Final Design Specificstion For theMCS65E4 Microprocessor

Written by: Yan3 / Goodman / Mathys
Revision 1l 1*1
Date Released: 10-MAY-82

This document 1is submitted with the understanding that
it contains information which is confidential in
nature and is not to be revealed to anyone without
written permission from MOS Technologyf Inc.

FHRAKAXXFAXCONFIDENTIAL> MOS TECHNOLOGY >1NC e**Hxxxstix Pa2e-

Revision History

Rev t Date Description of Revision
0 0 2-Gct-31 Original release
1,0 1-MAY-32 General clean-up arid reorganization*.

Rewrite of software architecture description

FrrAAXXXXCQOQNFIDENTIALF MGS TECHNOLOGY >INC . MX*****=* Fade-

Final Design Specification for the MCS65E4 Microprocessor

Table of Contents

1*0 Introduction* *=*

* K X

* * *x ‘*

1*1 Review of Project Goals* LX e

1*2 Summary
1*3 Terminology* **
1*3*1 1Introduction
1*3*2 Process* **
1*3*3 Op Code* * =*
1*3*4 Operand* **
1*3*5 Instruction™*
1*3*6 Descriptor™

1*3*7 Ordinal * x

1*3*8 Static Data? Dynamic Data* *

* * *

**x *

,**

* * *

* X *

* * *

* X *

1*3*9 Physical Address *

1*3*10 Logical Address ¢

1*3*11 Pa”e Address* * *

1*3*12 Offset Address?

1*4 Example of Addressing

2*0 Description of the MCS65E4 Pin

2*1 Introduction* *

2*2 Address

2*3 Address

of MC365E4Capabilities™

* * X X X

* * X * %

* X * X *

* * * X X X X *

* * X * X

* **x * *x

¢ F 4 6 6.6 06 06 0 0 0 0

* * X * *

in the MCS65E4 System*

* * X X *

Bus Middle / Address

Bus / Data Bus / Bus

2*3*1 Interrupt Acknowledge* * *=*

2*3*2 Hold Acknowledge

2*3*3 Last Instruction Cycle * * =*

2*3*4 1/0 Reset

2*3*5 Processor Instruction Fetch*

2*3*6 Processor Data Fetch Fxkok ok

*xkxxkxx*x**CGNFIDENTIAL>

MOS TECHNOLOGY >[INC > xaskkaaskox

Functions *

¢ ¢ * * *

* X X X *

Relative Address* * =*

* * X X *

* * X X *

* * * * *

* * * * *

* K * K *x

* * * *

*

* *

* X X *

*

*

*

*

*

*

*

*

*

* * * * * X X K X X * X * * *

* X KX KX KX KX KX X X X X X *

*

*

*

Page-

12

12

14

14

14

15

15

15

16

16

16

16

17

17

20

22

22

22

22

23

23

23

23

23

23

Final Design Specification for the MC365E4 Microprocessor

2.3.7 Refresh Cacle. e . . e - . e - ..

2.3.8 External Microcode Fetch
2.4 Row Address Strobe
2.5 Column Address Strobe.
2.6 Chip Power. 8 - e T
2.7 Oscillator _._.......
2.8 Bus Clock -
2.9 Valid Memory Address

2.10 Memory Ready. . . i aa- e .

2.10.1 Read Cycle o it o et e e

2.10.2 Write Cycle o o o o o o . . .

2.11 1Interrupt Input o o o o o o o . . .

2.12 Reset e ee e mmmmmaaaaa

2.13 Write Enablescc cieiiiinn an- e e

2.14 Bus Error. - —- - . L L e T Ty o » »

2.15 Hold. o o . . L i eeieaeaiaao- -

2.16 Instruction Intercept . .
3.0 Internal Architecture. _____...... e

3.1 Introduction . - o - .. R

3.2 Execution Unit

3.2.1 ABL/ABM Registers. . . . _ . . . oiiaaiaaaia--

3.2.2 Register Array - - - o o < o+ . o .

3.2.3 Arithmetic Logic Unit. . . _ * _ _ _ _ . »
3.2.4 Input Queue. T
3.2.5 ABH/DB RegQISTerS .. acaaae ce immmeacaaaan
3.3 Execution Control Logic. R
3.3.1 Control Registers. . AR

3.3.2 Microcode Array

*axkxxkxxCQNFIDENTIALT MOS TECHNOLOGY j INC. **#sxsxsx

«

»

»

«

Page-

24

24

24

24

24

24

24

24

25

25

25

25

25

26

26

26

26

27

27

28

28

28

28

28

28

Final Design Specif icst-ion for the MCS65E4 Microprocessor

4*0 Software
4

4

4*2*6 Top

4*2*7* 1

4 %2 %7 *2

4 %2 *7 *3

452 *7 *4

4 %2 *7*5

472 *7*6

4 %2 %7 *7

4*2*7*3

A4F*2*7*7?

4*3 Process

4*3*5* 1

4 *3 *5 *2

*xxkxxAxxX*CONFIDENTIAL>

MOS TECHNOLOGY?INC . **gxHxxsx

PsSe-

30

30

30

30

30

31

31

31

31

31

32

32

32

32

32

32

33

33

35

35

35

35

35

36

36

36

Final Design Specification for the MCS65E4 Microprocessor

4»3*5*3 Process Stack™* i ZIER R IR oA B

4*3»6 Process Software * * * 6 46 & * e *F *

4*3*7 Process Vectors* e % * * x4 ¢ F e o

4*3*8 Kernel Reset

Vector* * e **x & x % 4 o

4*4 Execution of Processes 1in the MCS65E4* > .

4*4*1 Introduction

* * X X % * * * x * * * * ‘

4*4*2 Basic Inter-process Controls * * e i I 2

4*4*2*1 Introduction * * ¢ & * * ¢ ¢ ¢ ¢ ¢ ¢ o

4*4*2*2 Kernel Reset Vector™ Frok ok k ok ok %

44 *2*3 Process Parameter List ** ¢ * ¢ ¢ *

4*4*2*4 Pointer to current Caller* * =* i IR
4*4*2*5 Process Link * oK K XX 4 6 T e e
4*4*2*6 Process Stack* TR F RE kX e X F
4*4*3 Inter-Process Operations ¢ * ¢ ¢ ¢ ¢ ¢ ¢ *
4*4*3*1 Introduction e e e 0
4*4*3*2 System reset FHR oK K K Ak & ok
4443 *3 Invoking Additional Processes™* *ox

4*4*3*4 Exception

Processing ek Kok Kk ok ok

444 *3 ¢4 ¢1 Introduction * * * ** = ¢ o*F 0 F

4*4*3*4*2 Servicing exceptions within the
current process * ¢ ¢ ¢ * ¢ ¢ ¢ *F ¢ ¢ * o

4*4*3*4*3 Servicing exceptions within the
calling process Fxok ok Kk okk X *oxxx

4*4*3*5 Returning

to a Suspended Process * *

4*4*4 Exception Vectors within the

MCS65E4 Process

* *

444 ¢4 ¢1 Introduction Fh oA K Kk xk & * oKk X x

4*4*4*2 Undefined

4*4*4*3 Undefined

Op Code Trap * * * * * * *x *x

Data Type Trap * * * * * * %

4*4e4 ¢4 Subscript out-of-limits Trap * wx

*xxxxkxxx**CONFIDENTIAL>

MOS TECHNOLOGY>INC ***xkasksx

»

*

*

Page-

36

36

36

36

37

37

37

37

37

37

38

38

39

3?

39

39

40

42

42

42

45

46

47

47

48

48

48

6

Final Design Specification for the MCSo5E4 Microprocessor

4*4*4 5 Operator and Operand Not Compatible* ¢ * ¢ o 48
4*4 ¢4 46 Overflow & * * * _________. * SR SR S S 2 2 48
4*4*4*7 Other Arithmetic Error *F 4 6 ¢ F 6 & e 48
4*4*4*8 Non-conformable Data Types * * * * * * *x *x =% 48
4*4*4*9 Instruction Access Trap* * ** & * ¢ ¢ ¢ oo 49
4»4»4*10 Data Access Trap* * * FroK Kk ok ok ok ok kk 49
4*4*4*11 Process Stack Page Boundary Trap* * * * * * 49
4*4*4*12 Debug Trap* ¢ ¢ ¢ * & & * . __...... *o* 49
4*4*4*13 Interrupt Input * * * FR ok kK k k ok ok Rk 49.
4»4*4*14 System Call oA KKk kR R Rk ke e R 49
4*4*4*15 System Call with Message* * ¢ * * * ¢ ¢ o * 49
4*4*4*16 Bus Error * * * * % *x % &k % %k kK Kk k Kk kX 49
4*4*4*17 Access out-of-limit * FrOK Kk ko k k Ak 49
4*5 Addressing within the MCSG65E4* ¢ * ¢ ¢ * ¢ ¢ ¢ ¢ ¢ o 50
4*5*1 Introduction * * * * * & % & 4 & & g F * g * ¢* 50
4*5*2 Primary Addressing Group * folola R SR SRR ke 53
4*562 *1 Introduction * * * * * % % % % *x*x & & x &% 53
4*5*2*2 Base Register Select Field ¢ ¢ ¢ ¢ ¢ ¢ * ¢ * 53

