CMD

G65SCXX Series G65SC1XX Series

Microcircuits

CMOS G65SCXXX 8-Bit Microprocessor Family

Features

- CMOS family that is compatible with NMOS 6500 series microprocessors
- Uses single +5 volt power supply
- Low power consumption (4 mA @ 1 MHz) allows battery-powered operation
- Enhanced instruction set: 27 additional op codes encompassing eight new instructions enhance software performance compared to existing NMOS 6500 microprocessor instruction set - 64 microprocessors instuctions
- 178 operational codes
- 15 addressing modes
- 65K-byte addressable memory
- $1,2,3,4,5$ or 6 MHz operation
- Choice of external or on-board clock generator operation
- On-board clock generator/oscillator can be driven by an external single-phase clock input, an RC network, or a crystal circuit
- Advanced memory access timing ($\phi 4$) on selected versions
- Early address valid allows use with slower memories
- Early write data for dynamic memories
- 8 -bit parallel processing
- Decimal and binary arithmetic
- Pipeline architecture
- Programmable stack pointer
- Variable length stack
- Interrupt capability
- Non-maskable interrupt
- 8 -bit bidirectional data bus
- "Ready" input (for single cycle execution)
- Direct memory access capability
- Bus compatible with M6800
- Available on selected versions, a memory lock output and bus enable input signals simplify multiprocessor designs

Abstract

General Description The G65SCXXX 8-bit microprocessor family is manufactured using the state-ef-the-art silicon gate CMOS process. The G65SC02 and G65SC 12 devices are pin-to-pin compatible with NMOS versions of the 6500 currently on the market. The G65SC102 and G65SC112 devices include several enhancements not available with other designs. All of the micropracessors are software compatible and provide 65 K bytes of memory addressing and two interrupt inputs. All are bus compatible with MC6800 products. As shown in Table I, the G65SC02, G65SC102 and G65SC112 clock generator circuit may be driven by an external crystal (Figure 2a), an RC network (Figure 2b) or by an external clock source. The G65SC12 requires an externai clock source and is intended for multiprocessor applications where maximum timing control is necessary. The three family members with on-chip oscillators are intended for high performance, low cost operations where single phase inputs, crystals, or RC inputs provide the time base. All of the microprocessors in the G65SCXXX family are pin-to-pin compatible with the NMOS 6500 microprocessors offered by several other manufacturers. However, the use of the leading-edge CMOS process technology ensures several software or programming enhancements not available to users fo the NMOS 6500. The enhancements include two additional addressing modes, an expanded microprocessor instruction set (from 56 to 64 instructions), and expanded operational codes (from 151 to 178). In addition, a series of operational enhancements are provided which materially improve the effective use of the microprocessor. These enhancements are explained in Table V of the section of this data sheet devated to system software and programming. This series of microcessors provides the user an architecture and instruction set with which he is basically familiar (6502), the several operational enhancements notwithstanding, plus all of the advantages of leading edge CMOS technology; i.e., increased noise immunity, higher reliability, and greatly reduced power consumption.

Table I. G65Scxxx Family Microprocessor Capabilities

ITEM NO.	PART NUMBER	$\begin{aligned} & \text { DIP } \\ & \text { PINS } \end{aligned}$	ADDRESSABLE MEMORY (BYTES)	ON-BOARD CLOCK OSCILLATOR (SEE NOTE)	EXTERNAL CLOCK GENERATOR REQUIRED	$\begin{gathered} \text { ADVANCED } \\ \text { MEMORY } \\ \text { ACCESS (} \phi 4) \end{gathered}$	IRO	NMI	SO	DBE	BE	SYNC	RDY	ML	RES
1	G65SC02	40	65K	-			*	-	-			*	*		-
2	G65SC12	40	65K		*		-	-	-	-		*			*
3	G65SC102	40	65K	-		*	-	-	-		-	-	*	*	*
4	G65SC1 12	40	65K	*			-	-	-		-	*	*	-	-
NOTE	These devices	ope	in any of the follo	g clock genera	modes	ternal crystal	2 Ex	nal R	netwo		dOOIN	rom ex	na: cla	sourc	

General Description (Continued)

In addition to enhanced software programming, the use of CMOS processing also allows several hardware enhancements that are not available to users of the NMOS 6500 products. These hardware enhancements are listed and explained in Table II.
The G65SC102 offers the advantage of an on-board divide-by-four oscil-
lator, increasing the available access time (tACC) by approximately 25%. All versions of the G65SCXXX microprocessor lamily are available in plastic, ceramic, cerdip, or feadless chip carrier packaging. All versions are avaiłable in $1,2,3,4,5$ and 6 MHz maximum operating frequencies.

Absolute Maximum Ratings: (Note 1)

Rating	Symool	Value	Unit
Supply Voltage	Voo	-0.3 to +7.0	V
Input Voltage	ViN	-0.3 to $V 00+0.3$	V
Operating Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	TS	-55 to +150	${ }^{\circ} \mathrm{C}$

This device contains input protection against damage due to high static voltages or electric fields: however, precautions should be taken to avoid application of voltages higher than the maximum rating.
Notes:

1. Exceeding these ratings may result in permanent damage. Functional operation under these conditions is not implied.

DC Characteristics: $V D O=5.0 \mathrm{~V} \pm 5 \%$, $V s s=0 V, T A=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Industrial, 0° to $+70^{\circ} \mathrm{C}$ Commercial

