRINT"J

```
100 POKE36879,27:PRINT"J
```

100 POKE36879,27:PRINT"J
*)
*)
*)
*)
*)
*)
l
l
l
10. INPUT""NETHEINSTRUCTIONS NHMM";A\&
10. INPUT""NETHEINSTRUCTIONS NHMM";A\&
10. INPUT""NETHEINSTRUCTIONS NHMM";A\&
PRINT WRTTHRE ENGAGED IN AN"
PRINT WRTTHRE ENGAGED IN AN"
PRINT WRTTHRE ENGAGED IN AN"
*)
*)
*)
280 PRIN
280 PRIN
280 PRIN
M,
M,
M,
Masmen

```
```

Masmen

```
```

Masmen

```
```



```
```

*)

```
```

```
*)
```

```
```

*)

```
```

M,

```
```

M,

```
```

M,

```

```

2018 D

```

\section*{Basic Programs}

```

620 CLOSE2
64e IFSW=0.00TO350
lol
710 FORJ=1TO2:X%=X:X=<X-X %*16:IFX%)
720 PRINT\#4,CHR (< % % +48);:NEXTJ:RETURN

```

DISK VIEW : JIM BUTTERFIELD


90 PRINT"ICLR, CDIDISK SECTOR VIEWER - JIM BUTTERFIELD
19 FOR \(=30 T 090:\) IFFEEK \((32768+J)=32\) THENNEXT S STOF

DISK MOD : JIM BUTTERFIELD


\section*{microfacts}
- Sales and Purchase Ledgers
- Open Item accounts
- Nominal and VAT Ledgers
- Invoice preparation
- Stock recording \& control
- Job Costing
- Fully Integrated
- Large Capacities
- One pair of Disks only
- Multi Companies
- Powerful \& Flexible
- Simple to Operate


Computer Systems
MMS Ltd., Ketwell House, 75-79 Tavistock Street, Bedford MK40 2RR.
Tel. (0234) 40601 Telex 826311

\section*{Basic Programs}
```

l20 IFC\COORC%> 15THENSTOP
lol

```

IRECTORY ALPHABETIZER - BASIC 4



10 GOT01000
100 POKE143, 日: WAIT143, 64: POKE158, 0 PRINT"[5CD, 3CR, RUSJANSWER: [OFF] "; :POKE167, 0 ME=" MAIT158, 1:GETOF



 IFM) 57 ORM \(\operatorname{C48THEN180}\)


10 PRINT" CCLRJGREETINGS. I AM GOING TO ASK YOU SOME
20 PRINT "CDDJUESTIONS ABOUT YOUSELI. THEN, ON TTE



arint "CCLR, CDIHOW MANY MINUTES OF VIGOROUS EXERCISE
PRINT" CCDDO YOU HRVE IN A NORMR WEKP
PRINT" [2CDJ CNOTE:


150 PRINT"ICLR,CDJHOW MANY HOURS OF SLEEP DO YOU HORMALLY
166 PRINT" \(C\) CAIGET EACH NIGHT? : M=
179 PRINT" [CDIGET EACH NIGHTT": M=0: GOSUE190: IFMDGANDM 19 THENT \(=T+4\)


1219 PRINT" "CLR CDDDO YOU ERT LOTS OF FRESH FRUIT AND"
220 PRINT"LCLR,CDJDO YOU OFTEN HRVE FRIED FOOD ", "LCDJKEGOS, CHIPS, MEAT, ETC
\(1230 \quad M=1:\) GOSUR1Be: IFM=OTHENT \(=T+8\)
1240 PRINT"CLLR,
1250 PRINT" TCLLR, CDJDO YOU SMOKE A PIPEN": M=1: GOSUB100: T=T-M米4

T0 T=TM/3
PRIIT" LCLR, CDJON THE AVERGGE, HOW MANY DRINKS DO YOU
PRINT"CDIHFVE PER DAY?



\section*{Machine Code}

\section*{"'SYSTEM"' - Part 2. Handling subroutine parameters.}