4 *5¢2 *3 Data Access Format * * Te KKK Kk Kk x xk 53
4*5*2*4 Number of Extension Bytes* * * * * * ¢ ¢ ¢ * 54
4*5*3 Secondary Addressing Group Fr oK KX K Kk ok xk 54
4*5*3*1 Introduction._...._...._. * ok Kok Kk Kk ok ok kK 55
4*5*3*2 Limit Page Addressing* * ¢ * ¢ * & _______.__. 55

4 *5*3*3 Process Stack PUSH / POP * * * 55
4*5*3*4 1Immediate Addressing? Long Form* ** * * *x % 60
4*5*4 Internal Register Addressing * - 60
4*5*5 Immediate Addressing? Short Form * * ** * *x *x % 60
4*5*6 Process Base Addressing? Short Form*> * * * * *x % 61

FHrRAXAXAXXCONFIDENTIAL? MOS TECHNOLOGY?INC *H*xxdkxxsksk Page-

Final Design Specification for the MC365E4 Microprocessor

4*5*7 Primary Base Addressing? Short Form* *okox X K%

4*6 Data Structure Within the MCS65E4 System * * * * * %
4*6*1 Introduction * * * * Rk 4k 6 e e e e f
4*6*2 The Basic Data Elements* * ¢ * * * * % * ¢4 o *

4*642 ¢1 Unsigned Binary Data Fields* FxR ok KX *
4*6*2*2 Signed Binary Data Fields** ¢ * ¢ * ¢ o *
4*6*2*3 BCD Data Fields.......... ..
4*6*2*4 Floating Point Data Fields * *x . * *
4*6*2*5 String Data Fields * * * * * * % % % % *
4*6*3 Organization of the Variable Descriptor* * *
4*6 *3¢1 Introduction * * FAR Ok ok ok ok ok ok ko ox % *
4*6*3*2 Organization of the Descriptor
Header ¢ & * & & & * .- *

4*6*3*2*1 Introduction Fxok Kk ok kX Kk kX
4*6*3*2*2 Trap Bit * * * * i
4*6*3*2*3 Access Mode* & ¢ * ¢ * * * ¢ * o *

4*6 3 ¢2*3*1 Attached * * * * *

4*6*3*2*3*2 Attached Relocatable

4*6*3*2*3*3 Short Relative * * *

4*6*3*2*3*4 Short Relocatable* * *

* *

* *

* *

4*6*3*2*3*5 Long Relative* * * * * * * *
4*6*3*2*3*6 Long Relocatable * * * =* * *
4*6*3*2*3*7 Logical Addressing * * * * *
4*6*3*2*4 Data Type Field and Flag *x * *
4*6*4 The Data Structures* * * * xR KA x * *
4 46 ¢4¢1 Introduction * ** * * & * x *x % * *
446*4*2 Single DimensionArrays* * ox ok x * *

* x * *

4*6*4*3 Array Structure* * * * % x %

FHRAKFAXRXXXCONFIDENTIAL> MOS TECHNOLOGY>INCeF*xdsrxsix

Page-

63

63

66

66

66

66

66

66

63

63

68

68

68

68

69

69

69

69

69

70

70

70

74

74

74

77

8

Final Design Specification for the MCS65E4 Microprocessor

4*6»4*4 Record ¢ ¢ * ¢ ¢ % ¢ 4066 ¢ 0606 ¢+ 067 o 0 0 32
4*6*5 Deferred Descriptor™ FoR R KE Kk kK Rk Kk k% 36

4*6*6 Application of the MCS65E4 Data
Accessing Mechanisms *FoK Ok x e o6 6 T 6 6 ¢ 0 S3

4*6 *6e1 Introduction * * X e e * o6 T e F * e 0 33

4*6*6*2 Accessing Data in Multi-Dimensional

4*6*6*3 Example of Accessing a mulli-dimensional

4*6*6*4 Example of Accessing Data in a Complex

Record Structure* & * * * « * * > _ % 5 * * * * * 99
4*6*6*5 Exception Vectors* TR KAk kKR Kk KR ko 104
4*6*6*5*1 Introduction * * * ** *x % x % % % % *x % 104
4*6*6*5*2 Descriptor Format* ** * * *x % *x % *x*x % 104

4*6*6*5*3 Example of Attached Address

Descriptor Format * & * & * ¢ * ¢ * * * *x *x x 4 105
4*6*6*5*4 Example of Remote Exception Vector * * * 105
4*7*The MCS65E4 Instruction Set* * * * * % * % % *x % % % 107
4*7*1 Introduction * * _ * % % % % % % % % *x & & * * * * 107
4*7*2 Format of the MCS65E4 Op Codes * * 107
4*7*3 Basic Arithmetic arid Logic Operations™ XK KX 109
4*7*3*1 Introduction * * * % % * % % ok ok ook %ok % 109
4*7*3*2 ADD* * * F Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ko 111
4*7*3*3 SUBTRACT * * * * * % * % % % % o iaiaa--- 112
4*7*3*4 MUL* * * * F % % & & & & * &k Kk Kk Kk ok x Kk kX 113
4*7*3 *5 DIVIDE * * * * * % * % % % % * .- 114
4*7*3*6 AND* * * * * * F % * K *k Kk *x *k K* .- * 115
4*7*3*7 OR * * * * * *x % * ... Bl * * 117
4*7*3*8 EQOR * * * * *x * % *x % % * K& ... * *okox 119
4*7*3 %9 MOD* * * % * ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 121
A*T7*3*10 ABS * * * ok ok ok ok ok ok ok ok ok ok ok * 122

FHrRAXKAXXXCONFIDENTIAL> MOS TECHNOLOGY *INC ***xHkxxsksk Page-

Final

4.7.4_.11

4.7.3.12

4.7.3.13

4.7.3.14

4.7.3.15

4.7.3.16

4.7.3.17

4.7.3.13

4.7.3.19

7.4 Program Control

4.7.4.1

4.7.4.2

4.7.4.3

4.7.4.4

4.7.4.5

4.7.4.6

4.7.4.7

4.7.4.3

4.7.4.9

4.7.4.10

4.7.4.11

4.7.4.12

4.7.4.13

4.7.4.14

4.7.4.15

4.7.4.16

4.7.4.17

4.7.4.18

S E T i e

Introduction

BR.

JMP

Instructions

FHFHXKAXXAXXCONFIDENTIAL, MOS

Design Specification for the MCS65E4 Microprocessor

Final Design Specification for the MCS65E4 Microprocessor

4.7.4.19

4.7.4.20

4.7.4.21

RTE

TASK.

4.7.5 Advanced Operations. -

4.7.5.1

4.7.5.2

4.7.5.3

4.7.5.4

4.7.5.5

4.7.5.6

4.7.5.7

4.7.5.8

4.7.5.9

4.7.5.10

4.7.5.11

4.7.5.12

4.7.5.13

4.7.5.14

4.7.5.15

*xxkxxrk*x**CONFIDENTIALYF

Introduction _.

RESET. « = o o o e
CEQ. .

ONE . o e e e e e e e e e e e e e e e et e e meaaa

C6E *x

MOS TECHNOLOGY* INC_ ****x*x*x*x*xgp

152

153

- 154

- 155

- 155

156

157

161

163

164

167

169

171

173

175

176

F=aSe-

11

160

Fin31l Design Specification for the MCS65E4 Microprocessor

1*0 Introduction

This specification contains a detailed description of all aspects
of the MCS65E4 microprocessor develop merit project? beginning in
Section 1 with a review of the project goals arid a discussion of
the market toward which this chip 1is directed™* It is hoped that
these discussions will lead to greater understanding of the goals
of the project on the part of everyone involved*

Section 2" contains a description of the MCS65E4 interface* This Iis
followed by s description of the internal architecture of the
MCS65E4 (Section 3)? including the register organization? the
internal buses and the organization of the control store* Section
4 contains a detailed description of the MCS65E4 software
architecture (addressing modes? instruction set? etc*)*

1*1 Review of MCS65E4 Project Goals

Before entering into a detailed discussion of the MCS65E4? it
would be useful to briefly review the major factors which have
influenced the design of this processor system* Understanding
these TfTactors will be particularly important for anyone involved
in the design verification stage of this project*

Although the MCS65E4 1is equipped with a "compatible®™ mode 1in which
it is capable of executing software which was written for the
MCS65027? the MCS65E4 1is not designhed to be upward compatible with
the 6502 family of 3-bit microprocessors™* The primary reason for
this is that the basic design considerations behind the 6502
processor differ greatly from those described below for the
MCS65E4 processor* This 1is true in spite of the fact that the 6502
has reached a dominant position in the microcomputer market? one
of the target markets for the MCS65E4*