Parameter	Symbol	Min	Max	Unit
	$V{ }_{1 H}$	$\begin{gathered} 2.4 \\ \mathrm{VoD}-0.2 \\ 2.0 \end{gathered}$	$\begin{aligned} & V O D+0.3 \\ & V D D+0.3 \\ & V D D+0.3 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Input Low voltage $\phi 0,(\mathrm{IN}), \operatorname{CLK}(\mathbb{N})$ $\phi 1$ (IN) $\overline{R E S}, \overline{N M I}, R D Y, \overline{I R Q}$, Data, $\overline{S O}$, DBE, BE	VII	$\begin{aligned} & -0.3 \\ & -0.3 \\ & -0.3 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.2 \\ & 0.8 \end{aligned}$	v
```Enput Leakage Current (VIN = 0 to VoD) RES, NMI, RDY, /RQ, SO, DBE, BE (Internal Puli-UP). CLK (IN) [102] \phi2 (IN). }\phi0(IN), CLK (IN) [O2, 12, 112]```	lin		$\begin{gathered} 1.0-100 \\ \pm 1.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Three-State Leakage Current Address, Data, $\mathrm{F} \overline{\mathrm{W}}$	Irsi		$\pm 10.0$	$\mu \mathrm{A}$
Output High Voltage ( $10 \mathrm{H}=-100 \mu \mathrm{~A}, \mathrm{VOD}=4.75 \mathrm{~V}$ ) SYNC, Data, A0-A15, RM $\bar{W}$	VOH	2.4	-	V
Output Low Voltage ( $10 \mathrm{~L}=1.6 \mathrm{~mA}, \mathrm{VOD}=4.5 \mathrm{~V}$ ) SYNC, Data, AO-A15, R/W	Vol	-	0.4	$V$
$\begin{array}{cc} \text { Supply Current } f=1 \mathrm{MHz} \\ \text { (No Load) } & f=2 \mathrm{MHz} \\ & f=3 \mathrm{MHz} \\ & f=4 \mathrm{MHz} \end{array}$	lod	-	$\begin{gathered} 4 \\ 8 \\ 12 \\ 16 \end{gathered}$	mA
Standby Power Dissipation ( $\phi 2=$ VIH, Inputs $=$ Vss or VoD Outputs Unloaded)	Psby		50.0	$\mu W$
Capacitance ( V IN $=0, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, f=1 \mathrm{MHZ}$   Logic. $\phi O(\mathbb{N})$ ) CLK (IN)   AO-A15, R $\bar{W}$ Data (Three-State)   $\phi 2$ (IN)	$\begin{gathered} \mathrm{Cin} \\ \mathrm{CTS} \\ \mathrm{C} 2(\mathrm{IN}) \\ \hline \end{gathered}$	-	$\begin{aligned} & 10 \\ & 15 \\ & 40 \end{aligned}$	pF

AC Characteristics, G65SC02, G65SC12, G65SC112: VDO $=5.0 \mathrm{~V} \pm 5 \% . \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ}$ Industrial.
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Commercial

		1 MHz		2 MHz		3 MHz		4 MHz		5 MHz		6 MHz		
Parameter	Symbol	Min	Max	Unit										
Delay Time, $\phi 0$ (IN) to $\phi 2$ (OUT)	to ${ }^{\text {do }}$	-	40	-	40	-	40	-	40	-	35	-	30	nS
Detay Time, $\phi 2$ (IN) to $\phi 2$ (OUT)	to $\phi 2$	-	35	-	35	-	35	-	35	-	35	-	30	nS
Delay Time, $\phi 1$ (OUT) to $\phi 2$ (OUT)	tD $\phi_{1}$	-	50	-	50	-	50	-	50	-	35	-	30	NS
Delay Time, $\phi 2$ (OUT) to $\overline{\text { OSC }}$ (OUT)	toosc	-	50	-	50	-	50	-	50	-	35	-	30	nS
Cycle Time	tere	1.0	DC	0.50	DC	0.33	DC	0.25	DC	0.20	DC	0.167	DC	$\mu S$
Clock Pulse Wiath Low	tPw (\$2L)	430	10000	210	10000	150	10000	100	10000	90	10000	80	10000	nS
Clock Pulse Width High	tpW ( $\phi 2 \mathrm{H}$ )	450	-	220	-	160	-	110	-	85	-	75	-	nS
Fall Time, Rise Time	$t \mathrm{~F}$, th	-	25	-	20	-	15	-	12	-	10	-	10	nS
Address Hold Time	tan	15	-	15	-	15	-	15	-	5	-	5	-	nS
Address Setup Time	tads	-	125	-	100	-	85	-	70	-	60	-	55	nS
Access Time	LACC	775	-	340	-	200	-	140	-	110	-	85	-	nS
Read Data Hold Time	IDHR	10	-	10	-	10	-	10	-	5	-	5	-	nS
Read Data Setup Time	tose	100	-	60	-	40	-	30	-	27	-	25	-	nS
Write Data Delay Time	twos	-	175	-	100	-	75	-	55	-	50	-	45	nS
Write Data Hold Time	torw	30	-	30	-	30	-	30	-	15	-	15	--	nS
SYNC, ML Setup Time	tsy, tmL	-	125	-	100	-	85	-	70	-	60	-	55	nS
SYNC. ML Hold Time	tSYh, TMLH	10	-	10	-	10	-	10	-	5	-	5	-	nS
$\overline{\text { SO }}$ Setup Time	tso	75	-	50	-	35	-	25	-	22	-	20	-	nS
Processor Control Setup Time	tPSC	200	-	110	-	80	-	60	-	55	-	50	-	nS

AC Characteristics, G65SC102: VDD $=5.0 \mathrm{~V} \pm 5 \% . T_{A}=-40^{\circ} \mathrm{C}$ to $\pm 85^{\circ} \mathrm{C}$ Industrial, $0^{\circ} \mathrm{C}$ to $\pm 70^{\circ} \mathrm{C}$ Commercial

		1 MHz		2 MHz		3 MHz		4 MHz		5 MHz		6 MHz		
Parameter	Symbol	Min	Max	Unit										
Delay Time, CLK (IN) to $\phi 2$ (OUT)	tclk	-	75	-	75	-	75	-	75	-	60	-	50	nS
Delay Time, $\overline{O S C}$ (OUT) to $\phi 2$ (OUT)	toosc	-	70	-	70	-	70	-	70	-	55	-	45	$n$
Cycle Time	tcre	1.0	DC	0.50	DC	0.33	DC	0.25	DC	0.20	DC	0.167	DC	$\mu \mathrm{S}$
Clock Pulse Width Low	tPW ( $¢ 2 \mathrm{~L}$ )	430	10000	210	10000	150	10000	100	10000	90	10000	80	10000	nS
Clock Pulse Width High	tpw (\$2H)	450	-	220	-	160	-	110	-	85	-	75	-	nS
Fall Time, Rise Time	tr, tr	-	25	-	20	-	15	-	12	-	10	-	10	nS
Delay Time, $\phi 2$ (OUT) to $\phi 4$ (OUT)	tavs	-	250	-	125	-	83	-	63	-	52	-	42	nS
Address Valid to $\phi 4$ (OUT)	tA $\chi^{4}$	100	-	25	-	16	-	12	-	8	-	5	-	$n \mathrm{~S}$
Address Hold Time	tah	15	-	15	-	15	-	15	-	10	-	10	-	ns
Access Time	tacc	775	-	340	-	200	-	140	-	110	-	85	-	nS
Read Data Hold Time	tohr	10	-	10	-	10	-	10	-	5	-	5	-	nS
Read Data Setup Time	tDSR	100	-	60	-	40	-	30	-	27	-	25	-	nS
Write Data Hald Time	torw	30	-	30	-	30	-	30	-	15	-	15	-	nS
Write Data Delay Time	toD $\phi_{4}$	-	200	-	110	-	85	-	65	-	50	-	45	nS
SYNC, $\overline{M L}$ Setup Time	tsy, tmL	-	125	-	100	-	85	-	70	-	60	-	55	ns
SYNC, ML Hold Time	tSYH, MMLH	10	-	10	-	10	-	10	-	5	-	5	-	nS
$\overline{\text { SO Setup Time }}$	tso	75	-	50	-	35	-	25	-	22	-	20	-	nS
Processor Control Setup Time	tpes	200	-	110	-	80	-	80	-	55	-	50	-	nS

## TIMING DIAGRAM:

G65SC02
G65SC12
G65SC 112


TIMING DIAGRAM:
G65SC102


Notes 1 Load $=100 \mathrm{pF}$
2 Voltage levels shown are V . $04 \mathrm{~V} . \mathrm{V} \cdot \mathrm{V} \cdot 24 \mathrm{~V}$, unless otherwise specified
3. Measurement points shown are 08 V and 2.0 V . unless otherwise specified


Note: Refer to Table I for signal input/output applicability.
Figure 1. Internal Architecture Simplified Block Diagram

## Functional Description

## Timing Coniral

The timing control unit keeps track of the instruction cycle being monitored. The unit is set to zero each lime an instruction fetch is executed and is advanced at the beginning of each phase one clock pulse for as many cycles as is required to complete the instruction. Each data transfer which takes place between the registers depends upon decoding the contents of both the instruction register and the timing control unit

## Program Counter

The 16 -bit program counter provides the addresses which step the microprocessor through sequential instructions in a program

Each time the microprocessor fetches an instruction from program memory, the lower byte of the program counter ( PCL ) is placed on the loworder bits of the address bus and the higher byte of the program counter $(\mathrm{PCH})$ is placed on the high-order 8 bits. The counter is incremented each time an instruction or data is fetched from program memory.

## Instruction Register and Decode

Instructions fetched from memory are gated onto the internal data bus These instructions are fatched into the instruction register then decoded along with timing and interrupt signals, to generate control signals for the various registers

## Arithmetic and Logic Unit (ALU)

Afl arithmetic and logic operations take place in the ALU including imcrementing and decrementing internal registers (except the program counter). The ALU has no internal memory and is used only to pertorm logical and transient numerical operations.

## Accumulator

The accumulator is a general purpose 8-bit register that stores the results of most arithmetic and logic operations. In addition, the accumulator usually contains one of the two data words used in these operations