In part 1, I described how a call-by-name method for subroutines could be implemented on the PET. Having learnt how the basic call mechanism works, we can now go on to see how subroutine parameters are handled.

From listing 1, it can be seen that the sample library, published in part 1, has been extended to include five new subroutines, all of which require the user to specify parameters on the callline. The first two subroutines, called "BLOCKT" and "XCHNGE", provide the user with some basic functions for manipulating the contents of memory: BLOCKT enables the user to copy, or block transfer, one area of memory to another, and XCHNGE can be used to swap the contents of two memory areas. When calling either of these two routines, the user has to specify, on the call line, the addresses of the memory areas involved, and also the number of bytes to be transferred. The following segment of code shows the call-line syntax needed to invoke the BLOCKT and XCHNGE subroutines:

100 REM COPY TOP OF SCREEN TO FIFTH LINE
\(110 \mathrm{~S}=32768 \quad:\) REM SCREEN START ADDRESS
\(120 E=32768+\) 40*5
: REM FIFTH LINE ADDRESS
\(130 B=40\)
: REM BYTE COUNT ( = LINE LEN)
140 SYSTEM, "BLOCKT", S,E,B
200 REM SWAP TOP TWO SCREEN LINES 210 SYSTEM, "XCHNGE", 32768,
\(32768+40,40\)
Note that the example above also demonstrates that parameters can be coded as constants, expressions, or variables. The BLOCKT and XCHNGE routines could be used, for example, to maintain and display several different screen images.

The next two subroutines that are new to the library are called, "READER" and "WRITER". They offer similar functions to those of the ' \(L\) ' and 'S' commands of the machine language monitor (MLM), and enable the user to store areas of memory as program files on disk. This
facility can be particularly useful for framehandling applications, where the contents of the screen display needs to be recorded on disk for subsequent re-display. The following is an example of how the call-lines for READER and WRITER are coded:

\author{
100 REM SAVE CURRENT SCREEN CONTENTS. \\ 110 SYSTEM, "WRITER", "'GO: FRAME 1", 32768, \(32768+1000\)
}

\section*{160 REM RE-DISPLAY FRAMES \\ 170 SYSTEM, "READER", "0 : FRAME 5"}

Again it should be noted that the parameters can be coded as constants, expressions, or variables. For example, the above call to WRITER could have been coded as:
```