To put the 6502 architecture into perspective? it should be noted
that when this design effort began? microprocessors were viewed
primarily as replacements for random logic in the design of
controllers™ The 6502 was optimized toward this application* To
this end? significant emphasis was placed on minimum system
configurations and on minimizing device and system cost* This was
accomplished through the use of such things as page zero
addressing? 8-bit index registers? multiple-function support
devices? and generally simplified system interfacing*

Many of the characteristics of the 6502 which were designed to
maximize 1its performance as a random logic replacement would seem
to limit its performance in high-end microcomputer systems™* In
spite of this fact? low cost and ease of use has allowed the 6502
to become a dominant factor 1in this market* These are the features
which will be retained in the MCS65E4~* At the same time? the
architecture of this "next generation* processor will be designed
to assure maximum performance in microcomputer systems at the
lowest possible cost*

Modern high-end microcomputer systems exhibit several features
which can greatly influence the design of a processor optimized

*xxxxxxxxCONFIDENTIAL? MOS TECHNOLOGY? INC ** %k Page- 12

Final Design Specification for the MC365E4 Microprocessor

for this application™* In particular? all such systems are
controlled by a sophisticated operating system * In many cases?
components of this operating systenm are swapped into and out of
memory as required* host such systems support several user”s

programs in a *multi-task”™ environment? reallocating the available
memory from system to user or from one user to another as
reoui red*

There are several important problems inherent 1in this type of
system* The first 1is memory protection* It is iImportant that the
operating system be protected from the user®s programs arid that
the user®s programs be protected from each other* In addition? the
software should be “relocatable”™ since the physical address space
in which the program will be located is generally determined at
execution time*

In addition to the above? it Is assumed that most microcomputer
programming will involve the use of a high-level language™
Therefore? the software architecture of the processor must be
designed to minimize the time required Tfor both compilation arid
execution of such Ilanguages™

Finally? it should be noted that even the most powerful processor
is wasted 1if it is absorbed in 1/0 handling a large portion of the
time* For this reason? the system level problems of interrupt?
DMA? etc* must be handled in a manner which maximizes the amount
of time which the processor has available for "computing"™*

All of these factors have had a strong influence on the design of
the MCS65E4* However? the design described below addresses each of
these factors in a mariner which provides maximum performance
within well-defined chip size constraints™* The architecture
described 1in this document can be built into a device which will
be well within "state of the art”? providing a combination of
device cost and performance which should allow it to assume the
dominant position in the micro- computer market now held by the

6502 *
1*2 Summary of MCS65E4 capabilities

The following is a brief listing of the principal features of the
MCS65E4 family of microprocessors™*

1* S? 16 or 32-bit Data Bus*
2* 24-bit Address Bus*
3* ALUprocesses 32 bits of data for each processor cycle*

4* No internal data registers visible to the programmer* All
operations are "memory-to-memory"™*

5* Internal operarid registers allow processing of multi-byte
operands™*

6* "Generic" Op Codes? i* e*? the Op Codes do not specify

FrAXKAXEAXCOQNFIDENTIAL? MOS TECHNOLOGY ?INC e**HHxxkix Page- 13

Final Design Specification for the MCS65E4 Mictoprocessor

the format of the data fields™

7* "Self-defining* data structures? i* e* most data 1is
accessed through tags arid descriptors* However; the
ability to directly access and manipulate byte? double
byte and triple byte fields 1is provided to facilitate the
generation of descriptor and pointer addresses? etc*

8* On-chip hardware and microcode support for many oper< -irig
system functions™*

9* Hardware support fort
N3¢ Error Detection arid correction*
b* Virtual memory*
c* Prioritized and vectored interrupts*

de Floating point data types™
e* Decimal (BCD) data types™

1*3 Terminology

1*3*1 Introduction

The architecture of the MCS65E4 contains a number of very

important concepts which are uniaue to the world of
microprocessors>* To assure the accurate transfer of information?
therefore? this section introduces what is hopefully a clear?

consistent terminology which will be employed throughout this
document™*

1*3*2 F"rocess

The "process" is one of the key concepts in the MCS65E4
architecture* In general? a process can be described as a
self-contained combination of software and data* The address

limits within which a process must execute are defined by
information stored in an internal Process Base F~egister for the
lower limit and 1In a Process Linmit Register for the upper limit*
Special hardware within the MCS65E4 assuresthat a process does

not access any memory Jlocations outside of the address space
defined by these two registers*

There are several 1iImportant process characteristics which affect
the execution of software within the MCS65E4* The most important

is that all processes are totally relocatable? i* e*? an MCS65E4
program will execute 1in exactly the same manner no matter where it
is located in the 16 mega-byte address space In addition? an
active process can be suspended? and can be moved within the
address Space of its caller without affecting subsequent

execution™*

There are three types of processes within the MCS65E4
architecture* These are the Kernel? the Operating System and the
User process?* Each exhibits characteristics which reflect its

position in a well-defined hierarchy>* The term "Kernel process"™*
refers to the lowest level in the set of processes which forms a

xsskkkkk kX CONFIDENTIAL> MOS TECHNOLOGY 2 I NC % %k s sk s ok e Page- 14

Final Design Specification for the MCS65E4 Microprocessor

complete MCS65E4 system* The processor enters this mode through

the chip reset function or through system c¢311s and traps which
occur in the higher level processes™ Within the Kernel? the

processor C3n call either 3 higher 1level operating system process
or 3 User process™* These higher Jlevels of operating system csn
continue to call additional processes until a User process is
encountered* This hierarchy of processes 1is described in detail,
below *

Within this specification? the terms “Kernel processl will be used
to refer to process level 1 in which both the Kernel flag and the
User/Supervisor flag 3re set* The term “Operating System Process
will refer to those higher level processes in which the
User/Supervisor fTlag is set but the Kernel flsg 1is cleared* This
can be summarized as follows*

Kernel User/Supervisor

Process Flag Flag

Kernel 1 1

Operating System 0 1

User 0 0
1*3*3 0p Code
The terin bQp Code* refers to thefirst byte of each iInstruction*
This byte specifies the operationto be performed(Add? Subtract?
etc™) arid the format of the instruction* However? it does not

specify the type of the data (Real? BCD? etc*) which 1is to be
manipulated by the instruction*

1*3*4 Operand

The term *operand" refers to that portion of the 1instruction which
contains the information necessary to access a single data field~*
The first byte of the operand specifies the manner in which the
desired data field is to be accessed* Specifically? the data can
be located in an internal register? it can be in the instruction
(immediate data)? or it can be accessed through the normal data
referencing mechanism described below*

1*3*5 1Instruction

The term "instruction” refers tothe combination of Op Code and
Operands which are accessed under direct control of the Process
Program Counter to cause a complete execution seouence to take

place within the processor*
1*3*6 Descriptor

Within the MCS65E4 architecture? the “data descriptor* acts as the
primary means by which the processor determines the format and
location of a data field* The term descriptor refers to all of the
information reauired to access a data field* The components which

*xxxHxxx*CONFIDENTIAL? MOS TECHNOLOGY?INC *** %% Page- 15

Final Design Specification for the MC365E4 Microprocessor

make up 3 descriptor are*

le Descriptor Header™
2* Address Reference Information*
3¢ Auxiliary Information*

The operation of the descriptor 1is described in detail 1in Section
1*3*7 Ordinal

The term mordinal* will be used to refer to the three-byte
unsigned binary fields which are used to store Jlogical addresses?
offset addresses? etc* within the MCS65E4 architecture*

1*3*3 Static Data? Dynamic Data

During the discussions of process organization and execution
within the MCS65E4? the terms static data and dynamic data will be
used to differentiate between process variables which retain the
same Tformat for the life of the process arid those which are
created 3nd abolished while the process is being executed* The
most important characteristic of these two types of data is that
the amount of memory required by the static data will not change
during execution of the process* Dynamic data? however? consists
of variables which cannot be assigned fixed amounts of memory
during compilation of the process software because the memory
requirements for these variables will only be known at run time*
1*3*9 Physical Address

The term “physical address* will be used to specify a position Iin
the 16-megabyte address space which the MCS65E4 can access* These
are the addresses which appear on the pins of the processor*
Throughout this document? the physical address is assumed to be
the wmdefault*" Therefore? 1i1f an address type (physical? logical ?

etc™*) is not specified? it can be assumed to be a physical
address *

1*3*10 Logical Address

One of the most iImportant aspects of the stand-alone nature of a
process is that all addressing within the process software is
self-contained and is completely independent of the physical

memory Qlocations in which the process resides™ All addresses
generated during execution of the process software are assumed to
be offsets from the address contained in the Process Base

register* For example? if 3 process whose base address is 044B0O
(HEX) were to specify an address of 0177 (HEX)? the physical
address which would be accessed 1is 044C77 which 1is obtained by
adding 0177 to 044B00*

This characteristic of addressing within the MCS65E4 brings up the
concept of the logical address* 1In this document? the term logical
address will be used to refer to the position of a memory location
within the address space of a process* In the above example?