## Functional Description (Continued)

## Index Registers

There are two 8-bit index registers ( $X$ and $Y$ ), which may be used to count pragram steps or to provide an index value to be used in generating an effective address

When executing an instruction which specifies incexed addressing, the CPU fetches the op code and the base address. and modifies the address by adding the index register to it prior to performing the desired operation. Pre- or post-indexing of indirect addresses is possible.

## Stack Pointer

The stack pointer is an 8 -bit register used to control the addressing of the variable-length stack. The stack pointer is automaticallyincremented and
decremented under control of the microprocessor to perform stack manipulations under direction of either the program or interrupts (NMI and IRO) The stack allows simple implementation of nested subroutines and multiple level interrupts

## Processor Status Register

The 8-bit processor status register contains seven status flags. Some of the flags are controlled by the program, others may be controlled both by the program and the CPU. The 6500 instruction set contains a number of conditional branch instructions which are designed to allow testing of these flags

## Signal Description

## Address Bus (AO-AXX)

Reter to the particular package configuration for the respective number of address lines

In both the 40-pin and 44-pin packages, A0-A 15 forms a 16-bit address bus for memory and $1 / O$ exchanges on the data bus. The address lines are set (See BE below.) to the high impedance state by the bus enable (BE) signal. The output of each address line is TTL compatible, capable of driving one standard TTL load and 130 pF .

## Bus Enable (BE)

This signal allows external control of the data and the address output butters and R/W. For normal operation, BE is high causing the address buffers and $R / \bar{W}$ to be active and the data buffers to be active during a write cycle. For external control, $B E$ is held low to disable the buffers.

## Clock In (CLK (IN))

The 65SC $10 \times$ Series is supplied with an internal clock generator operating at four times the $\phi 2$ frequency. The frequency of these clocks is externally controlled by the crystal or oscillator circuit shown in Figure 2

## Phase $O \operatorname{In}(\phi O(I N)$ )

This is the buffered clock input to the internal clock generator on the G65SC0X series Clock outputs $\phi 1$ (OUT) and $\phi 2$ (OUT) are derived from this signal

## Phase $2 \ln (\phi 2(I N))$

This is the unbuffered clock input to the internal clock generator on the G65SC1x and G65SC11x series. The clock oulput, $\phi 2(O U T)$, is derived from this signal

## Data Bus Enable (DBE)

This TTL-compatible input allows external control at the three-state data output buffers. in normal operation. DBE would be driven by the phase two ( $\$ 2$ ) clock. thus allowing data input from micraprocessor only during $\phi 2$ During the read cycle. the data bus buffers are internally disabled, becoming essentially an open circuit. To disable the data bus externally, DBE should be held low

## Data Bus (DO-D7)

The data lines (DO-D7) constitute an 8-bit bidirectional data bus used for data exchanges to and from the device and peripherals. The outputs are three-state buffers capable of driving one TTL load and 130 pF . The data lines are set to the high impedance state by BE or DBE

## Interrupt Request ( $\overline{\mathbf{R} \mathbf{Q}}$ )

This TTL compatible signal requests that an interrupt sequence begin within the microprocessor. The $\overline{\mathrm{RQ}}$ is sampled during $\phi 2$ operation, if
the interrupt flag in the processor status register is zero. the current instruction is completed and the interrupt sequence begins during $\phi 1$. The program counter and processor status register are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no further interrupts may occur. At theend of this cycle, the prograrin counter low will be loaded from address FFFE, and program counter high from location FFFF. transterring program control to the memory vector located at these addresses. The RDY signal must be in the high state for any interrupt to be recognized. A 3 K ohm external resistor should be used for proper wire-OR operation.

## Memory Lock (ML)

In a multiprocessor system, $\overline{M L}$ indicates the need to defer the rearbitration of the next bus cycle to ensure the integrity of read-modify-write instructions. ML goes low during ASL. DEC, INC, LSR, ROL, ROR, TRB, TSB memory referencing instructions. This signal is low for the modify and write cycles

## Non-Maskable InterrupI (NMI)

A negative-going edge on this input requests that a non-maskable interrupl sequence be generated within the microprocessor. The NMI is sampled during $\phi 2$; the current instruction is completed and the interrupt sequence begins during $\phi 1$. The program counter is loaded with the interrupt vector from locations FFFA (low byte) and FFFB (high byte), thereby transferring program control to the non-maskable interrupt routine. However, it should be noted this is an edge-sensitive input. As a result, another interrupt will occur if there is another negative-going transition and the program has not returned from a previous interrupt. Also, no interrupt will accur if NMI is low and negative-going edge has not occurred since the last non-maskable interrupt.

## Oscillator Out ( $\overline{\mathrm{OSC}}$ (OUT))

On the G65SC 102 microprocessor, an internal inverter and a resistor are connected between pins 35 and 37 an the DIP package and pins 39 and 41 on the PLCC package. The inverter has sufficient loop gain to provide oscillation using an external crystal

## Phase 1 Out ( $\phi 1$ (OUT))

This inverted $\phi 2$ (OUT) signal provides timing for external $A / \bar{W}$ operations.

## Phase 2 Out ( © $2(O U T)) ~_{\text {(OU }}$

This signal provides timing for external bus $R / \bar{W}$ operations. Addresses are valid after the address setup time (tADS) from the falling edge of $\phi 2(\mathrm{OUT})$
Phase 4 Out ( $\phi \mathbf{4}$ (OUT))
This signal is delayed by tavs from $\$ 2(O \cup T)$. The address output is valid prior to the rising orige of $\phi 4$ (OUT).

CMD

## Signal Description (Continued)

## Ready (RDY)

This input signal allows the user to single-cycle the microprocessor on all cycles including write cycles. A negative transition to the low state during ar coincident with phase one ( $\phi 1$ ) will halt the microprocessor with the output address lines reflecting the current address being fetched. This condition will remain through a subsequent phase two ( $\$ 2$ ) in which the ready signal is low. This feature allows microprocessor intertacing with low-speed memory as well as direct memory access (DMA)

## Resel ( $\overline{\text { RES }}$ )

This input is used 10 reset the microprocessor. Reset must be held low for at least two clock cycles after Voo reaches operating valtage from a power down. A positive transition on this pin will then cause an initialization sequence to begin. After the system has been operating. a low on this line of at least two cycles will cease microprocessing activity.