105 N$="1":S = 32768:K = 1000
110 SYSTEM,'"WRITER','"O :
FRAME'' + N$,S,32768 + K

```

The fifth and last member of the new library set is called, "DIRECT", and offers the powerful capability of allowing BASIC expressions to be entered, and evaluated, during program execution. The following example should make the usefulness of the DIRECT routine a little more obvious:
```

100 REM SIMPLE DESK CALCULATOR
110 INPUT "'YES SIR",A\$
120 IF A$="X" THEN PRINT "BYE SIR" :
STOP
130 SYSTEM,"DIRECT';A$
140 GOTO }11
RUN
YES SIR?A = 3
YES SIR?A = 4
YES SIR?C = SQR(A*A + B*B)
YES SIR?"'PRINT A,B,C"
3 4 5
YES SIR?X
BYE SIR

```

The DIRECT routine can be put to extremely good use in such applications as, computer aided design, spreadsheet type programs, and
graphing routines, all of which often require computations to be dynamically defined at run time.

From the foregoing examples, we see that specifying parameters is fairly straightforward. The user simply codes a comma after the subroutine name, and follows this with the appropriate number of parameters needed by the particular subroutine. Where there is more than one parameter, each one is separated by a comma.

Let us now turn our attention to the actual mechanism by which the subroutines themselves intercept and evaluate the userprovided parameters. As mentioned twice already, the user can code a parameter in one of three different ways. Consequently, a considerable amount of software is required to evaluate any parameter passed to a subroutine. Fortunately, most of the software needed to evaluate parameters already exists, and is accessable, as subroutines in the PET's ROMS. Therefore the task of evaluating parameters can be reduced to two rather simple procedures, one to handle string parameters, and one to handle numeric parameters. For string parameters, the procedure is as follows. First of all we call a PET ROM routine, which I have named "NXTFLD", to scan the subroutine call line for the next parameter. Next, another PET ROM routine, named "EVALU8", is called to perform the actual parameter evaluation, such as working out string expressions, or picking up the string from a variable. Finally, yet another PET ROM, named "STRING", is called to set up the address of the string in the zero-page locations, \$IF and \$20, the length of the string being returned in the " A " register, or accumulator. The procedure for handling numeric parameters is almost the same as that used for strings. For numerical parameters, the 'NXTFLD'' routine is called to scan the call-line, then EVALU8 is called to evaluate a numeric value. But the final call is not to "STRING", but to FIXPNT which ensures that the evaluated result is converted to a fixed point number with the result being stored in the A register (LO byte), and the Y register ( HI byte). The result can also be found in zero-page locations \$11, and \$12, containing the LO and HI byte values respectively. Both of the procedures described can be more readily understood by referring to the sample library listing. While writing the subroutines, I have attempted to keep the coding simple, and provided, hopefully, sufficient annotation to enable interested readers to extend the library further.

Listing 2 shows a short BASIC program which can be used to test the five new library routines.

Finally, instead of having to enter the source code by hand, a disk is available which contains the source code as shown, plus some other useful library routines. The disk costs 10 pounds and can be ordered by writing to me, Danny Doyle, at:
9 Main Street, Gawcott, Bucks.
Whether you choose to buy the disk, or decide to enter the code by hand, I very much hope that you will find the "SYSTEM" approach to subroutine calling as useful as I have.

System

DISPA. SRC. . . . . . PAGE 0001


\section*{Machine Code}



\title{
A NOTICE TO ALL PET LOVERS
}

\section*{INTRODUCE YOUR PETS TO OURS \\ AND SOLVE YOUR INTERFACE PROBLEMS}


Only \(£ 195.00\)


Only £195.00


THE PUP

* 4 ANALOGUE INPUTS (12BIT)
* 2 ANALOGUE OUTPUTS (12 BIT)
* 4 RELAY OUTPUTS
* 4 LOGIC INPUTS

When connected to the "PET" User Port the PUPI gives you all the above features together with an operating system in EPROM, which interacts with Basic's variables, giving extremely simple operation. Inputs and outputs are \(\pm 10 \mathrm{~V}\) and relays are rated at 10VA. Logic inputs can be used for microswitch sensing etc.

HIGH SPEED A/D CONVERTER
THE PUSS

* 4 ANALOGUE INPUTS (12 BIT)
* 50 MICROSECOND CONVERSION
* STOP AND START TRIGGERS
* DATA ACQUISITION SOFTWARE

Using an operating system in EPROM, the PUSSI provides a high speed A-D Converter with 4 multiplexed inputs, which is under control of either software, or remote start/stop triggers. A-D Conversion can be carried out from Basic, or Machine Code, with up to 1500 readings entered directly into memory at a software determined rate.
```