xwkxHxxkxxxCGNFIDENTIAL? MOS TECHNOLOGY 2 INC * % sk oPage- 16

4

Final Design Specification for the MCS65E4 Microprocessor

therefore? the Ilogical address would he 0177* It should be noted
that all software execution within the MC365E4 is performed within
the context of a process* For this reason j all memory locations

have both a physical and a logical address* The Physical address
remains fixed by the system lo”ic* However? the logical address of
each memory Ilocation 1is entirely a function of 1its position within
a process* This will be illustrated in the example below (See
Fidure 1*1)*

To assure accuracy? this document will utilize the phrase “within
process (process name)* whenever a logical address is specified*
Also? a memory location which is outside of the limits of a
process 1is assumed to have no logical address within that process?
i* e*? the logical address 1is assumed not to exist*

1*3*11 Page Address

There are many aspects of the MCS65E4 architecture which assume ari
eight bit organization* For example!l

1* Op codes are eight bitswide*

2* The minimum addressable data field is eight bits wide*
3* Offset addresses can bezero? eight? sixteen or 24 bits*
4* Both the base and limitfor a process are specified

in 256-byte increments*

As a result? it will be useful to utilize the term "page address-”
to identify the location of a 256-byte page* Throughout this
document? the Page Address will be specified by the upper 16
address bits with the 1low order eidht bits 1identified by XX* For
example? Page Address O01E4XX identifies the page whose upper
sixteen address bits are O01lE4* This page 1includes addresses 01E400
through OlE4FF*

In addition to the Page Address? the phrase "address on page (page
number or name)l will be used to specify an eight bit address
within a page* For example? address O01E43A can be identified as
address 3A on page O0l1E4XX*

The term "Base Page- will be used to refer to the lowest order
page within a process* This 1is the 256-byte block of memory whose
page address 1is contained in the Process Base register* Similarly?
the term "Limit Page8 will be used to refer to the 256-byte block
of memory whose page address is contained in the Process Limit
register™* The range of addresses which are available to a process
extends from address 00 on the Base Page through address FF on the
Limit Page*

1*3*12 Offset Address? Relative Address

All data addressing within the MCS65E4 is accomplished by adding a
displacement to a memory address™* This can be divided into two
specific forms of addressing™ These are Offset Addressing 3nd
Relative Addressing™* These two differ primarily in the manner in
which the memory address arid the displacement are specified*

xaxwkxxxkxxCONFIDENTIAL? MOS TECHNOLOGY 2 INC *% %%k Page- 17

Final Design Specification for the MCS65E4 Microprocessor

Within the MCS65E4 architecture? the term “Offset Addressing8 will
he used to identify an addressing operation in which the offset 1is
specified in the instruction arid the memory maddress is contained
in a base register™* Only positive offsets are permitted whon
accessing through Offset Addressing™* The base register can be
either one of the on-chip process registers (TOS? BAS? PRM? LMT)
or any three-byte set of addresses in the Base Page*

To assure accuracy? this document will utilize the phrase “offset

from register (register name)* whenever an Offset Address is
specified* In addition? whenever an external base register is
established in the process Base Pase? this base register will be
identified as “EXT (n)“? where n is the page address of the start
of the base register* For example? if addresses 15-17 on the

process Base Page are to be treated as an external base register?
this base will be identified as EXT15e Finally? it will be assumed
that a memory location which cannot be accessed through a base
register has no offset address relative to that register* This
will be true? of course? for any memory Qlocation outside of the
process* Even more important? it will also be true for all memory
locations with a lower physical address than that contained 1In the
register since negative offsets are not permitted while accessing
data via base registers™*

In addition to Offset Addressing? the MCS65E4 utilizes a similar
addressing mode in which the memory address 1is not contained 1in 3
base register and in which both negative and positive
displacements are permitted* This 1is termed “Relative Addressing"™
Within Relative Addressing operations the memory address can be
either, the contents of the program counter or the address of a
data descriptor™* This 1is described 1in detail in Section 4 of this
specification*

*adkxkxkxxCONFIDENTIAL> MOS TECHNOLOGY 21 NC e Page- 18

Final

Physical
Address
Space

FFFFFF

028000

000000

FIGURE

FrHAAXXEXXCONFIDENTIALT MOS TECHNOLOGY >INCe*****xxkx Page-

Design Specification for the MCS65E4 Microprocessor
Operating
System User
Kernel Process Process Registers
Address Address Address
Space Space Space Contents Name
FFFFFF
OEOOFF
i
1 1 0301FF 0301XX LMT
I 1 1
i 1 1
1 1 1
1 1 1
1 1 1
1 1 |
1 1 1
1 1 1 1 1 1 1 I
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 I
1 | | 1 1 1 1 E
1 i 1 1 1 1 D 1
| ! 1 1 1 1 ! 1
1 1 1 1 1 C 1 1
1 1 1 1 1 1 I 024700 EXT*
! h t ob 1 1p 1 h
1 1 1 1 1 ' - 0235A0 TO3
: I A
i i i i i 023590 F*RM
1 A i i i
1 1 i i i
i 1 i i i 001200 EXT*
| h 1 L i
1 1 1 023500 0235XX BAS
1 1
I L
I |
t i 1 *BaseF ‘age Addresses 10-12 are
I I 1 assumed to contain 001200. This
-“-010000 set of memory locations will be
\ treated as an external base
i register pointing to physical
| address 024700 (BAS + 001200)*
000000
¢1- Initial Configuration for Addressing Example

19

Final Design Specification for the MCS65E4 Microprocessor

le4 Example of Addressing within the MCS65E4 System

The addressing concepts outlined above can be clarified by
example* This will be accomplished by describing the addresses
associated with a memory Jlocation which 1is contained within the
address space of a User process* This User process is assumed to
have been called by an Operating Systenm process and 1is therefore
at level three 1in the hierarchy* Any memory location Qlocated in
this User process can be accessed by each of the lower level
processes™* Therefore? the memory Qlocation being discussed below

will have a single physical address? hut will have a logical
address within the Kernel process? within the Operating System
process arid within the User process* In addition to these three
logical addresses? the memory Jlocation will have a number of

Offset Addresses during any period that the MCS65E4 1is executing
one of these three processes*

The diagram above illustrates the memory map of anulti-task
system in which the three processes reside* The Kernelis assumed
to cover the entire 16-megabyte space* The Operating System

process (which was 1invoked by the Kernel) is limited to the range
of addresses from 010000 to OEOOFF™* At the same time? the User
process is assumed to reside initially within addresses 023500 to
0301FF* The memory Jlocation which will be examined initially will
be 028000? which 1is within the range of addresses allocated to the
User process* Figure 1*1 illustrates this configuration*

As described previously? each memory location has a single
physical address* For the memory location being examined
initially? this physical address is 028000* In fact? since the
base of the Kernel is always at address 00000 0? a memory
location®"s logical address within the Kernel is the same as its
physical address* Within the Operating System process (level two

in the hierarchy) the logical address of this memory Jlocation 1is
0180007 which 1is the displacement between the physical address of
the base of the Operating System process and the physical address
of the memory location itself* At the same time? this memory
location has a logical address within the User process* This 1is
obtained by subtracting the physical address of the memory
location (028000) from the physical address of the process base
(023500)* The resulting logical address is 004B00O*

To allow the offset addresses for this memory location to be
specified? it iIs necessary to first specify the contents of the
registers which can be used as a base for addressing the memory
location™* This will be illustrated by assuming the existence of
two addressing registers? termed the Primary Base Register arid the
Top oF Stack Register™* At the same time? it will be useful to
assume that addresses 10-12 within the Base Page contains 001200
and will be treated as an External Base Register* This provides
three internal registers, (including the F"rocess Base register) and
one external base register which can be used to access data*

To illustrate the offset address? assume that the MCS65E4 is

executing the User process? the Primary Base register (PRM)
contains 023590 and that the External Base Register (logical

*xwxxrxxxxCONFIDENTIAL? MOS TECHNOLOGY? INC s Page- 20

Final Design Specification for the MC365E4 Microprocessor

addresses 10-12 within the user process) contains 001200* The Top
of Stack Register (T0S) is initially at 0235A0« Under these
conditions™ the Offset Address of memory location 023000 relative
to PRM is 004A70e Likewise* the Offset Address " TOS is 004A60
and the Offset Address to the External "Base is 003900*

Durind the execution of the User process software* it 1is possible
to modify the contents of the addressing registers introduced
above* Doing so* of course* modifies the Offset Address of each
memory Qlocation in the process relative to that register* 1t may
in fact eliminate the Offset Address since only positive offsets
are valid* This can be illustrated by assuming that PRM .is set at
logical address 000040 within the User process* Doing so sets the
register contents to 023540* At this point* the Offset Address of
memory Jlocation 028000 becomes O004ACO* However* if the PRM 1is set
so that it points to address 029000 (logical address 0005B00
within the User process)* this register c3n no longer be used to
access address 028000 arid therefore* this memory location no
longer has an offset to the PRM register™

It should be noted that all memory Jlocations outside the limits of
a process have no logical addresses within that process* Likewise?
memory locations outside of a process which 1is being executed have
no Offset Address relative to the internal or external base
registers since these locations cannot be accessed by these
registers*