When a positive edge is detected, there is an initialization sequence lasting six clock cycles. The previous program counter and status register values are written to the stack memory area. Then the interrupt mask flag is set, the decimal mode is cleared and the program counter is loaded with the restart vector from tocations FFFC (iow byte) and FFFD (high byte) This is the start location for program control This input should be high in normal operation.

## Read/Write ( $\mathrm{R} / \overline{\mathrm{W}}$ )

Fhis signal is normally in the high state indicating that the microprocessor is reading data from memory or I/O bus. In the low state the data bus has valid data from the microprocessor to be stored at the addressed memory location. $R / W$ is set to the high impedance state by $B E$.

## Set Overflow ( $\overline{\mathbf{S O}}$ )

A negative transition on this line sels the overllow bit in the status code register. The signal is sampled on the trailing edge of $\phi 1$.

## Synchronize (SYNC)

This output line is provided to identily those cycles during which the microprocessor is doing an OP CODE fetch. The SYNC line goes high during $\phi 1$ of an OP CODE fetch and stays high for the remainder of that cycle. If the RDY line is pulled low during the $\phi 1$ clock pulse in which SYNC went high, the processor will stop in its current state and will remain in the state until the RDY line goes high. In this manner, the SYNC signal can be used to control RDY to cause single instruction execution.


Table II. Microprocessor Hardware Enhancements

Function	NMOS 6500	G65SCXXX Family
Oscillator	Requires external active components.	Crystal or RC network will oscillate when connected between $\phi 0(1 \mathrm{~N})$ and $\phi 1$ (OUT).
Assertion of Ready (RDY) during write operations.	lgnared.	Stops processor during $\phi 2$.
1 X series clock imputs.	Two non-overlapping clock inputs ( $\phi 1$ and $\phi 2$ ) are required.	$\phi 2(\mathrm{IN})$ is the only required clock.
Unused input-only pins ( $\overline{\mathrm{RO}}, \overline{\mathrm{NM}}$. RDY, $\overline{\mathrm{RES}}, \overline{\mathrm{SO}}, \mathrm{DBE}, \mathrm{BE}$ ).	Must be connected to low impedance signal to avoid noise problems.	Connected internally by a high-resistance to VOO (approximately 1 Megohm).

## Addressing Modes

Fifteen addressing modes are available to the user of the GTE G65SCXXX family of microprocessors. The addressing modes are described in the foliowing paragraphs

## Implied Addressing

In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction

## Accumulator Addressing

This form of addressing is represented with a one byte instruction and implies an operation on the accumulator

## Immediate Addressing

With immediate addressing. the operand is contained in the second byte of the instruction no further memory addressing is required.

## Absolute Addressing

For absolute addressing, the second byte of the instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits Therefore, this addressing mode allows access to the total 65 K bytes of addressable memory.

## Zero Page Addressing

Zero page addressing allows shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte The careful use of zero page addressing can result in significant increase in code efficiency

## Absolute Indexed Addressing

Absolute indexed addressing is used in conjunction with $X$ and $Y$ index register and is referred to as "Absolute. $X$., " and "Absolute, $Y$." The effective address is formed by adding the contents of $X$ and $Y$ to the address contained in the second and third bytes of the instruction. This mode altows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and execution time

## Zero Page Indexed Addressing

Zero page absolute addressing is used in conjunction with the index register and is referred to as "Zero Page, $X$ " or "Zero Page, $Y$." The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the secand byte references a location in page zero. Additionally due to the "Zero Page" addressing nature of this mode, no carry is added to the high order eight bits of memory and crossing of page boundaries does not occur

## Relative Addressing

Relative addressing is used only with branch instruction; it establishes a destination for the conditional branch

## Zero Page Indexed Indirect Addressing

With zero page indexed indirect addressing fusually relerred to as Indirect $X$ ) the second byte of the instruction is added to the contents of the X index register; the carry is discarded. The result of this addition points to a memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specifying the high and low order bytes of the effective address must be in page zero

## Absolute Indexed Indirect Addressing (Jump Insiruction Only)

With absolute indexed indirect addressing, the contents of the second and third instruction bytes are added to the X register. The result of this addition points to a memory location containing the lower-order eight bits of the effective address. The next memory tocation contains the higher-order eight bits of the effective address

## Indirect Indexed Addressing

This form of addressing is usually referred to as Indirect. Y The second byte of the instruction points to a memory location in page zero. The contents of this memory location is added to the contents of the $Y$ index register, the result being the low order eight bits of the effective address. The carry from this addition is added to the contents of the nexi page zero memory focation, the result being the high order eight bits of the effective address.

## Zero Page Indirect Addressing

In this form of addressing, the second byte of the instruction contains the low order eight bits of a memory location. The high order eight bits is always zero. The contents of the fully specified memory location is the low arder byte of the effective address. The next memory location contains the high order byte of the effective address.

## Absolute Indirect Addressing (Jump Instruction Only)

The second byte of the instruction contains the low order eight bits of a memory location. The high order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fully specified memory location is the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the 16 bits of the program counter.


Figure 3. Microprocessor Programming Model

Table III. Instruction Set-Alphabetical Sequence

$A D C$	Add Memory 10 Accumulator with Carry
AND	AND' Memory with Accurmulator
ASL	Shit One Bill Left
BCC	Branch on Carry Clear
BCS	Branch on Carry Set
BEO	Branch on Result Zero
BIT	Test Memory Bits with Aceumulator
BMI	Branch on Result Mifus
BNE	Branch on Result Not Zero
BPL	Branch on Result Plus
BRA	Branch Always
BRK	Force Break
BVC	Branch on Overflow Clear
BVS	Branch on Overflow Set
CLC	Clear Carry Flag
GLD	Clear Decimal Mode
Cll	Clear Interrupt Disable Bit
CLV	Clear Overflow Flag
GMP	Compare Memory and Accumulator
CPX	Compare Memory and Index $X$
CPY	Compare Memory and Index $Y$
DEC	Decrement by One
DEX	Decrement Index $\times$ by One
DEY	Decrement Index Y by One
EOR	"Exclusive-or" Mernory with Accumulator
INC	Increment by One
INX	Increment Index $x$ by One
INY	Increment Index y by One
JMP	Jump to New Location
JSA	Jump to New Location Saving Relum Address
LOA	Load Accumulator with Memory
LDX	Load Index $x$ with Memory