CL MICROSYSTEMS LTD.
DECOY RD.,
NORTHING, SUSSEX BN 14 8ND. TELEX: 87515 WISCO G ATTMIC TEL: (0903) 210474

```

\footnotetext{
Write, phone or to
obtain further information circle number
}

\section*{Machine Code}


\section*{Guest Expert}



\section*{FREE PET/CBM COMAL}
"The excitement in Europe (over COMAL) seems to be growing by the hour and we look forward to America being able to share in the good fortune of having an easy-to-use, structured, planning language at last."

The power of PASCAL and the ease of BASIC can now be yours with Commodore COMAL, a new programming language from DENMARK. It is being distributed in the USA by the COMAL USERS GROUP. To find out more about COMAL and how you can get a free disk copy of Commodore COMAL, send a large self-addressed stamped ( \(\mathbf{3 5}\) cents) envelope to:

COMAL USERS GROUP
5501 GROVELAND TER., MADISON, WI 53716.
Outside USA please add \(\$ 2.00\) for airmal and handling.
*PET \& CBM are trademarks of Commodore Business Machines.

\section*{ADVERTISER'S INDEX}
\begin{tabular}{|c|c|}
\hline 23 & Alpha Business Systems \\
\hline 39 & Audiogenic \\
\hline 13 & Capitol Computers \\
\hline 23 & C.B.S. \\
\hline 51 & C.I.L. \\
\hline 54 & Comal Users Group \\
\hline 33 & Computer Services Midlands \\
\hline 47 & Corrtronic \\
\hline 25 & C.S.E. Computers \\
\hline \[
2
\] & D.A.M.S. \\
\hline 33 & Datatech \\
\hline 15 & Dealer Directory \\
\hline 54 & Dynatech \\
\hline 31 & Greenwich Instruments \\
\hline 17 & Holden \\
\hline 26 & Kingsley Computers \\
\hline 16 & Landsoft \\
\hline 11 & Level Ltd. \\
\hline 26 & Mass Micros \\
\hline 45 & M.M.S. \\
\hline 5 & Peach Data Services \\
\hline 13 & Pinewood Computers \\
\hline 29 & Popular Computing Weekly \\
\hline 55 & Rabbit Software \\
\hline 11 & Small Systems Engineering \\
\hline 56 & Stack Computer Services \\
\hline \[
9
\] & Supersoft \\
\hline 31 & T.A.L. \\
\hline 33 & Tirith \\
\hline 31 & Typecraft Systems \\
\hline & \\
\hline & Wego Computers \\
\hline
\end{tabular}

\section*{RABBIT SOFTWARE}


380 STATION ROAD, HARROW, MIDDY. HA DE.
Tel: 01-863-0833

\section*{RABBIT BASE}

Your own personal Database Management System for your VIC-20. Ideal for any storage and retrieval of any type of record. Powerful search, sort and calculation features.


RETAIL PRICE £14.99

\section*{RABBIT WRITER}

The wordprocessor for your VIC-20. This program requires 16K RAM Expansion. 'Rabbit Writer' enables the rapid and easy creation of text and its printing to the printer. 'Rabbit Writer' has powerful editing and right hand justification and has many other Wordprocessing features via the appropriate function keys such as indenting, centering, etc. and enables expanded characters to be printed. It also has the facility to merge i.e. names and addresses from Rabbit Base.


RETAIL PRICE £19.99

\section*{\(\sum\) ITS HERE! \\ }

FROGGER
Bring the famous pub game home. First cross the motorway without getting run over and then home across logs and turtles. But beware of snakes crocodiles and submerging turtles. Incredible multi-colour mode graphics written in machine code.


RETAIL PRICE £9.99

\section*{SPACE STORM}

Amazing 3D Graphics of the popular asteroid game. Superb value for money. One of Rabbits


RETAIL PRICE £6.99



\section*{STACK STOREBOARD (memory expansion unit)}


\title{
STACK ROM SWITCHBOARD
}


Use up to 4 ROMs at once! eg. games. ROMs. VICKIT. VICKIT II etc.
£29.00
(plus VAT)


Fits into the port at the rear of the Stack Storeboard or the Stack Low Cost 3k Memory and enables you to use up to 4 cartridges in addition to the extra memory on the Storeboard or 3k Memory. Each slot can be switched in or
ut, thus allowing the use of
 one, all four, or any combination
of cartridges without having to remove them
£24.99
(plus VAT)

\section*{STACK VICKIT SERIES}

A series of ROMs which greatly simplifies programming and enhance the qualities of your VIC-20. Fits into Stack ROM SWITCHBOARD or Stack STOREBOARD.
The lowest costing memory addition gives you 6' \(2 k\) of user memory on your VIC-20. Also allows you to use those quality games which demand 3 k of Hi-Res Graphics! Socket at rear allows you to stack up further accessories.

\author{
£25.99
}
(plus VAT)

Offers HELP to programmers...it also offers AUTO. DELETE.
DUMP. FIND. OFF. RENUMBER. STEP. TRACE.
\begin{tabular}{l} 
Special Offer Price if Purchased \\
with STOREBOARD
\end{tabular}

\section*{VICKIT II}

A 4k ROM offering ALL THE FEATURES OF VICKIT plus.....TEXT. GRAPHICS. LINE. CLEAR. DRAW. PUT. FILL. SET. POINT

\section*{Contact your local Commodore VIC dealer for details.}

Stack Computer Services Limited, 290-298 Derby Road, Bootle, Merseyside. 051-933 5511. Telex: 627026.```


[^0]:    Continued on page 53

[^1]:    Dr Peter Hartley－ Stage One Computers Ltd
    21．6．82