FxxHxxxAXXCONFIBENTIAL MOS TECHNOLOGY>INC *****xxkxx Page- 21

Fins! Design Specification for the MCS65E4 Microprocessor

240 Description of the MCS65E4 Pin Functions

2¢1 Introduction

The initial versions of the MCS65E4 will be available in a
standard 40-pin dual-in-line package* This is made possible by
multiplexing the address? data and bus status information onto a
set of 24 Pins* The pin configuration 1is as follows*

Function t of pins
1* Address Bus Middle/ Address Bus Low

(A9/A1-A16/A8) 3
2. Address Bus Hi3h/ Date Bus Lo

(A16/DB0-A23/DB7) 8

3. Bus Status/ Data Bus Hi2h
(1ACK/DB8-MIC/DB15) 3
4. Row Address Strobe (RAS) 1
5. Column Address Strobe (CAS) 1
6. Chip power (VDDrvss) 9
7. Oscillator 0
8. Bus Clock (BCLK) 1
10. Memory Ready (RDY) 1
11 ¢ Interrupt Input (INT) 1
12. Reset (RES) 1
13 . Write Enables (WEL> WEH) 9
14. Bus Error (BERR) 1
15. Hold (HLD) 1
16. Instruction Intercept (I11) 1
TOTAL 40

of these sets of pins is described in detail below*

2*2 Address Bus Middle/Address Bus Low (A9/A1-A16/AS)

The low order sixteen address bits (above AO0) are multiplexed onto
eight pins in a manner which 1is compatible with industry standard
64-Kbit dynamic RAMS* These 1lines enter the high impedance state
for external DMA operations (see HOLD)*

2*3 Address Bus/Data Bus/Bus Status (A16/DB0-A23/DB7t
IACK/DB8-MIC/DB15)

The high order eight address bits and the bus status bits are
multiplexed with the bi-directional data bits* During memory write
operations* the timing for these signals is the same as for the
low order sixteen address lines* For a memory read operation? the
MCS65E4 output drivers enter the high 1impedance state and the
memory devices place data onto these lines*

The high order address bits are normally stored in external
latches to be used as chip selects for the memory and 1/0 devices*
These signals are strobed by RAS as are the bus status bits* The
bus status bits are used to control specific functions such as
interrupt and DMA*

FHRFXKXXAXCONFIDENTIAL> MOS TECHNOLOGY>INC@*Hxrxkskix Page-

Final Design Specification for the MC365E4 Microprocessor

Bit Status Function

51 Interrupt Acknowledge (IACK)

52 Hold Acknowledge (HOLDA)

53 Last Instruction Cycle CLIO

54 1/0 Reset (IORES)

55 Processor Instruction Fetch (INST)
56 F*rocessor Data Fetch (DAT)

57 Refresh Cycle (REF)

SS External Microcode Fetch (MIC)

2*3*1 Interrupt Acknowledge (1ACK)

The 1ACK bit goes high to signal the Interrupt Controller that it
can place the active interrupt reauest information on the low
order eight bits of the data bus* This operation 1is described in
detail 1iIn Section 4*4*4*13*

2*3*2 Hold Acknowledge (HOLDA)

The Hold Acknowledge bit goes high to indicate that the processor
will enter the HOLD state at the end of the present cycle* During
the HOLD state* the RAS and CAS signals continue to run 3nd the
bus status signals are generated by the processor during RAS*
However” no data* address or write enable (UEL* WEH) 1information
is generated and the corresponding drivers remain in the high
impedance state at the appropriate time*

2*3*3 Last Instruction Cycle (LIC)

The LIC bit goes high to indicate that the current cycle 1is the
last cycle of an instruction execution seauence * This 1is used in
conjunction with bus arbitration logic in multi-processor systems
to control access to shared resources*

2*3*4 1/0 Reset (IORES)

This bit goes low to cause the systenm 1/0 devices to be reset*
This occurs when a System Reset instruction 1is executed* Causing
the RES input signal to go low does not cause this bus status bit
to go low* This allows resetting the processor without effecting
the peripheral devices*

2*3*5 Processor Instruction Fetch

This bit goes high to indicate that the address on the address bus
comes from the Processor Program Counter arid that the data being
fetched from memory will be placed into the input Queue*

2*3*6 Processor Data Fetch

This bit goes high to indicate that the address on the address bus
was generated as the result of an instruction execution*

2*3*7 Refresh Cycle

xwwkxxxxxxCONFIDENTIAL> MOS TECHNOLOGY* INC * %% s Page- 23

Final Design Specification for the MCS65E4 Microprocessor

This bit does high to indicate that the current cycle 1is a memory
refresh cycle*

2*3*8 External Microcode Fetch

This bit does high to indicate that the current cycle 1is art
external microcode fetch cycle*

2*4 Row Address Strobe (RAS)

The Row Address Strobe is a clock signal usedprimarily to latch
the middle eidht bits of the address into externallatches™* These
can be discrete TTL Ulatches for interfacing to peripheral devices
or to conventional static memories* In mostcases? however? they
will be located in the dynamic memory devices* |In addition to the
middle byte of the address bus? this signal 1indicates the presence
of valid data on the high order address lines arid on the Bus
Status lines* RAS will be held low by RBY but will continue
running during a HOLD operation*

2*5 Column Address Strobe (CAS)

The Column Address Strobe is primarily used to latch the column
addresses (low order eight address bits) into external latches*
This signal 1is also used to indicate that valid data is present on
the data lines during a memory write operation and to enable the
memory output drivers during a memory read operation* This signal
is synchronous with the BCLK signal* The CAS signal is held Ilow by
RDY but will continue running during a HOLD operation*

2*6 Chip Power (VDDFVSS)

The MCS65E4 will by powered by +5*0 Volts DC applied between the
VDD and VSS pins (VDD = +5? VSS = Ground)*

2*7 Oscillator (Osc 1In? Osc Out)

The 8 Mhz oscillator can be controlled by a auartz crystal
connected between the Oscillator |In and Oscillator Out pins* In
addition? the chip can be controlled by an external oscillator by
driving the Oscillator In pin with a TTL level sauare wave*

2*8 Bus Clock (BCLK)

The Bus Clock corresponds to the normal Phase Two clock. in the
6502 microprocessor system* Since this signal is always present?
it can be used to synchronize the RDY? HOLD and BERR signals and
to control data transfers between the MCS65E4 and any 6502
interface device*

2*9 Valid Memory Address

This bit goes high to indicate that there is a valid memory
address on the address bus *

FHRAKFXFIXXCONFIDENTIAL? MOS TECHNOLOGY ? 1 NC @k Page- 24

Final Design Specification for the MCS65E4 Microprocessor

2*10 Memory Ready (RDY)

The Memory Ready 1input can pe used to control the operation of the
processor when interfacing to slower memory or peripheral devices*
This signal operates in the same manner as in the 6502
microprocessor system with the additional capability of being able
to stop on both a read and a write operation* These two operations
are described separately below* The dynamic memory refresh
operation 1is disabled 3S long as RDY is held low*

2*10*1 Operation of RDY during Read Cycle

At the beginning of a memory read operation? the processor places

A9-A23 and the bus status information on the multiplexed
address/data lines* This is followed by RAS going low to cause
this information to be latched externally™* The address and bus

status information is then changed to A1-A8 arid DO-D15* This is
followed by CAS going low and BCLK going high*

Immediately after BCLK goes high* the RDY 1line can be pulled low
to cause the processor to stop in 1its current state* If RDY is
pulled low during a memory read operation* the processor stops
with the data bus Ilines 1in the high impedance state* The RAS and
CAS signals remain low as long as RDY remains low* This will hold
the address in the external latches allowing whatever time is
necessary for the memory outputs to become valid*

2*10*2 Operation of RDY during Write Cycle

Timing for the Write cycle 1is very similar to that described above
for the Read cycle* The Write Enable Signals (WEL* WEH) will go
low immediately after the beginning of the cycle (coincident with
A9-A16 going valid)* Immediately after RAS goes low* the data to
be written into memory 1is placed on the DBO-DB15 Ilines* If RDY is
pulled low during this cycle* the RAS and CAS signals remain low
arid the processor output data will remain on the DBO-DB15 lines™
The Write Enable lines will go high coincident with the trailing
edge of the BCLK pulse during which the RDY Iline returns high*

2*11 Interrupt Input (INT)

The MCS65E4 processor can be interrupted through the Interrupt
Input* Setting the INT Pin low causes the MCS65E4 to enter an
interrupt seouence at the end of the current instruction if the
Interrupt Inhibit bit in the Process Control Register 1is cleared*
The operation of the interrupt function 1is described in detail in
Section 4*0*

2*12 Reset (RES)

The processor can be reset by applying a low signal to this input*
For power-on reset* this can be accomplished by connecting an R-C
circuit to the RES pin* Positive control of the reset function in
the peripheral devices can be accomplished by connecting these
devices to the I0RES Bus Status bit* As long as the reset input
stays low* the processor will not perform any write operations*

FAXFXFXXXCONFIDENTIAL* MOS TECHNOLOGY *INC* H**sxksoksx Page-

Final Design Specification for the MCS65E4 Microprocessor

2*13 Write Enables (LJEL?WEH)