```
LOY Load index Y with Memory
 LSP Shift One Bit Right
 NOP No Operation
 ORA "OR" Memoryw with Accumulator
 PHA Push Acicumulator on Slack
 PHP Push Processor Status on Stack
- PHX Push Incuex X on Stack
 - PHi Push Inceex Y on Stack
 PLP Pull Processar Status from Stack
 - PLX Pull Index x from Stack
 - Ply Pull Index y trom Stack
 ROL Rotate One Butlett
 ROR Rolate One But Right
 RTI Return'rom Interrupt
 RTS Returrirom Subroutune
 SBC Sutraci Memory lrom Accumulator with Borrow
 SEC Set Carry Flag
 SEC Set Decumal Mode
 SEI Set Interrupt Disable B
 STA Stare Accumulator in Memory
 STX Stare Index X in Memory
 STY Stare Index Y in Memory
 - STZ Siore Zero in Memory
 TAX Transfer Accumulator to Index }
 TAY Transfer Accumulator to Index Y
- TRB Test and Reset Memory Bits with Accumulator
- TSB Test and Sel Memory Bits with Accumulator
 TSM Transier Stack Pointer to Index X
 Txa Transfer Index }x\mathrm{ to Accumulator
 TXS Transfer Index }X\mathrm{ to Stach Pointer
 TyA Transfer Index y to Accumulator
```

Note

- New Instruction

MSO	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
0	BRK	$\begin{aligned} & \text { ORA } \\ & \text { ind. } x \end{aligned}$				$\begin{aligned} & \text { ORA } \\ & 2 \mathrm{pg} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ASL } \\ & \text { zpg } \end{aligned}$		PHP	ORA   1 mm	$\begin{gathered} A S L \\ A \end{gathered}$			ORA abs	$\begin{aligned} & \mathrm{ASL} \\ & \mathrm{abs} \end{aligned}$		0
1	$\underset{\text { rel }}{8 n \mathrm{~L}}$	OAA ind. $Y$				$\begin{aligned} & \text { ORA } \\ & \text { zpg. } \mathrm{x} \\ & \hline \end{aligned}$	$\begin{gathered} \text { ASL } \\ \text { zpg. } \times \\ \hline \end{gathered}$		CLC	ORA abs. $Y$				ORA   abs. $X$	$\begin{aligned} & \text { ASL } \\ & \text { abs. } X \end{aligned}$		1
2	JSR   abs	AND ind, $X$			$\begin{aligned} & \text { BIT } \\ & \text { zpg } \end{aligned}$	ANO zpg	ROL zpg		PLP	AND imm	$\begin{gathered} \mathrm{ROL} \\ \mathrm{~A} \end{gathered}$		$\begin{aligned} & \text { BIT } \\ & \text { abs } \end{aligned}$	AND abs	ROL abs		2
3	BMI rel	$\begin{aligned} & \text { AND } \\ & \text { ind. } Y \end{aligned}$				$\begin{aligned} & \text { AND } \\ & \text { zpg. } x \end{aligned}$	$\begin{gathered} \mathrm{ROL} \\ \mathrm{zpg}, x \end{gathered}$		SEC	AND abs. Y				AND aos. $X$	$\begin{aligned} & \text { ROL } \\ & \text { abs. } x \end{aligned}$		3
4	RTI	$\begin{aligned} & \text { EOR } \\ & \text { ind. } x \end{aligned}$				$\begin{aligned} & \mathrm{EOF} \\ & \mathrm{zpg} \end{aligned}$	$\begin{aligned} & \text { LSA } \\ & \text { zpg } \end{aligned}$		PHA	EOR imm	$\begin{gathered} \text { LSR } \\ \text { A } \end{gathered}$		JMP abs	EOR abs	LSR abs		4
5	$\begin{gathered} \text { BVC } \\ \text { rel } \end{gathered}$	$\begin{aligned} & \text { EOR } \\ & \text { ind, } Y \\ & \hline \end{aligned}$	$\mid$			$\begin{gathered} \text { EOA } \\ \text { zpg. } \mathrm{x} \end{gathered}$	$\begin{gathered} \text { LSR } \\ \text { zpg. } x \end{gathered}$		CLI	EOR abs. $Y$				$\begin{aligned} & \text { EOR } \\ & \text { abs. } X \end{aligned}$	$\begin{aligned} & \text { LSR } \\ & \operatorname{abs} x \end{aligned}$		5
6	RTS	$\begin{aligned} & \text { ADC } \\ & \text { ind, } x \end{aligned}$			\|her	$\begin{aligned} & \mathrm{ADC} \\ & 2 \rho g \end{aligned}$	$\begin{gathered} \mathrm{AOR} \\ \mathrm{zpg} \\ \hline \end{gathered}$		PLA	$\begin{aligned} & \mathrm{ADC} \\ & \mathrm{imm} \end{aligned}$	$\begin{gathered} \text { ROR } \\ \mathrm{A} \\ \hline \end{gathered}$		JMP ind	$\begin{aligned} & \text { ADC } \\ & \text { abs } \end{aligned}$	ROR abs		6
7	$\begin{gathered} 8 V S \\ \text { rel } \end{gathered}$	$\begin{aligned} & \text { ADC } \\ & \text { ind, } Y \end{aligned}$	Hereck			$\begin{gathered} \mathrm{ADC} \\ \text { zpg. } x \end{gathered}$	ROR   zpg. $X$		SEI	$A D C$ abs. $Y$				$\begin{gathered} \text { ADC } \\ \text { abs. } X \end{gathered}$	ROR abs, $X$		7
8		$\begin{gathered} \text { STA } \\ \text { ind, } x \end{gathered}$			$\begin{aligned} & \text { STY } \\ & z \mathrm{pg} \end{aligned}$	$\begin{aligned} & \text { STA } \\ & \text { zpg } \end{aligned}$	$\begin{aligned} & \text { STX } \\ & \text { zpg } \\ & \hline \end{aligned}$		DEY		TXA		$\begin{aligned} & \text { STY } \\ & \text { abs } \end{aligned}$	STA abs	$\begin{aligned} & \text { STX } \\ & \text { abs } \end{aligned}$		8
9	$\begin{gathered} \mathrm{BCC} \\ \text { rel } \end{gathered}$	STA   ind. $Y$	574 ind		$\begin{aligned} & \text { STY } \\ & \text { zpg. } x \end{aligned}$	$\begin{gathered} \text { STA } \\ \text { zpg. } x \end{gathered}$	$\begin{aligned} & \text { STX } \\ & \text { zpg } Y \\ & \hline \end{aligned}$		TYA	$\begin{aligned} & \text { STA } \\ & \text { abs, } Y \end{aligned}$	TXS			STA   abs, $X$			9