The write-enable sign3ls coritrol the direction of data transfers
betweeri the MCS65E4 and memory*. If a write-enable line is high
(Read)? data will be tr3nsferred from memory to the processor* |IFf
this sign31 is low? dat3 will be transferred into memory* WEL
controls writing into the lower byte iIm memory (even addresses)
while WEH controls writing into the the upper byte (odd
3dd resses)*

2*14 Bus Error
The Bus Error pin can be used to indicate that 3n error occurred

during the previous cycle* This error C3n be the result of a
Virtual Memory Address f3ult? 3 dsts error detected 1in an external

EDC chip? or any other form oferror*When this occurs? the

processor immediately suspends 1its current execution sequence and
traps to the operating system* The operating system can process
the error and? if appropriste? can then return to the execution

seauence which was interrupted*
2*15 Hold (HOLD)

The Hold pin can be pulled low toc3use the processor to "stop and
to pl3ce its sddress and data bus into the high iImpedance state*
This is used primarily for external DMA and multiprocessor
operations* As long as the HOLD pin is low? the RAS and CAS
signals continue to operate normally arid the processor continues
to put out the Bus Status bits* However? no address or d3ts
sign31ls 3re genersted by the processor 3nd the corresponding pins
remain in the high- impedance state except as required to gener3te
the bus status information 3nd to perform the required refresh
operations™ IT the external memory refresh is enabled during the
hold state (Hold = Low)? the HOLDA bus status bit will return Ilow
periodicslly to signal the external devices that the processor
will place refresh addresses on the address bus

2*16 Instruction Intercept (I1)

The Instruction Intercept can be used to cancel the execution of
an instruction within the MCS65E4* |If this line 1is pulled Ilow? the
current instruction execution terminates immediately™* The
processor then treats the next byte in program sequence as 3n Op
Code snd immedi3tely enters the appropriate execution sequence*
This pin is used primarily by Auxiliary Arithmetic Processors to
cancel the execution of intercepted 1iInstructions™*

*xxxHxxxx*CONFIDENTIAL? MOS TECHNOLOGY?INC* ***%xxsx Page- 26

Final Design Specification for the MC365E4 Microprocessor

3*0 Internal architecture of the MCS65E4
3*1 Introduction

All aspects of the 1internal MC365E4 architecture are designed to
achieve the desired level of performance 1in the smallest possible
chip size* Most of the registers are organized into a single
dynamic array with all data modification taking place in a
high-speed 8-bit ALU* Four 1internal cycles are executed for each
external (processor) cycle* This ratio of internal to external
cycles combined with the fact that the ALU 1is utilized 1in nearly
every internal cycle allows full 2 MHz operation in a processor
containing a Tfull 64 bytes of register within a chip size usually
associated with 8 bit processors*

It should be noted that the device described below is only the
first implementation of the architecture described in this
document™* This implementation tries to achieve a balance between
chip size and capability with a strong emphasis on minimizing chip
cost* It is assumed that future implementations of this
architectute will result in devices with increased capability
through Ularger control ROMS? through the integration of additional

system functions (keyboard interface* etc*) onto the processor*
and ultimately™* by expanding the internal organization from 8 to
32 bits* All of these configurations will be upward compatible

with the earlier devices*

The MCS65E4 is organized 1into an Execution Unit and an Execution
Control Unit* Each of the major components which comprise these
two units 1is described briefly below*

3*2 Execution Unit

3*2*1 ABL/ABM Registers

Those registers which 3re associated with the multiplexed low
order sixteen address pins are located in a single dynamic array*
These registers are!

1* Program Counter Low and Middle

2* Refresh Register

4 ¢ Add ress Register 1 Low and Middle
5* Add ress Register 2 Low and Middle
6* Address Register 7 Low and Midd1le

These registers sre supported by an eight-bit incrementer which
operates in parallel with the ALU described below*

3*2*2 Register Array

The complete register array is contained in a matrix of dynamic
RAM cells™* The traditional 3-2-2 dynamic RAM cell has been
expanded to allow two READ buses and one WRITE bus* The register
refresh operation is handled by a combination of hardware arid
software 1iIn a manner which 1is totally transparent to the user*

rxkxkkxxxXCONFIDENTIAL MOS TECHNOLOQOGY *INC********x*x Page- 27

Final Design Specification for the MCS65E4 Microprocessor

3*2*3 Arithmetic/Logic Unit (ALU)

Most of the data modification operstions take place in the ALU*

This includes normal execution operations as well as middle and
high order Program Counter 1incrementing and register incrementing?

decrementing? etc* The ALU 1is equipped with high speed carry
look-ahead to allow it to complete any operation within one
internal cycle* This allows an 8-hit ALU to perform most of the
data manipulation functions required by a 32-bit processor?*

The specific functions performed 1in the ALU are as follows:

1*“Data shifting

2* Address limit checking

3* 2"s complement binary addition and subtraction
4* Packed BCD addition ancT subtraction

5* Logic AND

6* Logic OR

7* Logic EOR

3*2*4 Input Queue

Data which is fetched from memory under control of the program
counter is first loaded into the input queue where it is held
until it is needed by the control logic* The queue is usually
filled by 8pre-fetchinge the next instruction sequence during each
execution*

3*2*5 ABH/DB Registers

All of the registers associated with the Data Bus arid the Address
Bus High are located 1in a single dynamic array* This TfTacilitates
the multiplexing of these signals onto a set of sixteen pins as
described 1iIn Section 2* These registers are as follows:

1* Program Counter High

2* Eiata Latch Low and High
3* Address Register 1 High
4* Address Register 2 High
5* Address Register 3 high

The bus status signals are generated in the control section and
are multiplexed with the appropriate data bus signals at the
bonding pad*

3*3 Execution Control Logic

3*3*1 Control Registers

All of the registers needed to assure proper instruction execution
are contained in the Control Register Section™* These registers
perform such operations as storing execution control flags?
selecting registers within the register array? counting execution
cycles and addressing the microcode array*

3*3*2 Microcode Array

*oxxkkxxxCONFIDENTIAL? MOS TECHNOLOGY? INCX** sk Page- 2S

Final Design Specification for the MCS67”E4 Microprocessor

located 1in a

Both the microcode ROM and the Nanocode ROM are
single array* This assures minimum chip size since only one set of
In addition? this array

decoder/drivers* etc* 1is required*
is organized in a manner which allows the total size of the ROM to

be varied without affecting the remainder of the chip* This will
allow the rapid generation of additional versions of the processor
which provide additional capability through expanded microcode*

buses*

*xkxxxkxCONFIDENTIAL> MOS TECHNOLOGY *INC ****xxxxs Fage-

29

Final Design Specification for the MCS65E4 Microprocessor

4 40 MCS65E4 Microprocessor Software Architecture

4*1 Introduction

The primary goal of the MCS65E4 architecture 1is to shorten the gap

between the processor hardware and the high level language
architecture while at the same time retaining the generality which
will allow it to support a broad range of applications™* In

particular? the software architecture of the MCS65E4 exhibits the
following characterictics J

le Strong multi-tasking support*

2* Separation between data and program*

3* 1Three-operand”™ addressing* i* e** all data operations
are memory-to-memory*

4* Data structures (array* record* etc*) directly
resembling high-level Jlanguage practices?*

4*2 MCS65E4 Internal Architecture
4*2*1 Introduction

The internal architecture of the MCS65E4 contains all of the
registers needed to support execution of the instruction set
described in Section 4*8* This set of registers is divided into
those which are visible to the programmer (hereafter referred to
as the Process Registers) and 3 set of temporary data registers
which are used during iInstruction execution* The process registers
are as follows!

1* Process Base Register (BAS)

2* Process Limit Register (LMT)

3* Process Program Counter (PPC)
4* Primary Base Register (PRM)

5* Top oFf Stack-. Register (TQS)

6* Process Control Register (PCR)

It should be noted that for speed purposes? the internal process
registers (PRM* TOS* LMT* and PPC) contain physical addresses
during process execution* However* the MCS65E4 user does not see
these physical addresses since they are converted to logical
addresses whenever the contents of one of these registers is
transferred into memory>* This 1is accomplished by subtracting the
contents of the Process Base Register (BAS) from the address being
transferred into memory> Similarly* the logical addresses
contained in memory are converted to physical addresses when the
internal process registers are loaded*

4*2*2 Process Base Register (BAS)

The Process Base Register sets the lower limit of the memory space
in which the process must execute* This memory space starts at the
first byte of the page whose address 1is contained in BAS* i*e**
the BAS register contains the page number of the physical address
at which the process starts* For example* if the BAS register
contains O04E7* the lowest address which is available to the

dkxkxxkxCONFIDENTIAL MOS TECHNOLOGY * INC sk Page- 30

Final Design Specification for the MCS65E4 Microprocessor

process is 04E700*

4*2*3 Process Limit Register (LMT)