A	$\begin{aligned} & \mathrm{LDY} \\ & 1 \mathrm{~mm} \end{aligned}$	LDA ind. $X$	$\begin{aligned} & \operatorname{LDX} \\ & \text { imm } \end{aligned}$		$\begin{aligned} & \text { LOY } \\ & \text { zpg } \end{aligned}$	$\begin{aligned} & \text { LDA } \\ & 2 p g \end{aligned}$	$\begin{aligned} & \mathrm{LDX} \\ & \mathrm{zPg} \end{aligned}$		TAY	LDA imm	TAX		$\begin{aligned} & \text { LDY } \\ & \text { abs } \end{aligned}$	LDA abs	$\begin{aligned} & \text { LDX } \\ & \text { abs } \end{aligned}$		A
B	$\begin{gathered} 8 C 5 \\ \text { rel } \end{gathered}$	$\begin{aligned} & \text { LDA } \\ & \text { ind. } y \end{aligned}$	Mqu		$\begin{array}{r} \text { LDY } \\ \text { zpg } \times \end{array}$	$\begin{aligned} & \operatorname{LDA} \\ & 2 p g . x \end{aligned}$	$\begin{aligned} & \text { LDX } \\ & \text { zpg Y } \\ & \hline \end{aligned}$		CLV	LDA abs. $\gamma$	TSX		$\begin{aligned} & \text { LDY } \\ & \text { abs, } X \end{aligned}$	LDA abs, $X$	$\begin{gathered} \operatorname{LDX} \\ \text { abs. } \mathrm{Y} \end{gathered}$		B
C	CPY $1 \mathrm{~mm}$	CMP   and. $X$			$\begin{aligned} & \mathrm{CPY} \\ & 2 \mathrm{Pg} \end{aligned}$	$\begin{aligned} & \text { CMP } \\ & z \mathrm{pg} \end{aligned}$	$\begin{gathered} \mathrm{DEC} \\ \mathrm{zpg} \end{gathered}$		NNY	CMP 1 mm	DEX		$\begin{aligned} & \text { CPY } \\ & \text { abs } \end{aligned}$	CMP abs	DEC abs		C
D	$\begin{gathered} \text { BNE } \\ \text { rel } \end{gathered}$	CMP   ind. $Y$	whar			$\begin{aligned} & \text { CMP } \\ & \text { zpg. } x \end{aligned}$	$\begin{gathered} \text { DEC } \\ \text { zpg } x \end{gathered}$		CLD	CMP   abs, $Y$				CMP abs. $X$	$\begin{gathered} \text { DEC } \\ \text { abs. } x \end{gathered}$		D
E	$\begin{aligned} & \text { CPX } \\ & \text { imm } \end{aligned}$	$\begin{aligned} & \text { SBC } \\ & \text { ind } x \end{aligned}$			$\begin{aligned} & \mathrm{Cpx} \\ & \text { 2pg } \end{aligned}$	$\begin{aligned} & \mathrm{SBC} \\ & \mathrm{zpg} \end{aligned}$	$\begin{aligned} & 1 \mathrm{NC} \\ & 2 \mathrm{pg} \end{aligned}$		INX	$\begin{aligned} & \mathrm{SBC} \\ & \mathrm{imm} \end{aligned}$	NOP		$\begin{aligned} & \text { CPX } \\ & \text { abs } \end{aligned}$	$\begin{gathered} \text { SBC } \\ \text { abs } \end{gathered}$	INC abs		E
F	BEO	$\begin{aligned} & \mathrm{SBC} \\ & \text { ind } Y \end{aligned}$	$\begin{array}{\|c\|} \hline 886, \\ \text { Inst } \end{array}$			$\begin{gathered} \operatorname{SBC} \\ 2 p g X \end{gathered}$	$\begin{gathered} \mathrm{INC} \\ 2 \mathrm{pg} x \\ \hline \end{gathered}$		SED	$\begin{aligned} & \mathrm{SBC} \\ & \text { abs. } \mathrm{Y} \end{aligned}$				$\begin{aligned} & \text { SBC } \\ & \text { abs. } x \end{aligned}$	$\begin{aligned} & \text { INC } \\ & \text { abs. } x \end{aligned}$		F
	0	1	2	3	4	5	6	7	8	9	A	$B$	C	0	E	F	

Figure 4. Microprocessor Op Code Table

Table IV. Operational Codes, Execution Time, and Memory Requirements

		IMMEDIATE			ABSOLUTE			$\begin{aligned} & \text { ZEAO } \\ & \text { PAGE } \end{aligned}$			(4)   IMPLIED		(IND, X)					ZPG. X		(1)		$\begin{gathered} \text { (1) } \\ \mathrm{ABS}, \mathrm{Y} \end{gathered}$		$\begin{array}{\|c\|} \hline \text { RELA- } \\ \text { TIVE (2) } \\ \hline \end{array}$		$\begin{aligned} & \text { INOI- } \\ & \text { RECT } \\ & \hline \end{aligned}$		ZPG, Y		PROCESSOR STATUS CODE	
MRE. MONIC	OPERATION	OP	$\square$	\#	OP	$n$	\#	OP	1	H	OP	[1\%	OP	O	\#	OP	n. ${ }^{\text {H }}$	OP	I	OP	n	OP	$n$	OP	n ${ }^{\text {H }}$	OP	n $\#$	OP.	n ${ }^{\text {\# }}$	7 6 4 3 2 1 0   $N$ $\checkmark$ $B$ $D$ 1 $Z$ $C$	MNE MONIC
ADC   AND   ASL   BCC   BCS	$A+M+C \cdots A$ $A A M-A-D]$ $C \cdots \sqrt{7}-D$ BRANCHIFC. 0 BRANCHIFC 1	$\begin{aligned} & 69 \\ & 29 \end{aligned}$	2	2	$\begin{aligned} & 60 \\ & 20 \\ & 0 E \end{aligned}$	4	3 3 3	65	3 3 5	2 2 2	OA	2	61	6	2	71 31	5 2   5 2	75 35 16	4 2   4 2   6 2	$7 D$ $3 D$ $1 E$	4 3   4 3   6 3	79 39	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 90 \\ & 30 \\ & \hline \end{aligned}$	22	72 32	5 2   5 2			NV.... $N$. $N .$.	ADC   AND   ASL   BCC   BCS
BEQ   BIT   BM   8NE   BPL	BRANCHIF Z-1   $A \wedge M$   BRANCH IF N 1   BRANCH IF $2: 0$   BRANCH IF $N=0$	89	2	2	2 C	4	3	24	3	2								34	2	3 C	43			F0	2 2   2 2   2 2   2 2   2 2						BEQ BIT BMI BNE BPL