The Process Limit Register sets the upper limit of the memory
space in which 3 process is to execute* At the 33me time? it
identifies 3 page in memory which is used to store exception
vectors 3nd other information required to control execution of the
process™* The highest sddress 3V3il3ble to a process is the last
byte of the Limit Page* For example? if the LMT register contains
0D34? the highest available sddress 1in the process 1is O0D34FF*

4*2*4 Process Progr3m Counter (FPC)

Execution of MCS65E4 programs proceeds under control of the
Process Progr3m Counter* The operstions sssociated with this
register are much the same as in any programm3ble processor™®

4*2*5 Primary Base Register (PRM)

The Primary Base register 1is provided to control the accessing of
data during instruction execution*Address offsets contained in
the MCS65E4 instructions are added to the PRM register to obtain
the physical address of the dats*

4*2*6 Top oF Stack. Register (T0S)

The Top of Stack Register controls access to the process stack
during instruction execution* The steck and Top of Stack Register
(TOS) operate in a conventional manner to store subroutine return
addresses? subroutine data? interrupt return addresses? etc* In
addition? the TOS C3n be used as 3 b3se register to control the
accessing of dats in memory utilizing offset, addressing* This
operates in exactly the same manner as does Offset Addressing
using the Prim3ry B3se (PRM) register™*

4*2*7 Process Control Register (PCR)

The Process Control Register cont3ins 3 number of flsgs 3nd
control bits which sre used to control instruction execution
within the processor* The PCR register bits aret

Bit Designstion

0 K Kernel Mode F13g

1 U - User/Supervisor Mode

° I - Interrupt Inhibit Flag

3 E - Eneble Exterr»3l Memory Refresh
4 P - Enable Periodic Interrupt

5 S - Eneble St3ck Bound3ry Check
6 D Debug Mode

7 T Dis3ble All Tr3ps

8-11 M - Microcode Select

12-15 R Refresh R3le

wxkwxkkx CONFIDENTIAL? MOS TECHNOLOGY 2 INC* * s Page- 31

Final Design Specification for the MCS65E4 Microprocessor

4*2*7*1 Kernel Mode Flag (K)

The Kernel state K =1 represents the first level of the
operating system* This flag 1is set and cleared automatically as
the processor moves into arid out of the Kernel state*

442 *7 2 User/Supervisor Mode (U)

The User/Supervisor flag is set to 3 logic 1 to enable execution
of 3 number of privileged instructions which are normally
available only to the operating system* This flag is set
automsticslly by the Reset 1iInput or when the processor exits from
3 User process* It is cle3red when a User process is invoked™*

4*2*7*3 Interrupt Inhibit Flag (1)

The Interrupt Inhibit Flag can be set to disable interrupts on the
INT input*

4*2*7*4 Enable External Memory Refresh (E)

The E flag must be set to a logic 1 to enable the processor to
perform periodic external memory refresh operations* The internal
refresh 1logic will assure that each row in the dynamic memories
will be refreshed at a rate determined by the programmable Refresh
Control Counter>*

4*2*7*5 Enable Periodic Interrupt (P)

The P flag can* be set to & logic ¥ to cause the processor to
execute a trap each time the memory refresh logic "rolls over**
This occurs at a rate determined by the Refresh Control Counter
(typically between 2 and 4 milliseconds)™* This trap will occur
whether or notthe external refresh operation is enabled*

4*2*7*6 Enable Stack Boundary Check (S)
The S flag can be set to cause the processor to execute a trap
whenever the stack crosses a P3ge boundary during a PUSH or POP

operation* This allows either the process or the operating system
to verify that the stack will not over-write data in memory™*

4*2*7*4 Debug Mode (D)

The Debug flag can be set to allow single-instruction execution of
3 User process™* Esch time the processor enters 3 User process it
will execute a single instruction and will then trap back to the
operating system? allowing the operating system to display the
effects of each instruction execution fordebugpurposes™*

4*2*7*8 Enable Read Before Byte Write W)

All trsps 3re disahl? if this flag is set*

4*2*7*9 Microcode Select M)

*xkkHkxkxxxCONFIDENTIAL? MOS TECHNOLOGY >INC * %k Page- 32

Final Design Specification for the MCS65E4 Microprocessor

These Tfour bits directly reflect the contents of the internal
Microcode Select Register* This data 1is placed onto bits 12-15 of
the address bus during an external microcode fetch*

4*2*7*10 Refresh Rate
These four bits direclly reflect the contents of the internal

Refresh Control Register* This data directly controls the rate at
which the MC365E4 refreshes the external memories*

skkxxkkxkxCONFIDENTIALE MOS TECHNOLOGY 2 INC*****xxxxx Page- 33

Final Design Specification for the MCS65E4 Microprocessor

Kernel Reset Vector

dilit F3ge Process Vactor*®

Process Software

Process Stack

Dynamic
Memory Free Memory

Dynamic Data (Heap)

Static Data

Global Data

Base Page |
Inter-process Control™*

*~ Kernel and Supervisor Process only

Figure 4*0 Suggested Process Organization 1in the MCS65E4 System

FrRFAXAXAXXCQNFIDENTIAL> MOS TECHNOLOGY ?INC ****Hxskkx Page-

Final Design Specification for the MCS65E4 Microprocessor

4*3 Process Strueture

4 >3*1 Introduction

Those factors which infljence the organization of a process within
the MCS65E4 are much the same as the factors which govern the
organization of memory within an MCS6502 system* These are 3s
fo llows*

1* The vectors associsted with the processing of interrupts?
system calls? etc* are located in the Limit page? i* e*?
in high order memory> This generally dictates that
program memory be at the upper limit of the address space
allocated to the process*

2* The availability of short offsets from the Process Base
Register would seem to dictate that Read/Write memory be
located in the low order portion of the address space
allocated to a process* In addition? the first three
bytes of memory within the Kernel process arid within any
Operating System process must be read/write memory*

These factors lead to the general process organization shown in
Figure 4*0* However? this process structure is by no means
mandatory* This is particulsrly true if the entire process is
located in read/write memory> As long as the process vectors
remain in the addresses outlined* it is possible to place the
process software anywhere in the process address space? such as
directly above the static data are3* This would place the entire
dynamic data area (including the stack.) in high order memory*

4*3.2 Inter-process Control

As mentioned above? the Tfirst three bytes of the Kernel arid
Operating System processes must be reserved for use by the MCS65E4
to control movement into arid out of the process* These addresses
must be located in read/write memory* The processor will transfer
data into arid out of this ares during the servicing of interrupts?
system calls? etc*

The MCS65E4 architecture does not require that the first three
bytes of the User process be reserved*

4*3*3 Global Data

The TFfirst 64 bytes of memory above the process base can be
accessed with a single byte of addressing information* In
addition? addresses 65 through 511 can be accessed with one
additional byte of offset (two bytes total)* For this reason? this
region should be used to store those static variables which are
accessed most freouently*

4*3*4 Static Data

This area consists primarily of static variables which will be
utilized by the process software* This data should be accessed

axkxxxkxxCONFIDENTIAL? MOS TECHNOLOGY? INC % xxsxsxax Page- 35

Final Design Specification for the MC365E4 Microprocessor

through the Primary Base Register or through the Process Base
Registere

4v3e5 Dynamic Memcry

The dynamic memory area consists of three sections* These are the
dynamic data area* the free memory area and the process stack.*
Each of these 1is discussed separately below*

4¢3 *5¢1 Dynamic Data

The Tfirst section 1is the dynamic data area 1in which the processor
allocates memory to dynamic variables during process execution*
This data can be accessed through the Primary Base Register arid
through the external base registers™* This area may be used for a
process heap? or for the storage of higher 1level processes called
during execution of process software*

4* 3*5*2 Free Memory

The free memory area acts as a buffer between the dynamic data arid
the process stack™* Since the MCS65E4 stack grows downward toward
lower-order memory? the optimum configuration would be that in
which the dynamic data area grows upward into the free memory area
while the stack, grows downward* The MCS65E4 architecture contains
provision Tfor assuring that these two data areas do not overlap*

4*3*5*3 Process Stack

Transfer of data into arid out of the process stack 1is performed
under control of the Top of Stack Register within the MCS65E4
processor?* In the MCS65E4? the TOS register always contains the
physical address of the last byte of data placed onto the stack*
Therefore? the TOS register is decremented before data 1is placed
into the stack and 1is incremented after each transfer of data out
of the stack *

4*3*6 Process Software

The process software C3n generally be viewed as “"staticl? i*e*?
the memory requirements will not change during the execution of
the process™* Therefore? this software should generally be located
outside of the dynamic memory area* As outlined above? MCS65E4
architecture requires that a set of process vectors be located in
fixed positions within the process address space* For this reason?
it will generally be more satisfactory to place the process
software in high-order memory alorig with these vectors*

4*3*7 Process Vectors
Processing of interrupts? system calls? arid system errors is
controlled by a set of vectors which must be located in the Limit

Page of the process*

4*3*8 Kernel Reset Vector

*wxxxwkxxxCONFIDENTIAL> MOS TECHNOLOGY>INC *%* % sxsx Page- 36

Final Design Specification for the MCS65E4 Microprocessor

In the Kernel Process? the high order four bytes of memory are

reserved for storing the Kernel Reset Vector ¢ This 1is used by the
processor during the system reset operation* The Reset Vector is

stored in the same format as the exception vectors*
4*4 Execution of Processes in the MCS65E4
4*4*1 -Introducti on

The registers described 1in Section 5*2*1 are designed to support
the execution of a hierarchy of processes in a multi-task
environment ijnder the control of a sophisticated operating system*
One of the key aspects of this architecture is support from the
processor to initiate a new process? to exit from a process in the
event of a fault or interrupt? and to return to an interrupted
process* All of these inter-process operations are described in
this section*

4*4*2 Basic Inter-process controls
4*4*2*1 Introduction

The MCS65E4 provides five primary tools for controlling movement
into and out of processes* They are the following?