$\begin{aligned} & \text { BRA } \\ & \text { BRK } \\ & \text { BVC } \\ & \text { BVS } \\ & \text { CLC } \\ & \text { CLD } \end{aligned}$	```BRANCH ALWAYS BREAK BRANCHIFV-O BRANCH IF V-1 \(0-\mathrm{C}\) 0-D```										$\begin{gathered} 00 \\ 18 \\ 08 \\ \hline \end{gathered}$	7   7 1												80 50 70	2 2 2					$*$ $*$$\cdot$	BRA   BRK   BVC   $B \vee S$   CLC   CLD
CLI   CLV   $C M^{p}$   CPX GPY	$\begin{array}{lll} 0 & -1 \\ 0 & -V \\ A \cdot M \\ X-M \\ Y-M \end{array}$	$\begin{aligned} & C 9 \\ & \mathrm{EO} \\ & \mathrm{CO} \\ & \hline \end{aligned}$	2	2	CO	4   4   4	3 3 3	$\begin{aligned} & \mathrm{C} 5 \\ & \mathrm{E} 4 \\ & \mathrm{C} 4 \end{aligned}$	3 3 3 3	2   2   2	$\begin{aligned} & 58 \\ & 88 \end{aligned}$	2	C1	6	2	0.1	52	D5	42	DD	43	D9	4	3		D2	5				CLI   ClV   CMP   CPX   CPY
$\begin{aligned} & \text { DEC } \\ & \text { DEX } \\ & \text { DEY } \\ & \text { EOR } \\ & \text { INC } \end{aligned}$	$\begin{aligned} & \text { DEGREMENT } \\ & X-1 \cdot x \\ & Y-1 \cdot Y \\ & A \because M-A \\ & \text { NCREMENT } \end{aligned}$	49	2	2		$\begin{array}{\|c} 6 \\ 4 \\ 6 \end{array}$	${ }^{3}$	$\begin{aligned} & \mathrm{C} 6 \\ & 45 \\ & \mathrm{E} 6 \\ & \hline \end{aligned}$	5 2   3    3 2   5 2	2	$3 A$ $C A$ 88 $1 A$	2 2 2	41	6	2	51	$5: 2$	$\begin{aligned} & 06 \\ & 55 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c} \hline 6 & 2 \\ 4 & 2 \\ 6 & 2 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{DE} \\ 5 \mathrm{DE} \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline 6 & 3 \\ 4 & 3 \\ 6 & 3 \\ \hline \end{array}$	59	43	3		52	5				DEC   DEX   DEY   EOR   INC
$\begin{aligned} & \text { INX } \\ & \text { INY } \\ & \text { JMP } \\ & \text { ISA } \\ & \text { LDA } \\ & \hline \end{aligned}$	$\begin{aligned} & x+1 \cdot x \\ & y+1 \cdot y \\ & \text { JUMP TO NEW LOC } \\ & \text { JUMP SUB } \\ & M \cdot A \\ & \hline \end{aligned}$	A9	2	2	$\begin{array}{r} 4 \mathrm{C} \\ 20 \\ \mathrm{ADO} \\ \hline \end{array}$	$\left.\begin{array}{l} 3 \\ 6 \\ 4 \end{array}\right]$	3   3   3	A.5.			$\left[\begin{array}{cc} \mathrm{EA} \\ \mathrm{Ca} \end{array}\right.$		$7 C$ A1	$\begin{aligned} & 6 \\ & 6 \end{aligned}$		81	52	B5.	$142$	Ba	43	B9	43			6 C 82	6    5 3			$N \cdot . .$. $N$	$\begin{aligned} & \text { INX } \\ & \text { INY } \\ & \text { JMP } \\ & \text { JSR } \\ & \text { LDA } \end{aligned}$
$\begin{aligned} & \text { LDX } \\ & \text { LDY } \\ & \text { LSP } \\ & \text { NOP } \\ & \text { ORA } \end{aligned}$	$\begin{aligned} & M \cdot X \\ & M \cdot Y \\ & 0 \cdot y \\ & N O O P E R A T I O N \\ & \text { AVM }-A \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A2 } \\ & \text { A0 } \\ & 09 \\ & \hline \end{aligned}$	2 2 2	2	$A E$ $A C$ $4 E$ $0 D$	$\begin{aligned} & 4 \\ & 4 \\ & 6 \\ & 4 \end{aligned}$	3   3   3   3	A6 A4 46 05	3 3 5 3 3	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 A \\ & E A \end{aligned}$		01	㾁	2	11	5.2	$\begin{array}{r} 84 \\ 56 \\ 15 \end{array}$	4    6 2   2    4 2	$\begin{gathered} \mathrm{BC} \\ 5 \mathrm{E} \\ \\ \hline \mathrm{FD} \end{gathered}$	4 3   6 3   4 3	BE 19	$\begin{array}{\|l\|l} 4 & 3 \\ 4 & 3 \\ \hline \end{array}$			12	5	B6	4		$\begin{aligned} & \text { LDX } \\ & \text { LDY } \\ & \text { LSR } \\ & \text { NOP } \\ & \text { ORA } \end{aligned}$
$\begin{aligned} & \text { PHA } \\ & \text { PHP } \\ & \text { PHX } \\ & \text { PHY } \\ & \text { PLA } \end{aligned}$	$\left\{\begin{array}{llll} \hline A & \cdot M S & S-1 & -S \\ P & -M S & S-1 & -S \\ X & \cdot M S & S-1 & -S \\ Y & -M S & S-1 & -S \\ S+1 & \cdot S & M S & -A \\ \hline \end{array}\right.$										48   08   $0 A$   $5 A$   68																				$\begin{aligned} & \text { PHA } \\ & \text { PHP } \\ & \text { PHX } \\ & \text { PHY } \\ & \text { PLA } \end{aligned}$
$\begin{aligned} & \hline P L P \\ & P L X \\ & \text { FLY } \\ & \text { ROL } \end{aligned}$					2 E	6.	3	26			28 FA 7							36		3 E	6										PLF   PLX   PLY   ROL
$\begin{gather*} \text { ROR } \\ \text { RTI } \\ \text { RTS } \\ \text { SBC }  \tag{3}\\ \text { SEC } \\ \hline \end{gather*}$	ATRN INT   RTRN SUB   $A_{-}-\mathrm{M} \cdot \overline{\mathrm{C}} \cdot \mathrm{A}$	E9	2	2	$\begin{aligned} & 6 E \\ & E D \end{aligned}$	$4$	3	$\begin{gathered} 66 \\ E 5 \end{gathered}$	$\begin{gathered} 5 \\ 3 \\ 3 \end{gathered}$	2	64 40 60 38	2	E 1	6	2	Fid	52	F5 76	$\begin{array}{c\|c} 6 & 2 \\ 4 & 2 \end{array}$	$\begin{gathered} 7 E \\ F D \end{gathered}$	$\begin{array}{\|c\|c} 6 & 3 \\ 4 & 3 \end{array}$	F9	4	3		F2	52				ROA   RTI   RTS   SBC   SEC