1* Kernel Reset Vector

2* Process Parameter List

3* Process Link

4* Pointer to Current Caller
5* Process Stack.

44 *2*2 Kernel Reset Vector

The high order four memory locations in the Kernel process
(physical addresses FFFFFC-FFFFFF) are reserved for storage of the
Reset vector™

4*4*2*3 Process Parameter List (PPL)

The Process Parameter List (PPL) contains the information
necessary to enter a process for the first time* The arguments 1in
this list are as follows*

1* List Size

This eight-bit parameter specifies the number of bytes of
data contained in the list (not including the List Size
parameter)™

2* Process Base Address
The Process Base Address parameter specifies the logical

page address of the Base Page of the new process within
the caller®"s address space*

3* Process Size

*kkkHkxkxxxCONFIDENTIAL? MOS TECHNOLOGY?INC **x ks Page- 37

Final Design Specification for the MCS65E4 Microprocessor

This 16-bit parameter specifies the logical page address
of the Limit Page within the new process? it e*7 the page
address relative to the new process®"s base? not to the
caller®s base * This data 1is used by the MCS65E4 to Iload
the Process Limit Register during process 1initialization*

4* Program Entry Address

This 24-bit parameter specifies the logical address
within the new process of the entry point for the process
software* This data is used to load the Process Program
Counter during process 1initialization*

5 PRM Initial Value

This 24-bit parameter specifies the logical address
within the new process of the initial Primary Base
Register contents* This data is used to load the PRM

register during process initialization*
6* TOS Initial Value

This 24-bit parameter specifies the logical address
within the new process of the initial top of stack* The
MCS65E4 uses this data to load the TOS register during
process initialization*

7* Process Control Register |Initial Value*

This 16-bit parameter specifies the initial contents of
the Process Control Register™ This data 1is transferred
directly into the PCR during process initialization*

4*4*2*4 Poiriter to Current Caller

During the execution of any process (other than the Kernel
process) it Is very important that the MCS65E4 be able to exit
from the process and return to its caller* This 1is accomplished by
utilizing physical addresses 000000 through 000002 within the
Kernel process to store the physical address of the current
caller™s Top of Stack * This information will be utilized by the
MCS65E4 during the processing of any exceptions which require that
execution of the current process be suspended *

Addresses 000000-000002 within the Kernal Process are reserved and
should not be used by the Kernel software for general data
storage™

4*4*2*5 Process Link

For Operating System processes it is necessary that the MCS65E4 be
able to exit to both lower level and higher Jlevel processes* The
Pointer to Current Caller described previously stores the physical
address of the caller®s top of stack? allowing a process to return
to its caller at any time* However? when a higher level process is

FHXFKXFXXCGNFIDENTIAL? MOS TECHNOLOGY ?INC Hxsasksokask Page- 38

.rial Design Specification for the MCS65E4 Microprocessor

invoked? it uill be necessary to store this pointer in a manner
which assures that it will be available when the MCS65E4 exits
froili the higher level process and be3ins executing the
intermediate level process once sgain * This 1is accomplished by
storing "the information contained 1in the Pointer to Current Caller
into the first three bytes of the intermediate process (logical
addresses 000000 through 000002) before exiting to the higher
level process* These three logical addresses will be referred to
as the Process Link*

It should be noted that the Process Link, 1is a reserved area arid
should not be used by the Operating System Process for general
data storage* In addition* this process 1link does not exist within
the User process since it is impossible to invoke additional
processes within the User process*

4 ¢4 ¢2+6 Process Stack

Throughout the inter-process operations described below? the
process stack is utilized for saving the 1internal registers when
exiting from a process*

4*4*3 Inter-process Operations

4*4*3*1 Introduction

The manner in which each of these architectural elements 1is used
in a system can be described most effectively through a detailed
discussion of the primary 1iInter-process operations that must take
place during the operation of a full scale multi-task
microcomputer* Specifically? these operations are!

1* System Reset*

2* Invoking higher level processes*

3* Exiting from a process in the event of an interrupt?
system call? or bus error*

4* Returning to a process after an interrupt? system call 7
or bus error*

4 ¢4 *3 ¢2 System Reset

When the MCS65E4 is reset? it immediately enters the Kernal mode
with the Base? Limit and Process Control registers initialized as

follows!

Register Initial Contents
Process Base (BAS) Register 0000XX
Process Limit (LMT) Register FFFFXX

Process Control Register (PCR)

Bit O C K) 1
Bit 1 CuU) 1
Bit 2 1) 0

*wxxxwxxxCONFIDENTIAL> MOS TECHNOLOGY? INC **#xsxsxsx Page- 39

Final Design Specification for the
Bit 3 (0
Bit 4 (cp 0
Bith S 0
Bit 6 (@) 0
Bit 7 VU 0
Bits 8-11 (M 0
Bits 12-15 (R 0
The processor then fetches a 24-bit
information stored in the Reset Vector
FFFFFFF) arid begins executing the
address™* The manner in which the

utilized to determine the Kernel
Paragraph 4*7 *6*2*

instructions
Reset Vector
starting address

MCS65E4 Microprocessor

(2 MSEC Refresh rate)
address utilizing the
(addresses FFFFFFC through
located at this
information is
is described in

4*4*3*3 Invoking Additional Processes

Higher level processes can be invoked either from the Kernel
process or from an Operating System process by executing an 10S or
TASK instructors The single operand contained in the instruction

must point to the Process Parameter
MCS65E4 begins execution of the
the contents of the internal
stack and then examining the Process
the operating parameters for the new
the sequence proceeds as TfTollows!

1* The contents of the Process
current process stack*
stack contains the following:

Memo ry

Location Contents

TOS+11 PCR? Bits 8-15
TOS+10 PCR? Bits 0-7
TOS +9 PRM? Bits 16-23
TOS-1-8 PRM? Bits 8-15
TOS +7 PRM? Bits 0-7
TOS +6 PPC? Bits 16-23
TOS +5 PPC? Bits 8-15
TQS +4 PPC? Bits 0-7
TOS +3 LMT? Bits 8-15
TOS +2 LMT? Bits 0-7
TOS +1 BAS? Bits 8-15
TOS BAS? Bits 0-7

2* The processor then fetches the contents of the Pointer to
Current Caller (physical addresses 000000-000002) arid
places this information into the Process Link of the
current process (logical addresses 000000-000002 of the
current process)*

3* The Pointer to Current Caller is then updated
transferring the data contained in the TOS register into
physical addresses 000000 through 000002*

FAXAKIXXXCQOQNFIDENTIAL? MOS TECHNOLOGY ?INC ****Hxxkxkx Page- 40

List for the new process*
10S or TASK
registers onto the
Parameter
process™

After this operation?

The
instruction by placing

current process
List to determine
More specifically?

registers are pushed onto the

the process

by

Final Design Specification for the MCS65E4 Microprocessor

There are several 1items worth noting 1in the preceeding operations™*
The Ffirst is that the addresses which are placed onto the caller”™s
stack from the 1iInternal process registers are physical addresses*

No attempt is made to convert these physical addresses to logical
addresses. In addition ? the processor does not allempt to format
this data in a manner which would facilitate subsequent

manipulation through the normal processor software* Both of these
are made possible by the basic nature of process execution wi thin
the MCS65E4 architecture* In particular? it Is assumed that the
limits within which the new process will execute will not include
that portion of memory 1in which the caller®"s stack 1is located and
that it will not include the caller-s Base Page or Limit Page*
Therefore? it will be impossible for any higher 1level process to
access this data* Similarly? the use of physical addresses on the
caller®s stack is made possible by the fact that the caller cannot
be moved within the physical address space while a higher level
process is being executed*

After the preceeding operations are complete? the MCS65E4 is ready
to enter the new process* This is accomplished 3S follows*

1* The processor first calculates the physical address of
the PPL for the new process* This 1is accomplished through
one of the normal operand addressing sequences described
in Section 4*5 utilizing the information contained 1in the

instruction* This physical address is then transferred
into one of the internal registersfor use during the
remainder of this operation*

2* The first item in the PPL specifies the number of bytes
of data which are contained 1in the list* This list length
parameter is transferred into aninternal register to
control termination of the 10S or TASK instruction™*

3* The second parameter in the PPL contains the logical
address of the base of the new process* This 1iIs