$\begin{aligned} & \text { SED } \\ & \text { SEI } \\ & \text { STA } \\ & \text { STX } \\ & \text { STY } \\ & \hline \end{aligned}$	$\begin{array}{ll}1 & -D \\ 1 & -1 \\ A & -M \\ X & -M \\ Y & -M\end{array}$				$\begin{array}{\|c\|} \hline 8 \mathrm{C} \\ \mathrm{BE} \\ 8 \mathrm{C} \\ \hline \end{array}$	4	3 $\begin{aligned} & 3 \\ & 3 \\ & 3\end{aligned}$	$\begin{aligned} & 85 \\ & 86 \\ & 84 \\ & \hline \end{aligned}$	3 2   3 2   3 2	2 2 2	F8 78		81	62	2	91	6.2	$\begin{aligned} & 95 \\ & 94 \end{aligned}$	$4{ }_{4}^{4} 2$	9 D	5.3	99	5.3	3		92	5	96	4	*. . . $1 . . .1$.	$\begin{aligned} & \text { SED } \\ & \text { SEI } \\ & \text { STA } \\ & \text { STX } \\ & \text { STY } \end{aligned}$
$\begin{aligned} & \text { STZ } \\ & \text { TAX } \\ & \text { TAY } \\ & \text { TRB } \\ & \text { TSB } \end{aligned}$	$\begin{array}{ll} \hline 00 \cdot M & \\ A-X & \\ A-Y & \\ \bar{A} A M \cdot M & 6\} \\ A V M \cdot M & (6) \\ \hline \end{array}$					$\begin{array}{\|c\|} \hline 4 \\ 6 \\ 6 \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 64 \\ & 14 \\ & 04 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline 3 & 2 \\ 5 & 2 \\ 5 & 2 \\ 2 \end{array}$	$2$   2 $2$								74	$42$	9 E	53										$\begin{aligned} & \text { STZ } \\ & \text { TAX } \\ & \text { TAY } \\ & \text { TAB } \\ & \text { TSB } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { TSK } \\ & \text { TXA } \\ & \text { TXS } \\ & \text { TYA } \end{aligned}$	S $-X$   $X$ $-A$   $X$ $-S$   $Y$ $-A$										BA 84 94 98	2 1   2 1   2 1   2 1																			TSX TXA TXS TYA
Notes																															
1 Add 1   2 Add 1 to   3 Add 1 t   4 Accum   5 N and	to " $\quad 11$ page boundary   to "n if branch occurs to   to "ri" it decimal mode   mulator address is includ	is cro sam ded in nged	coss ine 1 im	sed	d. exc	add	dt	STA to "   ess	and	dST	anc		curs			erent	tpag		$\begin{aligned} & X \\ & Y \\ & A \\ & M \end{aligned}$	Inde Inde Acc Mer Mer	ex $x$	lator per per	etfec stack					$\begin{array}{rl}* & A \\ \sim & S \\ \wedge & A \\ \vee & \\ \forall & \end{array}$	Add Subtr And Or Exciu	$\begin{array}{ll} \text { ract } \quad \text { No. } \\ & \# \text { No } \\ & \text { M } \in \text { Mem } \\ & \text { M. Men } \end{array}$	Cycles   Bytes   mory Bit \#6 mory Bit $\$ 7$

CMD

## Enhanced Operational Characteristics

The CMD G65SCXXX family of microprocessors is a complete series of devices designed for building state-of-the-art microcomputer systems. Each member of the family is carefully designed to be hardware compatible, utilize the same basic software instruction set, and to be bus compatible with the MC6800 product line. Accordingly, the G65SCXX series is pin compatible with

## existing NMOS 6500 type microprocessors

However, as stated previously, the CMOS design allows several operational enhancements to be incorporated in the current product. These operational enhancementse are explained in Table V .

Table V. Microprocessor Operational Enhancements

Function	NMOS 6500   Microprocessor	G65SCXXX Family   Microprocessor
Indexed addressing across page boundary	Extra read of invalid address.	Extra read of last instruction byte.
Execution of invalid op codes.	Some terminate only by reset. Results are undefined	All are NOPs (reserved for future use).
Jump indirect, operand = XXFF	Page address does not increment.	Page address increments, one additional cycle.
Read/modify/write instructions at effective address.	One read and two write cycles.	Two read and one write cycle.
Decimal tlag.	Indeterminate after reset.	Initialized to binary mode ( $\mathrm{D}=0$ ) after reset and interrupts.
Flags after decimal operation.	Invalid $N$, V and $Z$ flags	Valid flags. One additional cycle.
interrupt after fetch of BRK instruction.	Interrupt vector is laaded: BRK vector is ignored	BRK is executed, then interrupt is executed.
Reset	Reads three stack locations	Writes pragram counter and status register to stack
Read/Modify/Write instructions absolute indexed in same page.	Seven cycles.	Six cycles.

## Pin Function

Pin	Description
A0-Axx	Address Bus
BE	Bus Enable
CLK (IN)	Clock Input
$\phi 0(1 N)$	Phase 0 In
¢2(IN)	Phase 2 Im
DBE	Data Bus Enable
D0-D7	Data Bus
$\overline{\mathrm{R} Q}$	Interrupt Request
$\overline{M L}$	Memory Lock
NO	No Connection
$\overline{\mathrm{NMI}}$	Non-Maskable Interrupt


Pin	Description
$\overline{\text { OSC }}($ OUT $)$	Oscillator Output
$\phi 1(O U T)$	Phase 1 Out
$\phi 2(O U T)$	Phase 2 Out
$\phi 4(O U T)$	Phase 4 Out
RDY	Ready
$\overline{R E S}$	Reset
R/	Read/Write
$\overline{S O}$	Set Overilow
SYNC	Synchronize
VDO	Positive Power Supply $i+5.0$ Volts)
VSS	Internal Logic Ground



CMD

Pin Configuration, Continued


Ordering Information


Designators selected for speed and power specifications

-1	1 MHz	-3	3 MHz	-5	5 MHz
-2	2 MHz	-4	4 MHz	-6	6 MHz

